
CHAPTER
16

SQL Tuning

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0 / Blind folio: 579

579

ch16.indd 579ch16.indd 579 10/17/2007 10:04:57 AM10/17/2007 10:04:57 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

580 Oracle Database 11g SQL

n this chapter, you will do the following:

Learn about SQL tuning

See SQL tuning tips that you can use to shorten the length of time your queries take
to execute

Learn about the Oracle optimizer

See how to compare the cost of performing queries

Examine optimizer hints

Learn about some additional tuning tools

Introducing SQL Tuning
One of the main strengths of SQL is that you don’t have to tell the database exactly how to obtain
the data requested. You simply run a query specifying the information you want, and the database
software figures out the best way to get it. Sometimes, you can improve the performance of your
SQL statements by “tuning” them. In the following sections, you’ll see tuning tips that can make
your queries run faster; later, you’ll see more advanced tuning techniques.

Use a WHERE Clause to Filter Rows
Many novices retrieve all the rows from a table when they only want one row (or a few rows).
This is very wasteful. A better approach is to add a WHERE clause to a query. That way, you
restrict the rows retrieved to just those actually needed.

For example, say you want the details for customer #1 and #2. The following query retrieves
all the rows from the customers table in the store schema (wasteful):

-- BAD (retrieves all rows from the customers table)
SELECT *
FROM customers;

CUSTOMER_ID FIRST_NAME LAST_NAME DOB PHONE
----------- ---------- ---------- --------- ------------
 1 John Brown 01-JAN-65 800-555-1211
 2 Cynthia Green 05-FEB-68 800-555-1212
 3 Steve White 16-MAR-71 800-555-1213
 4 Gail Black 800-555-1214
 5 Doreen Blue 20-MAY-70

The next query adds a WHERE clause to the previous example to just get customer #1 and #2:

-- GOOD (uses a WHERE clause to limit the rows retrieved)
SELECT *
FROM customers
WHERE customer_id IN (1, 2);

■

■

■

■

■

■

I

ch16.indd 580ch16.indd 580 10/17/2007 10:05:16 AM10/17/2007 10:05:16 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 581

CUSTOMER_ID FIRST_NAME LAST_NAME DOB PHONE
----------- ---------- ---------- --------- ------------
 1 John Brown 01-JAN-65 800-555-1211
 2 Cynthia Green 05-FEB-68 800-555-1212

You should avoid using functions in the WHERE clause, as that increases execution time.

Use Table Joins Rather than Multiple Queries
If you need information from multiple related tables, you should use join conditions rather than
multiple queries. In the following bad example, two queries are used to get the product name and
the product type name for product #1 (using two queries is wasteful). The first query gets the name
and product_type_id column values from the products table for product #1. The second
query then uses that product_type_id to get the name column from the product_types table.

-- BAD (two separate queries when one would work)
SELECT name, product_type_id
FROM products
WHERE product_id = 1;

NAME PRODUCT_TYPE_ID
------------------------------ ---------------
Modern Science 1

SELECT name
FROM product_types
WHERE product_type_id = 1;

NAME

Book

Instead of using the two queries, you should write one query that uses a join between the
products and product_types tables. The following good query shows this:

-- GOOD (one query with a join)
SELECT p.name, pt.name
FROM products p, product_types pt
WHERE p.product_type_id = pt.product_type_id
AND p.product_id = 1;

NAME NAME
------------------------------ ----------
Modern Science Book

This query results in the same product name and product type name being retrieved as in the
first example, but the results are obtained using one query. One query is generally more efficient
than two.

You should choose the join order in your query so that you join fewer rows to tables later in
the join order. For example, say you were joining three related tables named tab1, tab2, and
tab3. Assume tab1 contains 1,000 rows, tab2 100 rows, and tab3 10 rows. You should join
tab1 with tab2 first, followed by tab2 and tab3.

ch16.indd 581ch16.indd 581 10/17/2007 10:05:16 AM10/17/2007 10:05:16 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

582 Oracle Database 11g SQL

Also, avoid joining complex views in your queries, because doing so causes the queries for
the views to be run first, followed by your actual query. Instead, write your query using the tables
rather than the views.

Use Fully Qualified Column References When
Performing Joins
Always include table aliases in your queries and use the alias for each column in your query (this
is known as “fully qualifying” your column references). That way, the database doesn’t have to
search for each column in the tables used in your query.

The following bad example uses the aliases p and pt for the products and product_
types tables, respectively, but the query doesn’t fully qualify the description and price
columns:

-- BAD (description and price columns not fully qualified)
SELECT p.name, pt.name, description, price
FROM products p, product_types pt
WHERE p.product_type_id = pt.product_type_id
AND p.product_id = 1;

NAME NAME
------------------------------ ----------
DESCRIPTION PRICE
-- ----------
Modern Science Book
A description of modern science 19.95

This example works, but the database has to search both the products and product_types
tables for the description and price columns; that’s because there’s no alias that tells the
database which table those columns are in. The extra time spent by the database having to do the
search is wasted time.

