

Hermann Gahm

ABAP™ Performance Tuning

Bonn � Boston

289_Book.indb 3 6/5/09 9:33:28 AM

http://www.sap-press.com

Contents at a Glance

1 Introduction .. 17

2 SAP System Architecture for ABAP Developers 21

3 Performance Analysis Tools ... 29

4 Parallel Processing .. 127

5 Data Processing with SQL .. 147

6 Buffering of Data ... 223

7 Processing of Internal Tables .. 253

8 Communication with Other Systems 287

9 Special Topics .. 295

10 Outlook ... 303

A Execution Plans of Different Databases 321

B The Author ... 341

289_Book.indb 5 6/5/09 9:33:28 AM

www.sap-press.com

7

Contents

Foreword ... 13
Preface and Acknowledgments ... 15

1 Introduction .. 17

1.1 Tuning Methods .. 17
1.2 Structure of the Book .. 18
1.3 How to Use This Book .. 20

2 SAP System Architecture for ABAP Developers 21

2.1 SAP System Architecture ... 21
2.1.1 Three-Layer Architecture .. 22
2.1.2 Distribution of the Three Layers .. 23

2.2 Performance Aspects of the Architecture 25
2.2.1 Frontend .. 25
2.2.2 Application Layer ... 26
2.2.3 Database .. 27
2.2.4 Summary .. 27

3 Performance Analysis Tools .. 29

3.1 Overview of Tools ... 29
3.2 Usage Time of Tools .. 31
3.3 Analysis and Tools in Detail ... 34

3.3.1 SAP Code Inspector (Transaction SCI) 34
3.3.2 Selectivity Analysis (Transaction DB05) 40
3.3.3 Process Analysis (Transactions SM50/SM66) —

Status of a Program .. 44
3.3.4 Debugger — Memory Analysis ... 47
3.3.5 Memory Inspector (Transaction

S_MEMORY_INSPECTOR) .. 49
3.3.6 Transaction ST10 — Table Call Statistics 51
3.3.7 Performance Trace — General Information

(Transaction ST05) .. 54

289_Book.indb 7 6/5/09 9:33:28 AM

www.sap-press.com

8

Contents

3.3.8 Performance Trace — SQL Trace (Transaction ST05) 57
3.3.9 Performance Trace — RFC Trace (Transaction ST05) 70
3.3.10 Performance Trace — Enqueue Trace

(Transaction ST05) .. 72
3.3.11 Performance Trace — Table Buffer Trace

(Transaction ST05) .. 74
3.3.12 ABAP Trace (Transaction SE30) 77
3.3.13 Single Transaction Analysis (Transaction ST12) 89
3.3.14 E2E Trace ... 101
3.3.15 Single Record Statistics (Transaction STAD) 109
3.3.16 Dump Analysis (Transaction ST22) 119

3.4 Tips for the Performance Analysis .. 123
3.4.1 Consistency Checks .. 123
3.4.2 Time-Based Analysis ... 123
3.4.3 Prevention ... 123
3.4.4 Optimization .. 124
3.4.5 Runtime Behavior of Mass Data 124

3.5 Summary .. 124

4 Parallel Processing .. 127

4.1 Packaging ... 127
4.2 Parallel Processing .. 129

4.2.1 Background .. 130
4.2.2 Challenges and Solution Approaches for

Parallelized Programs ... 131
4.2.3 Parallel Processing Technologies 140
4.2.4 Summary .. 145

5 Data Processing with SQL .. 147

5.1 The Architecture of a Database ... 147
5.2 Execution of SQL .. 151

5.2.1 Execution in SAP NetWeaver AS ABAP 151
5.2.2 Execution in the Database .. 153

5.3 Efficient SQL: Basic Principles ... 155
5.4 Access Strategies ... 155

5.4.1 Logical Structures ... 155

289_Book.indb 8 6/5/09 9:33:28 AM

www.sap-press.com

9

Contents

5.4.2 Indexes as Search Helps .. 158
5.4.3 Operators ... 167
5.4.4 Decision for an Access Path .. 169
5.4.5 Analysis and Optimization in ABAP 170
5.4.6 Summary .. 184

5.5 Resulting Set ... 185
5.5.1 Reducing the Columns .. 188
5.5.2 Reducing the Rows ... 190
5.5.3 Reading a Defined Number of Rows 191
5.5.4 Aggregating .. 193
5.5.5 Existence Checks .. 195
5.5.6 Updates .. 196
5.5.7 Summary .. 197

5.6 Index Design ... 198
5.6.1 Read or Write Processing? .. 200
5.6.2 How is Data Accessed? ... 202
5.6.3 Summary .. 204

5.7 Execution Frequency ... 205
5.7.1 View ... 209
5.7.2 Join .. 210
5.7.3 FOR ALL ENTRIES .. 211

5.8 Used API .. 215
5.8.1 Static Open SQL ... 216
5.8.2 Dynamic Open SQL .. 216
5.8.3 Static Native SQL .. 216
5.8.4 Summary .. 217

5.9 Special Cases and Exceptions .. 217
5.9.1 Sorting ... 217
5.9.2 Pool and Cluster Tables ... 218
5.9.3 Hints and Adapting Statistics .. 220

6 Buffering of Data .. 223

6.1 SAP Memory Architecture from the Developer’s Point of View ... 223
6.1.1 User-Specific Memory ... 225
6.1.2 Cross-User Memory .. 225

6.2 User-Specific Buffering Types ... 227
6.2.1 Buffering in the Internal Session 227

289_Book.indb 9 6/5/09 9:33:28 AM

www.sap-press.com

10

Contents

6.2.2 Buffering Across Internal Sessions 230
6.2.3 Buffering Across External Sessions 231
6.2.4 Summary .. 231

6.3 Cross-User Buffering Types .. 232
6.3.1 Buffering in the Shared Buffer ... 232
6.3.2 Buffering in the Shared Memory 233
6.3.3 Buffering via the Shared Objects 234
6.3.4 Summary .. 235

6.4 SAP Table Buffering ... 236
6.4.1 Architecture and Overview ... 237
6.4.2 What Tables Can Be Buffered? .. 243
6.4.3 Performance Aspects of Table Buffering 244
6.4.4 Analysis Options ... 251

6.5 Summary .. 251

7 Processing of Internal Tables .. 253

7.1 Overview of Internal Tables ... 253
7.2 Organization in the Main Memory .. 255
7.3 Table Types ... 258
7.4 Performance Aspects ... 265

7.4.1 Fill .. 265
7.4.2 Read ... 268
7.4.3 Modify ... 273
7.4.4 Delete .. 274
7.4.5 Condense ... 275
7.4.6 Sort .. 276
7.4.7 Copy Cost-Reduced or Copy Cost-Free Access 277
7.4.8 Secondary Indexes .. 278
7.4.9 Copy .. 279
7.4.10 Nested Loops and Nonlinear Runtime Behavior 282
7.4.11 Summary .. 284

8 Communication with Other Systems 287

8.1 RFC Communication Between ABAP Systems 288
8.1.1 Synchronous RFC .. 288
8.1.2 Asynchronous RFC .. 288

289_Book.indb 10 6/5/09 9:33:28 AM

www.sap-press.com

11

8.2 Performance Aspects for the RFC Communication 290
8.3 Summary .. 293

9 Special Topics .. 295

9.1 Local Update .. 295
9.1.1 Asynchronous Update .. 295
9.1.2 Local Update .. 297

9.2 Parameter Passings .. 298
9.3 Type Conversions .. 299
9.4 Index Tables .. 299
9.5 Saving Frontend Resources ... 300
9.6 Saving Enqueue and Message Service ... 301

10 Outlook ... 303

10.1 Important Changes to the Tools for the Performance Analysis 303
10.1.1 Performance Trace (Transaction ST05) 303
10.1.2 ABAP Trace (Transaction SAT) .. 309

10.2 Important Changes to Internal Tables (Secondary Key) 314
10.2.1 Definition ... 314
10.2.2 Administration Costs and Lazy Index Update 315
10.2.3 Read Accesses .. 315
10.2.4 Active Key Protection ... 317
10.2.5 Delayed Index Update for Incremental Key Changes 317
10.2.6 Summary .. 318

Appendices ... 319

A Execution Plans of Different Databases ... 319
A.1 General Information on Execution Plans 319
A.2 IBM DB2 (IBM DB2 for zSeries) .. 320
A.3 IBM DB2 (DB2 for iSeries) .. 323
A.4 IBM DB2 (DB2 for LUW) ... 326
A.5 SAP MaxDB .. 329

Contents

289_Book.indb 11 6/5/09 9:33:28 AM

www.sap-press.com

12

A.6 Oracle ... 332
A.7 Microsoft SQL Server .. 336

B The Author ... 339

Index ... 341

Contents

289_Book.indb 12 6/5/09 9:33:28 AM

www.sap-press.com

253

Inefficient accesses to internal tables are a frequent cause of long-running
ABAP programs. This particularly applies to the processing of large data
volumes. This chapter describes the most critical aspects for ABAP develop-
ers for the processing of internal tables.