The following good example includes the table alias p to fully qualify the description and
price columns:

-- GOOD (all columns are fully qualified)
SELECT p.name, pt.name, p.description, p.price
FROM products p, product_types pt
WHERE p.product_type_id = pt.product_type_id
AND p.product_id = 1;

NAME NAME
------------------------------ ----------
DESCRIPTION PRICE
-- ----------
Modern Science Book
A description of modern science 19.95

Because all references to columns include a table alias, the database doesn’t have to waste
time searching the tables for the columns, and execution time is reduced.

ch16.indd 582ch16.indd 582 10/17/2007 10:05:16 AM10/17/2007 10:05:16 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 583

Use CASE Expressions Rather than Multiple Queries
Use CASE expressions rather than multiple queries when you need to perform many calculations
on the same rows in a table. The following bad example uses multiple queries to count the
number of products within various price ranges:

-- BAD (three separate queries when one CASE statement would work)
SELECT COUNT(*)
FROM products
WHERE price < 13;

 COUNT(*)

 2

SELECT COUNT(*)
FROM products
WHERE price BETWEEN 13 AND 15;

 COUNT(*)

 5

SELECT COUNT(*)
FROM products
WHERE price > 15;

 COUNT(*)

 5

Rather than using three queries, you should write one query that uses CASE expressions. This
is shown in the following good example:

-- GOOD (one query with a CASE expression)
SELECT
 COUNT(CASE WHEN price < 13 THEN 1 ELSE null END) low,
 COUNT(CASE WHEN price BETWEEN 13 AND 15 THEN 1 ELSE null END) med,
 COUNT(CASE WHEN price > 15 THEN 1 ELSE null END) high
FROM products;

 LOW MED HIGH
---------- ---------- ----------
 2 5 5

Notice that the counts of the products with prices less than $13 are labeled as low, products
between $13 and $15 are labeled med, and products greater than $15 are labeled high.

NOTE
You can, of course, use overlapping ranges and different functions in
your CASE expressions.

ch16.indd 583ch16.indd 583 10/17/2007 10:05:17 AM10/17/2007 10:05:17 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

584 Oracle Database 11g SQL

Add Indexes to Tables
When looking for a particular topic in a book, you can either scan the whole book or use the index
to find the location. An index for a database table is similar in concept to a book index, except
that database indexes are used to find specific rows in a table. The downside of indexes is that
when a row is added to the table, additional time is required to update the index for the new row.

Generally, you should create an index on a column when you are retrieving a small number
of rows from a table containing many rows. A good rule of thumb is

Create an index when a query retrieves <= 10 percent of the total rows in a table.

This means the column for the index should contain a wide range of values. A good candidate
for indexing would be a column containing a unique value for each row (for example, a social
security number). A poor candidate for indexing would be a column that contains only a small
range of values (for example, N, S, E, W or 1, 2, 3, 4, 5, 6). An Oracle database automatically
creates an index for the primary key of a table and for columns included in a unique constraint.

In addition, if your database is accessed using a lot of hierarchical queries (that is, a query
containing a CONNECT BY), you should add indexes to the columns referenced in the START
WITH and CONNECT BY clauses (see Chapter 7 for details on hierarchical queries).

Finally, for a column that contains a small range of values and is frequently used in the WHERE
clause of queries, you should consider adding a bitmap index to that column. Bitmap indexes are
typically used in data warehouses, which are databases containing very large amounts of data.
The data in a data warehouse is typically read using many queries, but the data is not modified
by many concurrent transactions.

Normally, a database administrator is responsible for creating indexes. However, as an
application developer, you’ll be able to provide the DBA with feedback on which columns are
good candidates for indexing, because you may know more about the application than the DBA.
Chapter 10 covers indexes in depth, and you should re-read the section on indexes if necessary.

Use WHERE Rather than HAVING
You use the WHERE clause to filter rows; you use the HAVING clause to filter groups of rows.
Because the HAVING clause filters groups of rows after they have been grouped together (which
takes some time to do), you should first filter rows using a WHERE clause whenever possible. That
way, you avoid the time taken to group the filtered rows together in the first place.

The following bad query retrieves the product_type_id and average price for products
whose product_type_id is 1 or 2. To do this, the query performs the following:

It uses the GROUP BY clause to group rows into blocks with the same product_type_id.

It uses the HAVING clause to filter the returned results to those groups that have a
product_type_id in 1 or 2 (this is bad, because a WHERE clause would work).

-- BAD (uses HAVING rather than WHERE)
SELECT product_type_id, AVG(price)
FROM products
GROUP BY product_type_id
HAVING product_type_id IN (1, 2);

■

■

ch16.indd 584ch16.indd 584 10/17/2007 10:05:17 AM10/17/2007 10:05:17 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 585

PRODUCT_TYPE_ID AVG(PRICE)
--------------- ----------
 1 24.975
 2 26.22

The following good query rewrites the previous example to use WHERE rather than HAVING to
first filter the rows to those whose product_type_id is 1 or 2:

-- GOOD (uses WHERE rather than HAVING)
SELECT product_type_id, AVG(price)
FROM products
WHERE product_type_id IN (1, 2)
GROUP BY product_type_id;

PRODUCT_TYPE_ID AVG(PRICE)
--------------- ----------
 1 24.975
 2 26.22

Use UNION ALL Rather than UNION
You use UNION ALL to get all the rows retrieved by two queries, including duplicate rows; you
use UNION to get all non-duplicate rows retrieved by the queries. Because UNION removes
duplicate rows (which takes some time to do), you should use UNION ALL whenever possible.

The following bad query uses UNION (bad because UNION ALL would work) to get the rows
from the products and more_products tables; notice that all non-duplicate rows from
products and more_products are retrieved:

-- BAD (uses UNION rather than UNION ALL)
SELECT product_id, product_type_id, name
FROM products
UNION
SELECT prd_id, prd_type_id, name
FROM more_products;

PRODUCT_ID PRODUCT_TYPE_ID NAME
---------- --------------- -------------------
 1 1 Modern Science
 2 1 Chemistry
 3 2 Supernova
 3 Supernova
 4 2 Lunar Landing
 4 2 Tank War
 5 2 Submarine
 5 2 Z Files
 6 2 2412: The Return
 7 3 Space Force 9
 8 3 From Another Planet
 9 4 Classical Music
 10 4 Pop 3
 11 4 Creative Yell
 12 My Front Line

ch16.indd 585ch16.indd 585 10/17/2007 10:05:18 AM10/17/2007 10:05:18 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

586 Oracle Database 11g SQL

The following good query rewrites the previous example to use UNION ALL; notice that all
the rows from products and more_products are retrieved, including duplicates:

-- GOOD (uses UNION ALL rather than UNION)
SELECT product_id, product_type_id, name
FROM products
UNION ALL
SELECT prd_id, prd_type_id, name
FROM more_products;

PRODUCT_ID PRODUCT_TYPE_ID NAME
---------- --------------- ------------------------------
 1 1 Modern Science
 2 1 Chemistry
 3 2 Supernova
 4 2 Tank War
 5 2 Z Files
 6 2 2412: The Return
 7 3 Space Force 9
 8 3 From Another Planet
 9 4 Classical Music
 10 4 Pop 3
 11 4 Creative Yell
 12 My Front Line
 1 1 Modern Science
 2 1 Chemistry
 3 Supernova
 4 2 Lunar Landing
 5 2 Submarine

Use EXISTS Rather than IN
You use IN to check if a value is contained in a list. You use EXISTS to check for the existence of
rows returned by a subquery. EXISTS is different from IN: EXISTS just checks for the existence
of rows, whereas IN checks actual values. EXISTS typically offers better performance than IN
with subqueries. Therefore, you should use EXISTS rather than IN whenever possible.

You should refer back to the section entitled “Using EXISTS and NOT EXISTS with a Correlated
Subquery” in Chapter 6 for full details on when you should use EXISTS with a correlated subquery
(an important point to remember is that correlated subqueries can resolve null values).

The following bad query uses IN (bad because EXISTS would work) to retrieve products that
have been purchased:

-- BAD (uses IN rather than EXISTS)
SELECT product_id, name
FROM products
WHERE product_id IN
 (SELECT product_id
 FROM purchases);

PRODUCT_ID NAME
---------- -----------------------------
 1 Modern Science

ch16.indd 586ch16.indd 586 10/17/2007 10:05:18 AM10/17/2007 10:05:18 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 587

 2 Chemistry
 3 Supernova

The following good query rewrites the previous example to use EXISTS:

-- GOOD (uses EXISTS rather than IN)
SELECT product_id, name
FROM products outer
WHERE EXISTS
 (SELECT 1
 FROM purchases inner
 WHERE inner.product_id = outer.product_id);

PRODUCT_ID NAME
---------- -----------------------------
 1 Modern Science
 2 Chemistry
 3 Supernova

Use EXISTS Rather than DISTINCT
You can suppress the display of duplicate rows using DISTINCT. You use EXISTS to check for the
existence of rows returned by a subquery. Whenever possible, you should use EXISTS rather than
DISTINCT, because DISTINCT sorts the retrieved rows before suppressing the duplicate rows.

The following bad query uses DISTINCT (bad because EXISTS would work) to retrieve
products that have been purchased:

-- BAD (uses DISTINCT when EXISTS would work)
SELECT DISTINCT pr.product_id, pr.name
FROM products pr, purchases pu
WHERE pr.product_id = pu.product_id;

PRODUCT_ID NAME
---------- -----------------------------
 1 Modern Science
 2 Chemistry
 3 Supernova

The following good query rewrites the previous example to use EXISTS rather than DISTINCT:

-- GOOD (uses EXISTS rather than DISTINCT)
SELECT product_id, name
FROM products outer
WHERE EXISTS
 (SELECT 1
 FROM purchases inner
 WHERE inner.product_id = outer.product_id);

PRODUCT_ID NAME
---------- -----------------------------
 1 Modern Science
 2 Chemistry
 3 Supernova

ch16.indd 587ch16.indd 587 10/17/2007 10:05:18 AM10/17/2007 10:05:18 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

588 Oracle Database 11g SQL

Use GROUPING SETS Rather than CUBE
The GROUPING SETS clause typically offers better performance than CUBE. Therefore, you
should use GROUPING SETS rather than CUBE wherever possible. This is fully covered in the
section entitled “Using the GROUPING SETS Clause” in Chapter 7.

Use Bind Variables
The Oracle database software caches SQL statements; a cached SQL statement is reused if an
identical statement is submitted to the database. When an SQL statement is reused, the execution
time is reduced. However, the SQL statement must be absolutely identical in order for it to be
reused. This means that

All characters in the SQL statement must be the same.

All letters in the SQL statement must be in the same case.

All spaces in the SQL statement must be the same.

If you need to supply different column values in a statement, you can use bind variables
instead of literal column values. You’ll see examples that clarify these ideas next.

Non-Identical SQL Statements
In this section, you’ll see some non-identical SQL statements. The following non-identical queries
retrieve products #1 and #2:

SELECT * FROM products WHERE product_id = 1;
SELECT * FROM products WHERE product_id = 2;

These queries are not identical, because the value 1 is used in the first statement, but the
value 2 is used in the second.