Processing of Internal Tables7

Internal tables are among the most complex data objects available in the ABAP
environment. The use of internal tables lets you store dynamic datasets in the main
memory. Internal tables are comparable to arrays and they spare the programmer
the effort of program-controlled memory management thanks to their dynamic
nature. The data in internal tables is managed per row, whereas each row has the
same structure.

In most cases, internal tables are used for the buffering or formatting of contents
from database tables. The type of access to internal tables plays an important role
for performance, as is the case with database tables. Experience shows that the
tuning of internal tables enables similarly major effects as the tuning of database
accesses. The negative effects of inefficient accesses to internal tables for the over-
all system can be compensated more easily than inefficient database accesses by
adding further CPUs or application servers. Inefficient database accesses affect
the database as a central resource, whereas inefficient accesses to internal tables
impact the better scalable application layer (see Chapter 2).

The following sections first provide a general overview of the internal tables. This
is followed by a description of how the internal tables are organized in the main
memory. The subsequent section discusses the different types of internal tables.
The major part of this chapter then details the performance aspects for the pro-
cessing of internal tables. Typical problematic examples and solution options are
presented here.

Overview7.1 of Internal Tables

Internal tables are completely specified by four properties:

289_Book.indb 253 6/5/09 9:34:41 AM

www.sap-press.com

254

ProcessingofInternalTables7

Table type1.
The access type to the table type determines how ABAP accesses the individual
table rows. Section 7.3, Table Types, discusses this topic in great detail.

Row type2.
The row type of an internal table can be any ABAP data type.

Uniqueness of the key3.
The key can be specified as unique or non-unique. In case of unique keys, there
are no multiple entries (regarding the key) in the internal tables. The unique-
ness is based on the table type. Standard tables only allow for non-unique keys
and hashed tables only for unique keys.

Key components4. (taking the sequence into account)
The key components and their sequence specify the criteria based on which the
table rows are identified.

Figure 7.1 illustrates this syntactically.

Field1 Field2 Field3

A 1 10

A 2 5

B 1 7

B 2 25

Internal Tables — DeclarationFigure 7.1

The combination of access type and table type is mainly relevant for the perfor-
mance. Section 7.3, Table Types, discusses the various access types and table types.

289_Book.indb 254 6/5/09 9:34:41 AM

www.sap-press.com

255

OrganizationintheMainMemory 7.2

Before describing the table types in detail, let’s first discuss the organization of
internal tables in the main memory.

Organization in the Main Memory7.2

In the main memory, the internal tables, just like the database tables, are organized
in blocks or pages. In the context of internal tables, the following sections use the
term pages.

When an internal table is declared in an ABAP program, the system only creates
a reference (table reference) in the main memory initially. Only when entries are
written to the table does the system create a table header and a table body. Figure
7.2 shows a schematic diagram of the organization in the main memory.

Table Reference

1

m

Page 1
(<= 8 KB) 2

x y

m+1

n

Page 2
(<= 8 KB)

Page 3-n
(8-16 KB)

n+1 x+1 y+1

Table Header

… …

Page Management

Table Body

Schematic Diagram of the Organization of the Internal Tables in the Main MemoryFigure 7.2

The table header has a reference to the first page of the table body and another
reference to page management. Page management manages the addresses of the
pages in the main memory.

289_Book.indb 255 6/5/09 9:34:41 AM

www.sap-press.com

256

ProcessingofInternalTables7

The table reference currently occupies 8 bytes of memory space. The table header
occupies about 100 bytes of memory space depending on the platform. The space
required for page management depends on the number of pages.

The table body consists of pages that can include the table rows. The first two
pages are — depending on the row length and other factors — usually smaller than
the pages 3 to n (if the row lengths are not so long that the maximum page size is
reached already at the beginning).

As of the third page, the pages are created with the maximum page size, which is
usually between 8 KB and 16 KB. This depends on the length of the row. Unlike
database tables, the access is not per page but per row. So if you access a row of an
internal table, the system reads only one row. The effort for searching table entries
(or data records) is comparable to the database tables. For this purpose, the index
or hash administration provides support for the internal tables. You learn more
about internal tables in Section 7.3, Table Types, for the table types because they
are directly related to this topic.

The table header includes the most important information about an internal table.
For example, you can quickly query the number of rows using DESCRIBE TABLE
<itab> LINES <lines> or the integrated function, LINES(itab), from the table
header.

As very small internal tables with only a few rows can result in wastage due to the
memory use of the automatically calculated first page, INITIAL SIZE is added for
the declaration of internal tables. It can provide information on the size of the first
page, so a smaller memory allocation than in the standard case occurs.

However, if considerably more rows are required than originally specified for INI-
TIAL SIZE, the third page is created faster with the maximum page size. For exam-
ple, if 4 was specified for INITIAL SIZE, the third page may already be required as
of the 13th row if the second page is twice as large as the first page. Relatively few
rows (13, for example) require relatively much memory (three pages, third page
with a size of 8 to 16 KB), whereas one page would have been sufficient if a higher
value (for example, 14) had been specified for INITIAL SIZE. Consequently, for
small tables it is important that INITIAL SIZE is not selected too small. Select a value
that provides sufficient space in the first (or first and second) page for most cases.

INITIAL SIZE should always be specified if you require only a few rows and the
internal table exists frequently. For nested tables, if an internal table is part of a
row of another internal table, this is likely for the inner internal table. It can also
occur for attributes of a class if there are many instances of this class.

289_Book.indb 256 6/5/09 9:34:41 AM

www.sap-press.com

257

OrganizationintheMainMemory 7.2

Caution: INITIAL SIZE and APPEND SORTED BY

In conjunction with the APPEND wa SORTED BY comp command, the INITIAL SIZE ad-
dition not only has a syntactic but also a semantic meaning (see documentation). How-
ever, don’t use the APPEND wa SORTED BY comp command; instead, work with the SORT
command.

Depending on the table type or type of processing, you also require a manage-
ment for the access to the row, that is, an index for the index tables and a hash
administration for the hashed tables. At this point, memory may be required for
the management of entries in addition to the pages. This management also occu-
pies memory. Both in the Debugger and in the Memory Inspector, this memory is
added to the table body and not displayed separately. Compared to the user data,
this management can generally be neglected.

But how can you release allocated space in the internal tables again? The dele-
tion of individual or multiple rows from the internal table using the DELETE itab
command doesn’t result in any memory release. The rows concerned are only
“selected” as deleted and not deleted from the pages.

Only when you use the REFRESH or CLEAR statements the system does release
the pages of the internal tables again. Only the header and a small memory area
remain.

Note

In this context, released means that the occupied memory can be reused. As the memory
allocation from the Extended Memory (EM) for a user is usually done in blocks (see Sec-
tion 6.1 in Chapter 6), which are considerably larger than the pages of an internal table,
this is referred to as a two-level release. Release initially means that the pages within an
EM block are released and this space can then be reused by the same user. Only if the
EM block is completely empty and doesn’t contain any data (variables, and so on) of the
user any longer is this block returned to the SAP memory management and available for
the other users again.

The FREE itab ABAP statement, however, results in the complete de-allocation of
the table body, that is, all pages and the index (if available) of the internal tables
are released. Additionally, the table header is added to a system-internal “free list”
for reuse.

If an internal table should be reused, it is advisable to use REFRESH or CLEAR instead
of FREE because this way the creation of the first page can be omitted. If a large

289_Book.indb 257 6/5/09 9:34:42 AM

www.sap-press.com

258

ProcessingofInternalTables7

part of the rows of an internal table was deleted using DELETE and the occupied
memory should be released, it is recommended to copy the table rows. A simple
copy to another internal table is not sufficient because of table sharing, which is
discussed in Section 7.4, Performance Aspects. Alternatively, you can revert to
ABAP statements (INSERT or APPEND) or to the EXPORT/IMPORT variants (see Section
6.2.2 in Chapter 6) for copying. In the context of performance, the “release” of
memory only plays a secondary role (as long as no memory bottleneck exists in
the system). In contrast to fragmented database tables, fragmented internal tables
have no negative effects on the performance because the entries can always be
addressed efficiently because internal tables are always managed per row.