The following non-identical queries have spaces in different positions:

SELECT * FROM products WHERE product_id = 1;
SELECT * FROM products WHERE product_id = 1;

The following non-identical queries use a different case for some of the characters:

select * from products where product_id = 1;
SELECT * FROM products WHERE product_id = 1;

Now that you’ve seen some non-identical statements, let’s take a look at identical SQL
statements that use bind variables.

Identical SQL Statements That Use Bind Variables
You can ensure that a statement is identical by using bind variables to represent column values.
You create a bind variable using the SQL*Plus VARIABLE command. For example, the following
command creates a variable named v_product_id of type NUMBER:

VARIABLE v_product_id NUMBER

■

■

■

ch16.indd 588ch16.indd 588 10/17/2007 10:05:19 AM10/17/2007 10:05:19 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 589

NOTE
You can use the types shown in Table A-1 of the appendix to define
the type of a bind variable.

You reference a bind variable in an SQL or PL/SQL statement using a colon followed by the
variable name (such as :v_product_id). For example, the following PL/SQL block sets v_
product_id to 1:

BEGIN
 :v_product_id := 1;
END;
/

The following query uses v_product_id to set the product_id column value in the
WHERE clause; because v_product_id was set to 1 in the previous PL/SQL block, the query
retrieves the details of product #1:

SELECT * FROM products WHERE product_id = :v_product_id;

PRODUCT_ID PRODUCT_TYPE_ID NAME
---------- --------------- ------------------------------
DESCRIPTION PRICE
-- ----------
 1 1 Modern Science
A description of modern science 19.95

The next example sets v_product_id to 2 and repeats the query:

BEGIN
 :v_product_id := 2;
END;
/
SELECT * FROM products WHERE product_id = :v_product_id;

PRODUCT_ID PRODUCT_TYPE_ID NAME
---------- --------------- ------------------------------
DESCRIPTION PRICE
-- ----------
 2 1 Chemistry
Introduction to Chemistry 30

Because the query used in this example is identical to the previous query, the cached query is
reused and there’s an improvement in performance.

TIP
You should typically use bind variables if you’re performing the same
query many times. Also, in the example, the bind variables are session
specific and need to be reset if the session is lost.

ch16.indd 589ch16.indd 589 10/17/2007 10:05:19 AM10/17/2007 10:05:19 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

590 Oracle Database 11g SQL

Listing and Printing Bind Variables
You list bind variables in SQL*Plus using the VARIABLE command. For example:

VARIABLE
variable v_product_id
datatype NUMBER

You display the value of a bind variable in SQL*Plus using the PRINT command. For
example:

PRINT v_product_id
V_PRODUCT_ID

 2

Using a Bind Variable to Store a Value Returned
by a PL/SQL Function
You can also use a bind variable to store returned values from a PL/SQL function. The following
example creates a bind variable named v_average_product_price and stores the result
returned by the function average_product_price() (this function was described in Chapter 11
and calculates the average product price for the supplied product_type_id):

VARIABLE v_average_product_price NUMBER
BEGIN
 :v_average_product_price := average_product_price(1);
END;
/
PRINT v_average_product_price

V_AVERAGE_PRODUCT_PRICE

 24.975

Using a Bind Variable to Store Rows from a REFCURSOR
You can also use a bind variable to store returned values from a REFCURSOR (a REFCURSOR is a
pointer to a list of rows). The following example creates a bind variable named v_products_
refcursor and stores the result returned by the function product_package.get_products_
ref_cursor() (this function was introduced in Chapter 11; it returns a pointer to the rows in the
products table):

VARIABLE v_products_refcursor REFCURSOR
BEGIN
 :v_products_refcursor := product_package.get_products_ref_cursor();
END;
/
PRINT v_products_refcursor

PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------
 1 Modern Science 19.95
 2 Chemistry 30

ch16.indd 590ch16.indd 590 10/17/2007 10:05:19 AM10/17/2007 10:05:19 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 591

 3 Supernova 25.99
 4 Tank War 13.95
 5 Z Files 49.99
 6 2412: The Return 14.95
 7 Space Force 9 13.49
 8 From Another Planet 12.99
 9 Classical Music 10.99
 10 Pop 3 15.99
 11 Creative Yell 14.99

PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------
 12 My Front Line 13.49

Comparing the Cost of Performing Queries
The Oracle database software uses a subsystem known as the optimizer to generate the most
efficient path to access the data stored in the tables. The path generated by the optimizer is
known as an execution plan. Oracle Database 10g and above automatically gathers statistics
about the data in your tables and indexes in order to generate the best execution plan (this is
known as cost-based optimization).

Comparing the execution plans generated by the optimizer allows you to judge the relative
cost of one SQL statement versus another. You can use the results to improve your SQL statements.
In this section, you’ll learn how to view and interpret a couple of example execution plans.

NOTE
Database versions prior to Oracle Database 10g don’t automatically
gather statistics, and the optimizer automatically defaults to rule-based
optimization. Rule-based optimization uses syntactic rules to generate
the execution plan. Cost-based optimization is typically better than
rule-based optimization because the former uses actual information
gathered from the data in the tables and indexes. If you’re using
Oracle Database 9i or below, you can gather statistics yourself (you’ll
learn how to do that later in the section “Gathering Table Statistics”).

Examining Execution Plans
The optimizer generates an execution plan for an SQL statement. You can examine the execution
plan using the SQL*Plus EXPLAIN PLAN command. The EXPLAIN PLAN command populates
a table named plan_table with the SQL statement’s execution plan (plan_table is often
referred to as the “plan table”). You may then examine that execution plan by querying the plan
table. The first thing you must do is check if the plan table currently exists in the database.