Background: Difference between Internal Tables and Database Tables

Internal tables can be compared to database tables in many respects, but there is one
major difference:

Internal tables are always processed on a row basis, whereas database tables are always
processed on a set basis. A set-based processing, possible with Open SQL on database
tables, is not possible on internal tables because the single row is the main processing
criterion for internal tables, whereas a set of data records is the main processing criterion
for database tables. Set-based accesses to internal tables, for instance, LOOP ... WHERE
or DELETE ... WHERE, are emulated by the ABAP VM and can be mapped in an opti-
mized way for some table types (see Section 7.4, Performance Aspects). More complex,
set-based operators, such as joins and aggregates,… are not possible on internal tables.
They must be programmed using the existing ABAP language techniques.

After you’ve learned about the organization of internal tables in the main memory,
the next section focuses on the organization of internal tables and discusses the
different types of internal tables.

Table Types7.3

Internal tables can be subdivided into index tables and hashed tables. The index
tables, in turn, can be divided into standard tables and sorted tables. Figure 7.3
shows an overview of the table types.

289_Book.indb 258 6/5/09 9:34:42 AM

www.sap-press.com

259

TableTypes 7.3

Access through
Key

Access Costs
per <n> Entries

Increase
Linearly

Increase
Logarithmically

Remain
Constant

(Key Access) (O(n)) (O(log(n)) (O(1))

Access

Index or Key Index or Key Key

Uniqueness Non-Unique Unique|Non-Unique Unique

STANDARD TABLE SORTED TABLE

INDEX TABLE HASHED TABLE

ANY TABLE

Table Scan Binary
Search

Hash
Function

n n

Overview of the Table TypesFigure 7.3

The table type specifies how you can access individual table rows via ABAP.

For standard tables, the access can be implemented via the table index or a “key.”
For a key access, the response time depends linearly on the number of table entries
because the read access corresponds to a linear scan of the entries, which is can-
celed after the first hit. The key of a standard table is always non-unique. If no key
is specified, the standard table receives the default key, which is a combination of
all character-like fields.

Sorted tables are always sorted by the key. The access can be carried out via the
table index or the key. For a key access, the response time depends logarithmically
on the number of table entries because the read access is carried out via a binary
search. The key of sorted tables can be unique or non-unique. On sorted tables,
you can process partial keys (initial parts of the complete key) in an optimized
manner. An over-specification of the table key is also possible; only the compo-
nents of the key are used for the search and the remaining components are then
utilized for the filtering.

Standard tables and sorted tables are also referred to as index tables because both
tables can be accessed using the table index.

289_Book.indb 259 6/5/09 9:34:42 AM

www.sap-press.com

260

ProcessingofInternalTables7

The read access to hashed tables is only possible by specifying a key. Here, the
response time is constant and doesn’t depend on the number of table entries
because the access is carried out via a hash algorithm. The key of hashed tables
must be unique. Neither explicit nor implicit index operations are permitted on
hashed tables. If a hashed table is accessed with a “key” that is different to the
unique table key, the table is handled like a standard table and searched linearly
according to the entries. This is also the case for a partial key. Different to the
sorted table, this partial key cannot be optimized for the hashed table. Over-spec-
ified keys are processed in an optimized manner.

By means of the DESCRIBE TABLE <itab> KIND <k> statement, you can determine
the current table type at runtime. Of course, this is also possible using Run Time
Type Identification (RTTI).

An index or a hash administration is available for the efficient management or
access optimization of internal tables. The following section describes which types
are available and when they are created.

Index Tables

Indexes for index tables are only created when the physical sequence no longer
corresponds to the logical sequence, that is, when one of the INSERT, DELETE, or
SORT statements is executed on the table and the following conditions apply:

INSERT1.
The entry to be inserted should be inserted before an already existing entry.
(An INSERT statement that inserts behind the last record largely corresponds to
an APPEND statement.)

DELETE2.
The entry to be deleted is not the last entry of the table.

SORT3.
The table has a certain size and is sorted.

An index is used for the efficient index access in the “logical sort sequence” or the
efficient finding of “valid rows” if the table pages have gaps due to deletions. By
means of the index, the logical sequence of the table is mapped on the physical
memory addresses of the entries.

An index is available in two types:

As a linear index1.

As a tree-like index2.

289_Book.indb 260 6/5/09 9:34:42 AM

www.sap-press.com

261

TableTypes 7.3

The index structure is always maintained without any gaps, whereas the table
pages may have gaps due to the deletion of records. In comparison to the manage-
ment of the index without gaps, the management of the table pages without gaps
would be too time consuming for larger tables.

Due to the management of the index structure without gaps, the insertion and
deletion of records incur movement costs because the existing entries must be
moved. Strictly speaking, these costs are overheads for copying. For large indexes
(as of about 5,000 entries), they get dominant; this is why a tree-like index is cre-
ated for large tables.

In addition to the index, a free list exists that manages the addresses of the entries
that were deleted using DELETE for reuse.

Figure 7.4 shows a schematic diagram of a linear index.

Table Reference

Tabellenkörper

1

m

2

m+1

n

x

n+1

Table Header

1
2
3
4
.
.
.
8
9
.
.

50
51

Index &
Free List Page Management

Schematic Diagram of a Linear IndexFigure 7.4

Whether a tree-like index is created depends on system-internal rules, for exam-
ple, the number of entries (to be expected), and other factors. Figure 7.5 shows a
schematic diagram of a tree-like index.

289_Book.indb 261 6/5/09 9:34:42 AM

www.sap-press.com

262

ProcessingofInternalTables7

Table Reference

1

m

2

m+1

n

x

n+1

Table Header

1 2 3 4 .

Index &
Free List

7 8 9 0 . 50 51 . . .…

…

Page Management

Schematic Diagram of a Tree-Like IndexFigure 7.5

For the tree-like index, the index entries are organized in leaves. The previously
mentioned movement or copy costs only incur at the leaf level. The index doesn’t
have to be allocated at once; you only require continuous memory at leaf level.
In return, you must first navigate through the tree structure when you access the
index to reach the respective index entry.

Apart from that, the tree-like indexes on index tables are comparable to the data-
base indexes presented in Chapter 5. A tree-like index requires about 50% more
space than a linear index.

If the logical sequence of entries corresponds to the physical sequence in the main
memory when the index tables are processed, you don’t need to create an index.
In this case, the insertion sequence corresponds to the physical sequence, and the
table was filled with a sorting and not deleted or sorted. If no index is necessary,
the internal table requires less memory.

Hash Administration

The hash administration is based on the unique key of the table. The hash admin-
istration is created for hashed tables only. It is established using the unique key of
the internal table. Index accesses (for example, second entry of the internal table)
are not possible, hashed tables can only be accessed with the key.

289_Book.indb 262 6/5/09 9:34:43 AM

www.sap-press.com

263

TableTypes 7.3

For the hashed table, each key value is assigned to a unique number using a hash
function. For this number, the memory address of the respective data record is
stored in a corresponding hash array.

If a DELETE or SORT is executed on a hashed table, you must create a double-
linked list (previous and next pointer), so sequential accesses (LOOP) via the data
are still possible according to the insertion sequence (or in a sort sequence gener-
ated using SORT). The double-linked list requires about 50% more space for the
hash administration.

Figure 7.6 shows a schematic diagram of a hash administration.

Table Reference

1

m

2Atlanta

m+1

n

x

n+1

Table Header
Hash Index &

Free List

Boston

.

.

.
9
.
.
.
.
2
.
.
.
.

1
2
3
4
5
6
8
9
10
11
12
13
14

hash(’Atlanta’) = 10
Hasharray[10] = 2

Page ManagementHash Management

Schematic Diagram of a Hash administrationFigure 7.6

Limitations

Besides the memory that is available to the user, there are further limitations for
internal tables:

A limit for the number of rows in internal tables results because they are addressed
internally and in ABAP statements via 4 byte integers, which limits them to
2,147,483,647 entries.

289_Book.indb 263 6/5/09 9:34:43 AM

www.sap-press.com

264

ProcessingofInternalTables7

The size of hashed tables is further limited by the biggest memory block avail-
able at once. The maximum size is 2 GB, but it is usually further limited by the
ztta/max_memreq_MB profile parameter. The maximum number of rows of hashed
tables depends on the required size of the hash administration that must be stored
there.

The actual maximum size of internal tables is usually smaller than specified by the
previous limits because the overall available memory is usually not only used by a
string or an internal table (see ABAP documentation: Maximum size of dynamic
data objects).

Summary of the Table Types

Table 7.1 lists the most important characteristics of the table types. This is followed
by a recommendation for when you should use which table type.

Standard Table Sorted Table Hashed Table

Possible Accesses Index access or key access Index access or
key access

Key access

Uniqueness Non-unique Non-unique or
unique

Unique

Optimal Access Index or binary search (if the
table is sorted by the search
components)

Index or key Key

Characteristics of Table TypesTable 7.1

Standard tables should only be used if all entries should be processed sequentially
after filling or if the internal tables should be accessed flexibly and efficiently using
multiple different keys. For this purpose, the table must be sorted by the search
field and scanned using the binary search. The resorting is carried out only as often
as necessary. If a resorting is only required for one or a few read accesses, the sort
times far outweigh the time savings for reading. Use key accesses without binary
search only for small tables or better avoid them completely. If you search only via
a specific field, use a sorted or hashed table.

Sorted tables are particularly suited for partially sequential processing, for exam-
ple, when a small part of a table should be processed via key accesses for which
only the initial part of the key is given. Key accesses to the table key can also be
carried out efficiently by the sorted tables.

289_Book.indb 264 6/5/09 9:34:43 AM

www.sap-press.com

265

PerformanceAspects 7.4

Hash tables are optimal if you access only via the table key. If the key has a high
left significance, you can also use a unique sorted table because in this case perfor-
mance benefits arise for the binary search when you access individual rows. In this
context, left significance means that the selective part of a key should be positioned
at the beginning of the key (as far to the left as possible).

Performance Aspects7.4

This section discusses all performance-relevant aspects when working with internal
tables. For this purpose, the most important commands for internal tables are dis-
cussed. The examples are indicated with a work area (wa). Processing with header
lines is still supported but should not be used any longer because the header lines
of internal tables are obsolete and prohibited in the OO context.

Fill7.4.1

Like for the database accesses, array operations and single record operations are
also available for the internal tables.

Array Operations

ABAP documentation generally describes this type of processing as block opera-
tion, whereas the SELECT statement uses the term array operation with regard to
the database.

When internal tables are filled from database tables, the INTO TABLE itab keyword
causes the SELECT statement to insert the data records en bloc to the internal tables
(see Section 5.7 in Chapter 5).

An array interface is also available for filling internal tables from other internal
tables. The corresponding ABAP statements are:

APPEND LINES OF itab1 TO itab2.
INSERT LINES OF itab1 INTO TABLE itab2.

For hashed tables, you can only use the INSERT statement, and for index tables you
can use both APPEND and INSERT. If you append rows using APPEND, for sorted tables
you must ensure that the sort sequence of the internal tables is maintained.

Assignments using MOVE and = also belong to the array operations to internal tables.

Here, minor runtime differences arise between the table types, which depend on
the insertion position and the quantity of inserted entries. The management of
indexes incurs relatively low costs.

289_Book.indb 265 6/5/09 9:34:43 AM

www.sap-press.com

266

ProcessingofInternalTables7

Prefer array operations on internal tables to single record operations (next sec-
tion) wherever possible because the kernel can process administrative work (for
example, memory allocation) more efficiently.

Note that in contrast to the database tables the sequence of the rows in internal
tables is always well defined:

For duplicates and non-unique keys, the sequence in the target table and within EE

the duplicates in the source table will always be the same for array operations.
This is not the case for single record operations; here, the sequence of the dupli-
cates can change.

For duplicates and unique keys, the block operations result in non-catchable EE

runtime errors, whereas the single record operations only set the sy-subrc
return code.

Real-Life Example — Transaction SE30, Tips & Tricks

In the Tips & Tricks under Internal Tables • Array Operations, Transaction SE30 pro-
vides various examples whose runtime you can measure.

Single Record Operations

The ABAP statements, APPEND and INSERT, are also available for the single record
operations:

APPEND wa TO itab.
INSERT wa INTO itab INDEX indx.
INSERT wa INTO TABLE itab.

Whereas you can use an APPEND and an INSERT statement with the INDEX addition
only in index tables, the third variant is available for all tables.

For standard tables, an INSERT statement without INDEX mostly corresponds to the
APPEND statement. (For APPEND, the row to be appended must be convertible, while
for INSERT, the row to be inserted must be compatible; see ABAP documentation.)
The costs for the APPEND statement are constant. An APPEND is the fastest variant
for inserting single records because in this process only one entry is appended to
the end of the table.

The insertion at a specific position (INSERT ... INDEX) incurs movement costs
depending on the insertion position. These costs increase the “closer” the entry
is inserted to the beginning (more movement costs) and decrease the “farther”
the entry is inserted to the end (less movement costs). Up to a certain limit (cur-
rently 4,096), the costs for inserting depend on the insertion position and linearly

289_Book.indb 266 6/5/09 9:34:43 AM

www.sap-press.com

267

PerformanceAspects 7.4

on the number of entries. As soon as the index table has more entries, the sys-
tem switches to a tree-like index internally in which the movement costs and the
insertion position are only relevant at leaf level. When a tree-like index is present,
the costs don’t scale linearly any longer but logarithmically with the number of
entries.

An insertion with an index for the standard tables is useful to structure them in
a sorted manner. For this purpose, you must first determine the correct insertion
position if it is not known. The best way to achieve this is by using a binary search
(see next section).

For sorted tables, you can only use an APPEND and an INSERT statement with the
INDEX addition if the sort sequence remains unchanged. In this case, you must
check whether the key of the new entry is suitable for the desired position in the
table.

A binary search is carried out for a generic INSERT (without the INDEX addition),
which determines the correct insertion position internally. The costs for finding
the position correspond to a read access to this table using a key and scale logarith-
mically with the number of entries. Like for the standard table, movement costs
also occur. These costs depend on the insertion position and the index (linear or
tree-like).

For hashed tables, the insertion is based on the table key. The costs are constant
here and don’t depend on the number of entries. Using the hash administration is
somewhat more complex than appending entries to the standard table.

In summary, use array operations for insertion wherever possible. However, note
the previously mentioned behavior of these operations.

Table 7.2 provides an overview of the costs for the single record statements. The
costs for the reorganization of the index or hash administration when extending
the internal memory or managing the tree-like index are not considered here.

Standard Sorted Hashed

APPEND O(1)

Constant

O(1)

Constant (higher
than standard,
check required)

–

Costs of Single Record Operations for Filling Internal TablesTable 7.2

289_Book.indb 267 6/5/09 9:34:43 AM

www.sap-press.com

268

ProcessingofInternalTables7

Standard Sorted Hashed

INSERT ... INTO
... INDEX

Linear index:

O(1) – O(n)

Constant—linear

Tree-like index:

O(1) – O(log n)

Constant—

logarithmic

(depending on the
position)

Linear index:

O(1) – O(n)

Constant—linear

Tree-like index:

O(1) – O(log n)

Constant—

logarithmic

(depending on the
position)

Constant (a bit
higher, check
required)

–

INSERT ... INTO
TABLE

O(1)

Constant

O(log n)

Logarithmic

O(1)

Constant
(higher than
standard, hash
administration)

Table 7.2 Costs of Single Record Operations for Filling Internal Tables (Cont.)

Read7.4.2

For read accesses, you differentiate reading of multiple and individual rows.

Multiple Rows (LOOP)

Here, you differentiate between reading all rows and reading a specific section of
rows.

All rows are read using the LOOP AT itab ABAP statement. In this process, all rows
of an internal table are read. The costs for reading all data records scales linearly
with the number of data records. These costs are independent of the table type
because each entry in the internal table must be processed. Without any further
specification, each entry is copied into the work area specified with INTO.

A part of the rows in an internal table is read with LOOP ... FROM ix1 TO ix2 (for
index tables) or generally with LOOP ... WHERE. The costs for reading a subarea of
the internal table depend on the size of this part and whether the part to be read
can be found efficiently. Costs for providing the resulting set in the output area

289_Book.indb 268 6/5/09 9:34:43 AM

www.sap-press.com

269

PerformanceAspects 7.4

(LOOP ... INTO) accrue. However, the costs for finding the relevant entries are far
more important.

For standard tables, the costs are linear to the number of entries.

For hashed tables, you can implement a search via the hash administration if the
complete key of the table is specified in the WHERE condition. Then the LOOP ...
WHERE corresponds to a read of a unique record. The costs are constant then. In
all other cases, the read accesses to the hashed table are linear, depending on the
number of entries because the table is searched completely.

When you access sorted tables, the kernel can optimize an incomplete key because
the table is available in a sorted manner by definition. For this purpose, the fol-
lowing conditions must be met:

The 1. WHERE condition has the form, WHERE k1 = b1 AND ... AND kn = bn.

The 2. WHERE condition covers an initial part of the table key.