Checking if the Plan Table Currently Exists in the Database
To check if the plan table currently exists in the database, you should connect to the database as
the store user and run the following DESCRIBE command:

SQL> DESCRIBE plan_table

 Name Null? Type
 --- -------- --------------
 STATEMENT_ID VARCHAR2(30)

ch16.indd 591ch16.indd 591 10/17/2007 10:05:20 AM10/17/2007 10:05:20 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

592 Oracle Database 11g SQL

 PLAN_ID NUMBER
 TIMESTAMP DATE
 REMARKS VARCHAR2(4000)
 OPERATION VARCHAR2(30)
 OPTIONS VARCHAR2(255)
 OBJECT_NODE VARCHAR2(128)
 OBJECT_OWNER VARCHAR2(30)
 OBJECT_NAME VARCHAR2(30)
 OBJECT_ALIAS VARCHAR2(65)
 OBJECT_INSTANCE NUMBER(38)
 OBJECT_TYPE VARCHAR2(30)
 OPTIMIZER VARCHAR2(255)
 SEARCH_COLUMNS NUMBER
 ID NUMBER(38)
 PARENT_ID NUMBER(38)
 DEPTH NUMBER(38)
 POSITION NUMBER(38)
 COST NUMBER(38)
 CARDINALITY NUMBER(38)
 BYTES NUMBER(38)
 OTHER_TAG VARCHAR2(255)
 PARTITION_START VARCHAR2(255)
 PARTITION_STOP VARCHAR2(255)
 PARTITION_ID NUMBER(38)
 OTHER LONG
 OTHER_XML CLOB
 DISTRIBUTION VARCHAR2(30)
 CPU_COST NUMBER(38)
 IO_COST NUMBER(38)
 TEMP_SPACE NUMBER(38)
 ACCESS_PREDICATES VARCHAR2(4000)
 FILTER_PREDICATES VARCHAR2(4000)
 PROJECTION VARCHAR2(4000)
 TIME NUMBER(38)
 QBLOCK_NAME VARCHAR2(30)

If you get a table description similar to these results, you have the plan table already. If you
get an error, then you need to create the plan table.

Creating the Plan Table
If you don’t have the plan table, you must create it. To do this, you run the SQL*Plus script
utlxplan.sql (on my Windows computer, the script is located in the directory E:\oracle_
11g\product\11.1.0\db_1\RDBMS\ADMIN). The following example shows the command
to run the utlxplan.sql script:

SQL> @ E:\oracle_11g\product\11.1.0\db_1\RDBMS\ADMIN\utlxplan.sql

NOTE
You’ll need to replace the directory path with the path for your
environment.

The most important columns in the plan table are shown in Table 16-1.

ch16.indd 592ch16.indd 592 10/17/2007 10:05:20 AM10/17/2007 10:05:20 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 593

Creating a Central Plan Table
If necessary, a database administrator can create one central plan table. That way,
individual users don’t have to create their own plan tables. To do this, a database
administrator performs the following steps:

 1. Creates the plan table in a schema of their choice by running the utlxplan.sql
 script

 2. Creates a public synonym for the plan table

 3. Grants access on the plan table to the public role

Here is an example of these steps:

@ E:\oracle_11g\product\11.1.0\db_1\RDBMS\ADMIN\utlxplan.sql
CREATE PUBLIC SYNONYM plan_table FOR plan_table;
GRANT SELECT, INSERT, UPDATE, DELETE ON plan_table TO PUBLIC;

Column Description
statement_id Name you assign to the execution plan.
operation Database operation performed, which can be

■ Scanning a table
■ Scanning an index
■ Accessing rows from a table by using an index
■ Joining two tables together
■ Sorting a row set
For example, the operation for accessing a table is TABLE ACCESS.

options Name of the option used in the operation. For example, the option for a
complete scan is FULL.

object_name Name of the database object referenced in the operation.
object_type Attribute of object. For example, a unique index has the attribute of

UNIQUE.
id Number assigned to this operation in the execution plan.
parent_id Parent number for the current step in the execution plan. The parent_

id value relates to an id value from a parent step.
position Processing order for steps that have the same parent_id.
cost Estimate of units of work for operation. Cost-based optimization uses

disk I/O, CPU usage, and memory usage as units of work. Therefore, the
cost is an estimate of the number of disk I/Os and the amount of CPU
and memory used in performing an operation.

TABLE 16-1 Plan Table Columns

ch16.indd 593ch16.indd 593 10/17/2007 10:05:21 AM10/17/2007 10:05:21 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

594 Oracle Database 11g SQL

Generating an Execution Plan
Once you have a plan table, you can use the EXPLAIN PLAN command to generate an execution
plan for an SQL statement. The syntax for the EXPLAIN PLAN command is as follows:

EXPLAIN PLAN SET STATEMENT_ID = statement_id FOR sql_statement;

where

statement_id is the name you want to call the execution plan. This can be any
alphanumeric text.

sql_statement is the SQL statement you want to generate an execution plan for.

The following example generates the execution plan for a query that retrieves all rows from
the customers table (notice that the statement_id is set to 'CUSTOMERS'):

EXPLAIN PLAN SET STATEMENT_ID = 'CUSTOMERS' FOR
SELECT customer_id, first_name, last_name FROM customers;
Explained

After the command completes, you may examine the execution plan stored in the plan table.
You’ll see how to do that next.