In contrast to hashed tables, partially sequential accesses are optimized for sorted
tables, too. This way, you can find the starting point for the searched area in an
efficient manner.

If standard tables are sorted by the key, you can also achieve an optimization by
first searching for the first suitable entry using the binary search and then start-
ing a loop from this position. This loop is exited as soon as the system determines
with an IF statement that the search condition no longer applies. The costs for
this procedure correspond approximately to the costs of the sorted table and scale
logarithmically to the table entries. The following listing provides a pseudo code
example for this procedure:

READ TABLE itab INTO wa WITH KEY ... BINARY SEARCH.
 INDEX = SY-TABIX.
 LOOP AT itab INTO wa FROM INDEX.
 IF (key <> search_key).
 EXIT.
 ENDIF.
 ENDLOOP.

Mass access incurs the following costs, which are also listed in Table 7.3. The costs
include both search costs for finding the relevant entries (as shown in the table)
and costs for providing the hit list (for example, in the work area or a data refer-
ence). The costs for providing the hit list are of secondary importance in case of
small hit lists. Only for LOOP ... FROM ... TO, for which the search costs are con-
stant, can the provision of the hit list dominate the costs.

289_Book.indb 269 6/5/09 9:34:44 AM

www.sap-press.com

270

ProcessingofInternalTables7

For longer hit lists or the extreme case that all rows of the internal table are
included in the hit list due to duplicates relating to the key, the costs on index
tables are dominated by the provision costs, which scale linearly with the number
of hits.

Standard Sorted Hashed

LOOP ...
ENDLOOP
(all rows)

O(n)
Linear (full table
scan)

O(n)
Linear (full table
scan)

O(n)
Linear (full table
scan)

LOOP ... WHERE
ENDLOOP
(complete key)

O(n)
Linear (full table
scan)

O(log n)
Logarithmic

O(1)
Constant

LOOP ... WHERE
ENDLOOP
(incomplete key,
initial part)

O(n)
Linear (full table
scan)
Can be optimized
manually using a
sorted standard
table and a binary
search O(log n).

O(log n)
Logarithmic

O(n)
Linear (full table
scan)

LOOP ... WHERE
ENDLOOP
(incomplete key,
no initial part)

O(n)
Linear (full table
scan)

O(n)
Linear (full table
scan)

O(n)
Linear (full table
scan)

LOOP ... FROM
... TO

O(1)
Constant

O(1)
Constant

–

Costs for Reading Multiple Rows from Internal TablesTable 7.3

Single Rows

The following statements are available to read single rows from internal tables:

READ TABLE itab INTO wa INDEX ...
READ TABLE itab INTO wa WITH [TABLE] KEY ...
READ TABLE itab INTO wa FROM wa1

Index accesses can only be executed on index tables and have constant costs.

Usually, you want to access an internal table using the key and not using the index.
In this case, the costs depend on the effort required to find the correct entry.

For standard tables, the costs depend linearly on the number of entries because
the table is scanned entry by entry until the proper entry is found. If the entry is

289_Book.indb 270 6/5/09 9:34:44 AM

www.sap-press.com

271

PerformanceAspects 7.4

positioned at the beginning of the table, the search finishes earlier than if the entry
is positioned at the end of the table.

The use of the binary search is an option to accelerate the search in a standard
table. For this purpose, the standard table must be available sorted by the search
term and an initial part of the sort key must be provided. With the READ itab WITH
KEY ... BINARY SEARCH statement, a binary search is used for the standard table. In
this case, the costs scale logarithmically with the number of entries.

Background: Binary Search

The binary search on standard or sorted tables uses the bisection method. For this pur-
pose, the table must be available sorted by the respective key. Here, the search doesn’t
start at the beginning of the table but in the middle, and then the half that contains the
entry is bisected again, and so on, until a hit is available or no record can be found. If
duplicates exist, the first entry is returned in the duplicate list.

Ensure that the standard table is not sorted unnecessarily because the sorting of a stan-
dard table is also an expensive statement (see Section 7.4.6, Sort); for this reason, the
number of sorting processes must be kept as small as possible.

Real-Life Example — Transaction SE30, Tips & Tricks

In the Tips & Tricks under Internal Tables • Linear Search vs. Binary Search, Transac-
tion SE30 provides an example whose runtime you can measure.

The binary search can also be used for the optimization of partially sequential
accesses as shown at the beginning of this section for the LOOP ... WHERE to stan-
dard tables. You can also use a binary search to establish a standard table in a
sorted manner. For this purpose, have another look at the example from Section
6.2.1 in Chapter 6:

READ TABLE it_kunde INTO var_kunde
WITH KEY it_order_tab-kunnr BINARY SEARCH.
save_tabix = sy-tabix.
IF SY-SUBRC <> 0.
 SELECT *
 INTO var_kunde
 FROM db_kunden_tab
 WHERE kundennr = it_order_tab-kunnr.
 IF SY-SUBRC = 0.
 INSERT var_kunde INTO it_kunde INDEX save_tabix.
 ...

289_Book.indb 271 6/5/09 9:34:44 AM

www.sap-press.com

272

ProcessingofInternalTables7

The it_kunde table is scanned for a suitable entry using the binary search. If no
suitable entry can be found, the sy-tabix table index is positioned on the row
number on which the entry is. You can use this index to insert the entry at the cor-
rect position. This way, the standard table is organized in a sorted manner without
requiring a SORT statement.

For read accesses to sorted tables, a binary search is used internally if an initial
part of the table key is available. The costs scale logarithmically with the number
of entries.

For hashed tables, the hash administration is used in case a fully specified key access
exists. The costs are constant then. If the system accesses the hashed table with a key
that is not fully specified, the costs depend linearly on the number of entries.

For all accesses, it is irrelevant for the performance whether the access is carried
out using the table key (...WITH TABLE KEY...) or a free key (...WITH KEY...). The
only decisive factor for the performance is that the key fields referred to comply
with the beginning or the entire table key. So, over-specified keys (with more fields
than the key fields) can also be used to optimize to internal tables.

Single record access incurs the costs listed in Table 7.4. As already mentioned for
LOOP ... WHERE, a linear share is added for duplicates in the binary search for the
index tables, which can exhibit a linear runtime behavior in extreme cases (all
entries relate to the duplicates key).

Standard Sorted Hashed

READ ... INDEX O(1)
Constant

O(1)
Constant

–

READ ... WITH KEY ... (Complete
key)

O(n)
Linear
Binary search:
O(log n)
Logarithmic

O(log n)
Logarithmic

O(1)
Constant

READ ... WITH KEY ...
(Incomplete key, initial part)

O(n)
Linear
Binary search:
O(log n)
Logarithmic

O(log n)
Logarithmic

O(n)
Linear

READ ... WITH KEY ...
(Incomplete key, no initial part)

O(n)
Linear

O(n)
Linear

O(n)
Linear

Costs for Reading Single Rows from Internal TablesTable 7.4

289_Book.indb 272 6/5/09 9:34:44 AM

www.sap-press.com

273

PerformanceAspects 7.4

Modify7.4.3

Internal tables are changed using the MODIFY command. MODIFY to internal tables
only involves a change and not a change or insertion as is the case for the MODIFY
command to a database table.

Multiple rows of an internal table are modified with the following statement:

MODIFY itab FROM wa TRANSPORTING ... WHERE ...

The costs are the same as for the LOOP ... WHERE statement and depend on the
number of entries to be modified and the effort for finding the entries.

Single entries in internal tables can be modified as follows:

MODIFY itab [INDEX n] [FROM wa]
MODIFY TABLE itab [FROM wa]

The costs are constant if you access index tables via the index (variant 1). Within
loops, you can also use this variant for the sequential modification of multiple
rows without INDEX. In this case, the current row where the loop is used is modi-
fied. This is an implicit index operation that is only permitted for index tables.

For the key accesses (variant 2) with a complete key, the costs scale linearly for
standard tables and logarithmically with the number of entries for sorted tables.
The costs are constant for hashed tables. Because this variant includes a separate
search of the proper entries, it shouldn’t be used in the loop via the same table.
This could result in a nonlinear runtime behavior.

The costs for MODIFY correspond to those of the LOOP; the same restrictions apply
for the duplicates (see Table 7.5).