NOTE
The query in the EXPLAIN PLAN statement doesn’t return rows
from the customers table. The EXPLAIN PLAN statement simply
generates the execution plan that would be used if the query was run.

Querying the Plan Table
For querying the plan table, I have provided an SQL*Plus script named explain_plan.sql in
the SQL directory. The script prompts you for the statement_id and then displays the execution
plan for that statement.

The explain_plan.sql script is as follows:

-- Displays the execution plan for the specified statement_id

UNDEFINE v_statement_id;

SELECT
 id ||
 DECODE(id, 0, '', LPAD(' ', 2*(level - 1))) || ' ' ||
 operation || ' ' ||
 options || ' ' ||
 object_name || ' ' ||
 object_type || ' ' ||
 DECODE(cost, NULL, '', 'Cost = ' || position)
AS execution_plan
FROM plan_table
CONNECT BY PRIOR id = parent_id
AND statement_id = '&&v_statement_id'
START WITH id = 0
AND statement_id = '&v_statement_id';

■

■

ch16.indd 594ch16.indd 594 10/17/2007 10:05:21 AM10/17/2007 10:05:21 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 595

An execution plan is organized into a hierarchy of database operations similar to a tree; the
details of these operations are stored in the plan table. The operation with an id of 0 is the root
of the hierarchy, and all the other operations in the plan stem from this root. The query in the
script retrieves the details of the operations, starting with the root operation and then navigating
the tree from the root.

The following example shows how to run the explain_plan.sql script to retrieve the
'CUSTOMERS' plan created earlier:

SQL> @ c:\sql_book\sql\explain_plan.sql
Enter value for v_statement_id: CUSTOMERS
old 12: statement_id = '&&v_statement_id'
new 12: statement_id = 'CUSTOMERS'
old 14: statement_id = '&v_statement_id'
new 14: statement_id = 'CUSTOMERS'

EXECUTION_PLAN
--
0 SELECT STATEMENT Cost = 3
1 TABLE ACCESS FULL CUSTOMERS TABLE Cost = 1

The operations shown in the EXECUTION_PLAN column are executed in the following order:

The rightmost indented operation is executed first, followed by any parent operations
above it.

For operations with the same indentation, the topmost operation is executed first,
followed by any parent operations above it.

Each operation feeds its results back up the chain to its immediate parent operation, and the
parent operation is then executed. In the EXECUTION_PLAN column, the operation ID is shown
on the far left. In the example execution plan, operation 1 is run first, with the results of that
operation being passed to operation 0. The following example illustrates the ordering for a more
complex example:

0 SELECT STATEMENT Cost = 6
1 MERGE JOIN Cost = 1
2 TABLE ACCESS BY INDEX ROWID PRODUCT_TYPES TABLE Cost = 1
3 INDEX FULL SCAN PRODUCT_TYPES_PK INDEX (UNIQUE) Cost = 1
4 SORT JOIN Cost = 2
5 TABLE ACCESS FULL PRODUCTS TABLE Cost = 1

The order in which the operations are executed in this example is 3, 2, 5, 4, 1, and 0.
Now that you’ve seen the order in which operations are executed, it’s time to move onto what

the operations actually do. The execution plan for the 'CUSTOMERS' query was

0 SELECT STATEMENT Cost = 3
1 TABLE ACCESS FULL CUSTOMERS TABLE Cost = 1

Operation 1 is run first, with the results of that operation being passed to operation 0.
Operation 1 involves a full table scan—indicated by the string TABLE ACCESS FULL—on the
customers table. Here’s the original command used to generate the 'CUSTOMERS' query:

EXPLAIN PLAN SET STATEMENT_ID = 'CUSTOMERS' FOR
SELECT customer_id, first_name, last_name FROM customers;

■

■

ch16.indd 595ch16.indd 595 10/17/2007 10:05:21 AM10/17/2007 10:05:21 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

596 Oracle Database 11g SQL

A full table scan is performed because the SELECT statement specifies that all the rows from
the customers table are to be retrieved.

The total cost of the query is three work units, as indicated in the cost part shown to the right
of operation 0 in the execution plan (0 SELECT STATEMENT Cost = 3). A work unit is the
amount of processing the software has to do to perform a given operation. The higher the cost,
the more work the database software has to do to complete the SQL statement.

NOTE
If you’re using a version of the database prior to Oracle Database 10g,
then the output for the overall statement cost may be blank. That’s
because earlier database versions don’t automatically collect table
statistics. In order to gather statistics, you have to use the ANALYZE
command. You’ll learn how to do that later in the section “Gathering
Table Statistics.”

Execution Plans Involving Table Joins
Execution plans for queries with table joins are more complex. The following example generates
the execution plan for a query that joins the products and product_types tables:

EXPLAIN PLAN SET STATEMENT_ID = 'PRODUCTS' FOR
SELECT p.name, pt.name
FROM products p, product_types pt
WHERE p.product_type_id = pt.product_type_id;

The execution plan for this query is shown in the following example:

@ c:\sql_book\sql\explain_plan.sql
Enter value for v_statement_id: PRODUCTS

EXECUTION_PLAN
--
0 SELECT STATEMENT Cost = 6
1 MERGE JOIN Cost = 1
2 TABLE ACCESS BY INDEX ROWID PRODUCT_TYPES TABLE Cost = 1
3 INDEX FULL SCAN PRODUCT_TYPES_PK INDEX (UNIQUE) Cost = 1
4 SORT JOIN Cost = 2
5 TABLE ACCESS FULL PRODUCTS TABLE Cost = 1

NOTE
If you run the example, you may get a slightly different execution
plan depending on the version of the database you are using and
on the settings of the parameters in the database’s init.ora
configuration file.