Standard Sorted Hashed

MODIFY ...
TRANSPORTING ...
WHERE
(complete key)

O(n)
Linear (full
table scan)

O(log n)
Logarithmic

O(1)
Constant

MODIFY... TRANSPORTING...
WHERE
(incomplete key, initial part)

O(n)
Linear (full
table scan)

O(log n)
Logarithmic

O(n)
Linear (full
table scan)

MODIFY...
TRANSPORTING...
WHERE
(incomplete key, no initial part)

O(n)
Linear (full
table scan)

O(n)
Linear (full
table scan)

O(n)
Linear (full
table scan)

Costs for Modifying Internal TablesTable 7.5

289_Book.indb 273 6/5/09 9:34:44 AM

www.sap-press.com

274

ProcessingofInternalTables7

Standard Sorted Hashed

MODIFY ... [INDEX n] FROM wa
(index access)

O(1) O(1) –

MODIFY TABLE... FROM wa
(search effort as for WHERE)

O(n)
Linear (full
table scan)

O(log n) O(1)
Constant

Table 7.5 Costs for Modifying Internal Tables (Cont.)

Delete7.4.4

The following statements are available to delete multiple entries from internal tables:

DELETE itab FROM ix1 TO ix2
DELETE itab WHERE...

The costs depend on the effort for finding and the quantity of rows to be deleted.
For the index access, the costs for finding are constant; for the key access, they
correspond to the costs of MODIFY.

Accesses to individual entries are implemented using the following statements:

DELETE itab [INDEX n].
DELETE TABLE itab WITH TABLE KEY .../DELETE TABLE itab FROM wa

For the accesses to individual rows, the costs correspond to those of LOOP or MOD-
IFY (see Table 7.6).

Standard Sorted Hashed

DELETE ... FROM ... TO O(1) O(1) –

DELETE ... WHERE
(complete key)

O(n)
Linear (full
table scan)

O(log n)
Logarithmic

O(1)
Constant

DELETE ... WHERE
(incomplete key, initial part)

O(n)
Linear (full
table scan)

O(log n)
Logarithmic

O(n)
Linear (full
table scan)

DELETE ... WHERE
(incomplete key, no initial part)

O(n)
Linear (full
table scan)

O(n)
Linear (full
table scan)

O(n)
Linear (full
table scan)

Costs for Deleting Entries from Internal TablesTable 7.6

289_Book.indb 274 6/5/09 9:34:44 AM

www.sap-press.com

275

PerformanceAspects 7.4

Standard Sorted Hashed

DELETE ... INDEX O(1) O(1) –

DELETE FROM WA /
DELETE TABLE WITH TABLE KEY

O(n)
Linear (full
table scan)

O(log n) O(1)
Constant

Table 7.6 Costs for Deleting Entries from Internal Tables (Cont.)

Condense7.4.5

Using the COLLECT command, you can create condensed datasets in internal tables.
For this purpose, the numeric data of all fields that aren’t key fields are added to
already existing values with the same key in the internal table. For standard tables
without explicit key specification, all non-numeric fields are handled as key fields.
The costs of the command are significantly determined by the effort of finding the
relevant row.

A temporary hash administration is created for standard tables if a standard table
is filled with COLLECT only. This is rather unstable compared to other modifying
statements (APPEND, INSERT, DELETE, SORT, MODIFY, changes using the field symbols/
references). However, this optimization has become obsolete because of the imple-
mentation of key tables (sorted tables, hashed tables) and therefore the COLLECT
command to standard tables, too.

If the temporary hash administration is intact, the finding of entries is a con-
stant process just like for hashed tables. If the hash administration is destroyed,
the effort for searching entries depends linearly on the number of entries in the
internal table. You can use the ABL_TABLE_HASH_STATE function module to check
whether a standard table has an intact hash administration.

For sorted tables, the entry is specified internally using a binary search, whereas
the effort for searching entries depends logarithmically on the number of entries
in the internal table.

In hashed tables, the entry is determined using the hash administration of the
table. The costs are constant and don’t depend on the number of entries.

COLLECT should be used mostly for hashed tables because they have a unique table
key and a stable hash administration.

Real-Life Example — Transaction SE30, Tips & Tricks

In the Tips & Tricks under Internal Tables • Building Condensed Tables, Transaction
SE30 provides an example whose runtime you can measure.

289_Book.indb 275 6/5/09 9:34:44 AM

www.sap-press.com

276

ProcessingofInternalTables7

Sort7.4.6

Standard and hashed tables can be sorted by any field of the table using the SORT
command. Sorted tables cannot be sorted using the SORT command because they
are already sorted by the key fields by definition and cannot be resorted by other
fields.

During the sorting process, the data is sorted in the main memory (in the process-
local memory of a work process) if possible. If the space in the main memory is
not sufficient, the components are sorted in the file system. For this purpose, the
blocks are first sorted in the main memory and then written to the file system.
Subsequently, these sorted blocks are reimported using a merge sort.

Sorting is a runtime-intensive statement regardless of whether the sorting is imple-
mented in the main memory or in the file system. (Of course, the sorting in the
file system is even more expensive than the sorting in the main memory.) There-
fore, only sort if this is absolutely required by the application or, in the case of the
standard table, if you can achieve runtime gains for the reading from these tables
using the binary search. For example, it is possible to sort an internal standard
table first by one key field and then by another one and to browse it using the
binary search. In this case, the achieved runtime gains via the binary search are
not canceled out by the increased effort of sorting. The sorting is only worthwhile
if you can optimize a large number of subsequent read accesses this way. For a
table with about 1,000 rows, a sorting process should be followed by at least 40
to 50 read accesses.

If the internal standard table is processed in such a way that a search access to
a field is implemented alternately to a search access to another field, and conse-
quently a sorting process for the respective resorting would be necessary for each
search access, it would be counterproductive to carry out the sorting. In this case,
only optimize one of the two search processes by means of a one-time sorting and
a binary search. Optionally, you could consider the use of a second internal table,
which acts as a secondary index (see Section 7.4.8, Secondary Indexes).

Note

The assignments in sorted tables could also require implicit sorting processes if these
have a key that is different to the source table. These sorting processes are not evident
in the ABAP trace directly because assignments are not assigned to events and are not
recorded separately. The time required for these sorting processes is added to the net
times of the calling modularization unit.

289_Book.indb 276 6/5/09 9:34:44 AM

www.sap-press.com

277

PerformanceAspects 7.4

Copy Cost-Reduced or Copy Cost-Free Access7.4.7

If you use the LOOP ... WHERE and READ statements, the results are copied to the
work area. If you use the MODIFY statement, the changes are copied from the work
area back to the table.

In case of READ and MODIFY, the costs for copying can be limited to the required
fields. For this purpose, you must specify the TRANSPORTING f1 f2 ... addition.
Then only the fields are copied, which are indicated after the addition. You can
also avoid the costs for copying for LOOP ... WHERE and READ if you specify a TRANS-
PORTING NO FIELDS. In this case, the system fills only the corresponding system
fields and no result is copied to the header or the work area. This is used to check
whether a specific entry is available in an internal table. For LOOP ... WHERE, this
access corresponds to a read access instead.

You can also avoid the costs for copying if the reference to a table row is copied to
a reference variable or if the memory address of a row is assigned to a field symbol.
Figure 7.7 illustrates this.

Schematic Diagram of the LOOP VariantFigure 7.7

289_Book.indb 277 6/5/09 9:34:45 AM

www.sap-press.com

278

ProcessingofInternalTables7

The first variant, LOOP AT itab INTO wa, copies the itab internal table row by row
into the wa work area. If the row should be modified, you must copy it back using
MODIFY (see Section 7.4.3, Modify).

The second variant, LOOP AT itab REFERENCE INTO dref, provides the memory
address of each row — row by row — to the dref data reference variable.

The third variant, LOOP AT itab ASSIGNING <fs>, assigns the memory address of
each row to the <fs> field symbol, again row by row.

The second and the third variant are more efficient due to the reduced cost for
copying. For large datasets, the runtime can be reduced by means of these options.
For very small datasets — when the internal tables have less than five rows and
no excessively long rows (more than 5,000 bytes) — the regular copy process is
faster because both the management of the data reference variable and the field
symbols constitute a certain overhead for the system. In case of nested internal
tables (internal tables in which a column of the row structure is another table), it is
always worthwhile to use the copy-free techniques. If the changes to the row in the
internal table should be written back, it pays off to use the copy-free techniques
because you don’t require the MODIFY command any longer.

The basic rule here is that the larger the dataset to be copied, the more worthwhile
it is to use the copy-free techniques.

An access to one entry via LOOP ... WHERE or READ is suitable for wide rows (more
than 1,000 bytes). If the read row should be modified and written back into the
table (MODIFY), the copy-free access already pays off for shorter rows.

Real-Life Example — Transaction SE30, Tips & Tricks

In the Tips & Tricks under Internal Tables • Using the Assigning Command • Modify-
ing a Set of Lines Directly, Transaction SE30 provides an example whose runtime you
can measure.

Secondary Indexes7.4.8

Up to and including Release 7.0 EhP1, internal tables cannot include secondary
indexes. If you require efficient accesses via different fields, secondary indexes are
implemented in the form of custom internal tables. In this process, an additional
internal table is created for each secondary key, which includes a reference to the
main table in addition to the field that represents the secondary key. This reference
can be the position of the data record in the main table (only for index tables) or
the key in the main table. But you can also define a separate unique number for

289_Book.indb 278 6/5/09 9:34:45 AM

www.sap-press.com

279

PerformanceAspects 7.4

it. All solutions entail additional memory requirement but allow for an efficient
access via multiple key fields in return. When processing the internal table, you
must ensure with utmost accuracy that the secondary index tables are maintained
with every change of the main table. Generally, such a procedure is error prone
because of its complexity and should be used in special situations only.

Real-Life Example — Transaction SE30, Tips & Tricks

In the Tips & Tricks under Internal Tables • Secondary Indices, Transaction SE30 pro-
vides an example whose runtime you can measure.

As of Release 7.0 EhP2 and 7.1, you are provided with secondary indexes which
are described in Chapter 10.

Copy7.4.9

Table sharing is another performance aspect that you should be aware of. For assign-
ments and value transfers (import and export per value) of internal tables of the
same type, whose row types don’t contain a table type, only the internal adminis-
tration information (table header) is transferred because of performance reasons.
Figure 7.8 illustrates this.

Background: Internal Tables of the Same Type

Tables with the same structure are referred to as internal tables of the same type. Table
sharing is possible between tables of the same type if the table in the target table has
the same or a more generic type as the source table. The following combinations are
possible, for example:

itab_standard = itab_sorted

itab_standard = itab_hashed

itab_sorted_with_nonunique_key = itab_sorted_with_unique_key

The sharing works for the same or a more general key of the target table (on the left-
hand side of =).

In the following cases, the table sharing is not possible because the target table is not
more generic than the source table:

itab_sorted = itab_standard (with same key definition)

itab_sorted_with_unique_key = itab_sorted_with_nonunique_key (with same
key definition)

Table sharing is possible with any number of tables and cannot be influenced by
the ABAP developer.

289_Book.indb 279 6/5/09 9:34:45 AM

www.sap-press.com

280

ProcessingofInternalTables7

Table
Body 1

m

2

Table Reference itab1

Table Header 1

Table Reference itab2

Table Header 2

Table Sharing — AssignmentFigure 7.8

Table sharing is canceled if one of the internal tables involved in the sharing is
modified. Only then does the actual copy process take place. Figure 7.9 shows the
situation after the table sharing was canceled.

Table Reference itab2

Table
Body 1

m

2

m+1

n

Table
Header

Table Reference itab1

Table
Header

1

m

2

Page Management

Canceled Table Sharing After ModificationFigure 7.9

The copy process after the cancellation of the table sharing (also referred to as copy
on write or lazy copy) can result in situations that look “strange” at first:

For example, it can be possible that not sufficient memory is available if an entry
of an internal table should be deleted because the table sharing can only be can-
celed in case of change accesses to one of the tables involved. Only then does the
actual copy process take place. If sufficient memory is not available for the copy,
then the short dump will inform you that not sufficient memory was available for
executing the current operation (DELETE).

289_Book.indb 280 6/5/09 9:34:45 AM

www.sap-press.com

281

PerformanceAspects 7.4

Another example is that a fast operation, such as an APPEND statement, can become
eye-catching in the runtime measurement, because it has a considerably higher
time than comparable operations. This may be due to the cancellation of the table
sharing.

In principle, each changing access to an internal table can possibly cancel a previ-
ously existing table sharing. However, these are not additional but only deferred
costs.

Change accesses to internal tables include the statements, APPEND, INSERT, MODIFY,
DELETE but also assignments to fi elds or rows of tables implemented via data ref-
erences or fi eld symbols. A DETACH for shared objects also results in cancellation
of table sharing. Likewise, the transfer of a table per value as a parameter of a
method/function/form can cancel the sharing if the parameter is changed.

Table sharing is also displayed in the Debugger or in the Memory Inspector. In Fig-
ure 7.10 below the memory objects, the respective table headers point to the mem-
ory object. In this example, the internal tables, ITAB2A and ITAB1, are shared.

Table Sharing in the DebuggerFigure 7.10

In the Memory Inspector (see Figure 7.11), you can already view the name of the
respective internal table next to the table bodies. Table bodies without a name (for
example, the second table body in Figure 7.11) indicate shared tables. In this case,
too, these are the internal tables, ITAB2A and ITAB1.

289_Book.indb 281 6/5/09 9:34:46 AM

www.sap-press.com

282

ProcessingofInternalTables7

Table Sharing in the Memory InspectorFigure 7.11

Nested Loops7.4.10 and Nonlinear Runtime Behavior

Ineffi cient accesses to internal tables have a particular impact in case of large data-
sets. The following little example shows a nested loop in which the respective
orders of the customer are processed:

LOOP AT it_customers REFERENCE INTO dref_customer.
 LOOP AT it_orders REFERENCE INTO dref_order
 WHERE cnr = dref_customer->nr.
...
 ENDLOOP.
ENDLOOP.

Let’s assume that the internal table, it_customers, has 1,000 entries. An average of
two orders exists for each customer; consequently, the internal table, it_orders,
has 2,000 entries. If these are standard tables, respectively, the two internal tables
must be fully processed: the external table, it_customers, because no restriction
exists and because all data records should be processed semantically; the internal
table, it_orders, is restricted, but the corresponding entries for each customer
cannot be searched effi ciently. Therefore, the entire table, it_orders, must be
browsed for the internal table. This is done for each entry of the external table,
that is, 1,000 times in this example.

Let’s assume that the external loop requires approximately 200 µs and the internal
loop a total of 140,000 µs. If you now double the datasets, the runtime of each loop

289_Book.indb 282 6/5/09 9:34:46 AM

www.sap-press.com

283

PerformanceAspects 7.4

doubles as well because the two loops scale linearly with the number of entries.
So, in case of 2,000 entries in the external table, it_customers, this results in ~400
µs and for 4,000 entries in the internal table, it_orders, in ~560.000 µs for all
2,000 runs. The internal table must be run through for each entry of the external
table, but the system doesn’t need to process all entries of the internal table for
each external entry but only the two entries that belong to a customer.

As a result, the runtime is four times longer in case of a double dataset. The run-
time behavior is not linear but quadratic. (The internal loop is twice as long as
previously — scaled with n — and is executed twice as often as previously.)

In this case, the reason is an inefficient access to the inner internal table. To avoid
this, you must optimize the access to the inner internal table. For a linear runtime
behavior, the access to the inner internal table has to be constant, so the runtime
doubles if the access frequency doubles. Because no unique key is possible in the pre-
vious example, you can achieve a logarithmic runtime behavior for the inner access
using a sorted table. The sorted table allows for a binary search in the inner internal
table and consequently ensures an efficient finding of the two suitable entries in the
inner internal table for each entry of the outer table. The result of the entire code
fragment is O(n x log n).

At this point, a brief comparison to the nested loop join for databases (see Section
5.4.5 in Chapter 5): Like for the nested loop joins on databases, the number and
the efficiency of the access to the internal table are significant for the optimization
of nested loops.

Nonlinear runtime behavior is not always due to inefficient accesses to internal
tables but can also result from a quadratic increase of the call frequency of an effi-
cient access to an internal table, for example.

In general, the effects of nonlinear programming can be reduced by using smaller
data packages. However, the packages should not be too small to not generate a
too large overhead at other points (see Section 4.1.3 in Chapter 4).

Because in most cases only a small test dataset is available for the development
of programs in the development system, it may occur that a nonlinear runtime
behavior can only be discovered with difficulty because nested loops with small
datasets only account for a smaller portion of the entire program runtime. For
small test datasets, it often appears as if the program behaves linearly to the num-
ber of processed datasets.

To detect a nonlinear runtime behavior already during the development with small
datasets, you must compare the runtime behavior at ABAP statement level. Here,

289_Book.indb 283 6/5/09 9:34:47 AM

www.sap-press.com

284

ProcessingofInternalTables7

the times for the accesses to internal tables with two variants — for example, with
ten or with 100 data records to be processed — is measured and compared with
one another using Transactions SE30 or ST12. This way, you can detect a nonlinear
runtime behavior already with small datasets.