The previous execution plan is more complex, and you can see the hierarchical relationships
between the various operations. The execution order of the operations is 3, 2, 5, 4, 1, and 0.
Table 16-2 describes each operation in the order they are performed.

ch16.indd 596ch16.indd 596 10/17/2007 10:05:22 AM10/17/2007 10:05:22 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 597

Gathering Table Statistics
If you’re using a version of the database prior to Oracle Database 10g (such as 9i), then you’ll
have to gather table statistics yourself using the ANALYZE command. By default, if no statistics are
available then rule-based optimization is used. Rule-based optimization isn’t usually as good as
cost-based optimization.

The following examples use the ANALYZE command to gather statistics for the products
and product_types tables:

ANALYZE TABLE products COMPUTE STATISTICS;
ANALYZE TABLE product_types COMPUTE STATISTICS;

Once the statistics have been gathered, cost-based optimization will be used rather than rule-
based optimization.

Comparing Execution Plans
By comparing the total cost shown in the execution plan for different SQL statements, you can
determine the value of tuning your SQL. In this section, you’ll see how to compare two execution
plans and see the benefit of using EXISTS rather than DISTINCT (a tip I gave earlier). The following
example generates an execution plan for a query that uses EXISTS:

EXPLAIN PLAN SET STATEMENT_ID = 'EXISTS_QUERY' FOR
SELECT product_id, name
FROM products outer
WHERE EXISTS
 (SELECT 1
 FROM purchases inner
 WHERE inner.product_id = outer.product_id);

Operation ID Description

3 Full scan of the index product_types_pk (which is a unique index)
to obtain the addresses of the rows in the product_types table. The
addresses are in the form of ROWID values, which are passed to operation 2.

2 Access the rows in the product_types table using the list of ROWID
values passed from operation 3. The rows are passed to operation 1.

5 Access the rows in the products table. The rows are passed to operation 4.

4 Sort the rows passed from operation 5. The sorted rows are passed to
operation 1.

1 Merge the rows passed from operations 2 and 5. The merged rows are
passed to operation 0.

0 Return the rows from operation 1 to the user. The total cost of the query is
6 work units.

TABLE 16-2 Execution Plan Operations

ch16.indd 597ch16.indd 597 10/17/2007 10:05:22 AM10/17/2007 10:05:22 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

598 Oracle Database 11g SQL

The execution plan for this query is shown in the following example:

@ c:\sql_book\sql\explain_plan.sql
Enter value for v_statement_id: EXISTS_QUERY

EXECUTION_PLAN
--
0 SELECT STATEMENT Cost = 4
1 MERGE JOIN SEMI Cost = 1
2 TABLE ACCESS BY INDEX ROWID PRODUCTS TABLE Cost = 1
3 INDEX FULL SCAN PRODUCTS_PK INDEX (UNIQUE) Cost = 1
4 SORT UNIQUE Cost = 2
5 INDEX FULL SCAN PURCHASES_PK INDEX (UNIQUE) Cost = 1

As you can see, the total cost of the query is 4 work units. The next example generates an
execution plan for a query that uses DISTINCT:

EXPLAIN PLAN SET STATEMENT_ID = 'DISTINCT_QUERY' FOR
SELECT DISTINCT pr.product_id, pr.name
FROM products pr, purchases pu
WHERE pr.product_id = pu.product_id;

The execution plan for this query is shown in the following example:

@ c:\sql_book\sql\explain_plan.sql
Enter value for v_statement_id: DISTINCT_QUERY

EXECUTION_PLAN
--
0 SELECT STATEMENT Cost = 5
1 HASH UNIQUE Cost = 1
2 MERGE JOIN Cost = 1
3 TABLE ACCESS BY INDEX ROWID PRODUCTS TABLE Cost = 1
4 INDEX FULL SCAN PRODUCTS_PK INDEX (UNIQUE) Cost = 1
5 SORT JOIN Cost = 2
6 INDEX FULL SCAN PURCHASES_PK INDEX (UNIQUE) Cost = 1

The cost for the query is 5 work units. This query is more costly than the earlier query that
used EXISTS (that query had a cost of only 4 work units). These results prove it is better to use
EXISTS than DISTINCT.

Passing Hints to the Optimizer
You can pass hints to the optimizer. A hint is an optimizer directive that influences the optimizer’s
choice of execution plan. The correct hint may improve the performance of an SQL statement.
You can check the effectiveness of a hint by comparing the cost in the execution plan of an SQL
statement with and without the hint.

In this section, you’ll see an example query that uses one of the more useful hints: the
FIRST_ROWS(n) hint. The FIRST_ROWS(n) hint tells the optimizer to generate an execution
plan that will minimize the time taken to return the first n rows in a query. This hint can be useful
when you don’t want to wait around too long before getting some rows back from your query, but
you still want to see all the rows.

ch16.indd 598ch16.indd 598 10/17/2007 10:05:23 AM10/17/2007 10:05:23 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 599

The following example generates an execution plan for a query that uses FIRST_ROWS(2);
notice that the hint is placed within the strings /*+ and */:

EXPLAIN PLAN SET STATEMENT_ID = 'HINT' FOR
SELECT /*+ FIRST_ROWS(2) */ p.name, pt.name
FROM products p, product_types pt
WHERE p.product_type_id = pt. product_type_id;

CAUTION
Your hint must use the exact syntax shown—otherwise, the hint
will be ignored. The syntax is: /*+ followed by one space, the
hint, followed by one space, and */.

The execution plan for this query is shown in the following example; notice that the cost is
4 work units:

@ c:\sql_book\sql\explain_plan.sql
Enter value for v_statement_id: HINT

EXECUTION_PLAN
--
0 SELECT STATEMENT Cost = 4
1 NESTED LOOPS
2 NESTED LOOPS Cost = 1
3 TABLE ACCESS FULL PRODUCTS TABLE Cost = 1
4 INDEX UNIQUE SCAN PRODUCT_TYPES_PK INDEX (UNIQUE) Cost = 2
5 TABLE ACCESS BY INDEX ROWID PRODUCT_TYPES TABLE Cost = 2

The next example generates an execution plan for the same query without the hint:

EXPLAIN PLAN SET STATEMENT_ID = 'NO_HINT' FOR
SELECT p.name, pt.name
FROM products p, product_types pt
WHERE p.product_type_id = pt. product_type_id;

The execution plan for the query is shown in the following example; notice the cost is 6 work
units (higher than the query with the hint):

@ c:\sql_book\sql\explain_plan.sql
Enter value for v_statement_id: NO_HINT

EXECUTION_PLAN
--
0 SELECT STATEMENT Cost = 6
1 MERGE JOIN Cost = 1
2 TABLE ACCESS BY INDEX ROWID PRODUCT_TYPES TABLE Cost = 1
3 INDEX FULL SCAN PRODUCT_TYPES_PK INDEX (UNIQUE) Cost = 1
4 SORT JOIN Cost = 2
5 TABLE ACCESS FULL PRODUCTS TABLE Cost = 1

These results show that the inclusion of the hint reduces the cost of running the query by
2 work units.

ch16.indd 599ch16.indd 599 10/17/2007 10:05:23 AM10/17/2007 10:05:23 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

600 Oracle Database 11g SQL

There are many hints that you can use, and this section has merely given you a taste of the
subject.

Additional Tuning Tools
In this final section, I’ll mention some other tuning tools. Full coverage of these tools is beyond
the scope of this book. You can read the Oracle Database Performance Tuning Guide, published
by Oracle Corporation, for full details of the tools mentioned in this section and for a comprehensive
list of hints.

Oracle Enterprise Manager Diagnostics Pack
The Oracle Enterprise Manager Diagnostics Pack captures operating system, middle tier, and
application performance data, as well as database performance data. The Diagnostics Pack
analyzes this performance data and displays the results graphically. A database administrator can
also configure the Diagnostics Pack to alert them immediately of performance problems via e-mail
or page. Oracle Enterprise Manager also includes software guides to help resolve performance
problems.

Automatic Database Diagnostic Monitor
The Automatic Database Diagnostic Monitor (ADDM) is a self-diagnostic module built into the
Oracle database software. ADDM enables a database administrator to monitor the database for
performance problems by analyzing system performance over a long period of time. The database
administrator can view the performance information generated by ADDM in Oracle Enterprise
Manager. When ADDM finds performance problems, it will suggest solutions for corrective
action. Some example ADDM suggestions include

Hardware changes—for example, adding CPUs to the database server

Database configuration—for example, changing the database initialization parameter
settings

Application changes—for example, using the cache option for sequences or using bind
variables

Use other advisors—for example, running the SQL Tuning Advisor and SQL Access
Advisor on SQL statements that are consuming the most database resources to execute

You’ll learn about the SQL Tuning Advisor and SQL Access Advisor next.

SQL Tuning Advisor
The SQL Tuning Advisor allows a developer or database administrator to tune an SQL statement
using the following items:

The text of the SQL statement

The SQL identifier of the statement (obtained from the V$SQL_PLAN view, which is one
of the views available to a database administrator)

The range of snapshot identifiers

The SQL Tuning Set name

■

■

■

■

■

■

■

■

ch16.indd 600ch16.indd 600 10/17/2007 10:05:23 AM10/17/2007 10:05:23 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0

Chapter 16: SQL Tuning 601

An SQL Tuning Set is a set of SQL statements with their associated execution plan and execution
statistics. SQL Tuning Sets are analyzed to generate SQL Profiles that help the optimizer to choose
the optimal execution plan. SQL Profiles contain collections of information that enable optimization
of the execution plan.

SQL Access Advisor
The SQL Access Advisor provides a developer or database administrator with performance advice
on materialized views, indexes, and materialized view logs. The SQL Access Advisor examines
space usage and query performance and recommends the most cost-effective configuration of
new and existing materialized views and indexes.

Summary
In this chapter, you have learned the following:

Tuning is the process of making your SQL statements run faster.

The optimizer is a subsystem of the Oracle database software that generates an execution
plan, which is a set of operations used to perform a particular SQL statement.

Hints may be passed to the optimizer to influence the generated execution plan for an
SQL statement.

There are a number of additional software tools a database administrator can use to tune
the database.

In the next chapter, you’ll learn about XML.

■

■

■

■

ch16.indd 601ch16.indd 601 10/17/2007 10:05:24 AM10/17/2007 10:05:24 AM

Oracle TIGHT / Oracle Database 11g SQL / Price / 149 850-0 / Blind folio: 602

ch16.indd 602ch16.indd 602 10/17/2007 10:05:24 AM10/17/2007 10:05:24 AM