In Release 7.0 EhP1, there is no tool available that you can use to automatically
implement this comparison. However, the following links of the SDN provide
tools and descriptions of how you can automate such a comparison:

Nonlinearity: The problem and backgroundEE
https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/5804

A Tool to Compare Runtime Measurements: Z_SE30_COMPARE:EE
https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/8277

Report Z_SE30_COMPARE:EE
https://www.sdn.sap.com/irj/sdn/wiki?path=/display/Snippets/
Report%2bZ_SE30_COMPARE

Nonlinearity Check Using the Z_SE30_COMPARE:EE
https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/8367

In Release 7.00 EhP2, you can implement the comparison of trace files using the
standard SAP means (see Chapter 10).

Summary7.4.11

When you work with internal tables, the selection of the right table type and the
access type is important.

Standard tables should only be used for small tables or tables that can be processed
using the index accesses. For larger standard tables, ensure an efficient process-
ing with the binary search if you want to process some parts of the table only. It
can be used both for single record accesses and for mass accesses. If possible, the
standard tables should be sorted in the same way or only sorted as often as abso-
lutely necessary. For accesses to different key fields using the binary search, which
requires a resorting, you must check whether the effort for sorting is justified (is
amortized by the improved read accesses).

Sorted tables can be used uniquely or non-uniquely for most application cases.
They are particularly useful for partially sequential processing in which the initial
part of the table key is used, for example.

Hashed tables should only be used where the unique key access is the only type
of access, particularly if you must process very large tables.

289_Book.indb 284 6/5/09 9:34:47 AM

www.sap-press.com

285

PerformanceAspects 7.4

In general, internal tables should be filled using array operations if possible to
avoid the overhead of single record accesses.

Wherever reasonable, reduce the copy costs for providing the results using TRANS-
PORTING fieldlist/NO FIELDS or completely avoid it by means of ASSIGNING or
REFERENCE INTO. This is particularly essential for nested tables.

If possible, internal tables should not be too large to save the memory space of
the SAP system.

289_Book.indb 285 6/5/09 9:34:47 AM

www.sap-press.com

341

/SDF/E2E_TRACE, 101, 104

A

ABAP array interface, 205
ABAP Central Services (ASCS), 24
ABAP Database Connectivity (ADBC), 153, 217
ABAP Debugger, 31
ABAP dump, 120
ABAP Load, 23
ABAP memory, 225, 230
ABAP paging area, 230
ABAP stack, 22, 23
ABAP trace, 29, 30, 77, 309
ABAP tuning, 17
ABAP Virtual Machine, 77
ABAP Workbench, 235
Access path, 169
Active key protection, 317
Advanced List Viewer (ALV), 300, 304
Aggregate, 193
Aggregated table summary, 69
Aggregate function, 249
Allocation, 256
Application layer, 21, 22, 26
Application statistics, 119
Application tuning, 18
Appropriate access path, 197
Architecture, performance aspects, 25
Area, 235
Array interface, 127, 301
Array operation, 265
Asynchronous RFC, 141, 288
Asynchronous update, 295

B

Batch job, 140
Batch job API, 141
Batch server group, 140
Bottom-up analysis, 96

Buffer, 225
Buffering, 223

in internal session, 227
in internal tables, 228
in the ABAP memory, 230
in the SAP memory/parameter memory, 231
in the shared objects, 234
in the table buffer, 236
in variables, 228
reusability, 230

Buffering in the shared buffer, 232
Buffering in the shared memory, 233
Buffer key, 248
Buffer pool, 148
Buffer state, 53
Bundled access, 128
BYPASSING BUFFER, 249

C

Calendar buffer, 232
CALL FUNCTION ... DESTINATION..., 226
Call hierarchy, 87
Call position of the SQL statement, 207
Call stack, 305
Callstack, 207
Call statistics, 51
Call tree, 99
Canceled packages, 138
Central resources, 26
Check variant, 35, 37
Client-server architecture, 21
CLIENT SPECIFIED, 172, 250
Clustered index scan, 171
Clustered index seek, 171
Code Inspector, 32

performance checks, 35
COLLECT, 275
Column statistics, 169
COMMIT WORK, 60, 68, 100, 134, 154, 295
Communication

direct communication, 287

Index

289_Book.indb 341 6/5/09 9:35:16 AM

www.sap-press.com

342

Index

indirect communication, 287
protocols, 287

Compile, 149, 153
Condense, 275
Consistency check, 123
Copy on write, 280
Cost-based optimizer, 169
COUNT, 249
Covering index, 163, 187, 204
Cross-user memory, 225
CUA buffer, 232
Cursor cache, 148

D

Database, 27
access strategy, 155
aggregate, 193
API for database queries, 215
appropriate access path, 197
blocks, 149
central resource, 147
compile, 153
database hints, 221
database interface, 151
database process, 148
database thread, 148
data cache, 149
DBI hints, 220
execution plans, 170
existence checks, 195
Explain Plan, 170, 321
FOR ALL ENTRIES, 211
full table scan, 164
hash join, 182
heap tables, 156
identical SELECTs, 208
inappropriate access path, 184
index design, 198
indexes as search helps, 158
index fast full scan, 164
index full scan, 163
index-organized table, 156
index range scan, 160
index unique scan, 159

join, 210
join methods, 179
joins, 179
logical structures, 155
main memory, 148
NATIVE SQL, 216
nested loop join, 180
nested SELECTs, 208
OPEN SQL, 216
operators, 167
optimizer, 169
package sizes, 185
parse, 153
physical I/O, 150
pool and cluster tables, 218
resulting set, 185
selectivity and distribution, 174
software architecture, 147
sort, 217
sort merge join, 181
SQL cache, 149
statistics, 169
system statistics, 169
views, 209

Database interface, 151
Database layer, 21, 23
Database lock, 134
Database process, 148
Data block, 149
Data cache, 148, 149
Data Manipulation Language (DML), 134
Data sharing, 225
DB02, 183
DB2 for iSeries, 148
DB05, 31, 32, 33, 34, 40, 179, 251

results screen, 42
DB file scattered read, 166
DB file sequential read, 166
DBI array interface, 205
DBI hint, 220
Deadlock, 134
Deallocation, 257
Debugger, 47

memory analysis tool, 48
memory snapshot, 49

Default key, 259

289_Book.indb 342 6/5/09 9:35:16 AM

www.sap-press.com

343

Index

Delayed index update, 317
DELETE, 274
DELETE FROM SHARED BUFFER, 232
DELETE FROM SHARED MEMORY, 233
Dequeue module, 132
DISTINCT, 249
Distribution, 174
Double stack, 22, 23
Dynamic distribution, 138

E

E2E trace, 29, 31, 101
analysis, 104
implementation of a trace, 103
prerequisites, 101

Enqueue service, 26, 301
Enqueue trace, 72
Error handling, package processing, 128
Event, 77
Execution frequency, 205
Execution plan, 65, 153, 321
Existence check, 195
Explain Plan, 170, 178
EXPORT TO MEMORY, 230
EXPORT TO SHARED BUFFER, 232
EXPORT TO SHARED MEMORY, 233
Extended exclusive lock, 301
Extended memory, 224
Extended trace list, 60
External session, 226

F

Filesystem cache, 150
Filter tool, 312
FLUSH_ENQUEUE, 301
FOR ALL ENTRIES, 179, 211, 212, 221, 250
FOR UPDATE, 249
Fragmentation, 242
Front end, 25
Frontend resource, 300
Full buffering, 239

Full table scan, 164, 167, 171, 322, 326, 329,
332, 335, 338

G

Generic buffering, 239
GET PARAMETER ID, 231
GROUP BY, 249

H

Hash administration, 262
Hashed table, 260, 264
Hash join, 179, 182
Hash table, 182, 263
Heap memory, 225
Heap table, 156
Hints, 220
Horizontal distribution, 25
HTTP, 287
HTTP trace, 308

I

IBM DB2 for iSeries, 325
IBM DB2 for LUW, 328
IBM DB2 for zSeries, 322
Identical selects, 66
IMPORT FROM SHARED BUFFER, 232
IMPORT FROM SHARED MEMORY, 233
Inappropriate access path, 184
Index design, 198
Indexes as search helps, 158
Index fast full scan, 164
Index full scan, 163, 324, 327, 330, 333, 336,
339
Index only, 160
Index-organized tables, 156
Index range scan, 160, 167, 171, 323, 326,
329, 332, 335, 338
Index skip scan, 167
Index statistics, 169

289_Book.indb 343 6/5/09 9:35:16 AM

www.sap-press.com

344

Index

Index structure, 158
Index table, 259, 260, 299
Index unique scan, 159, 167, 171, 324, 327,
330, 333, 336, 339
INITIAL SIZE, 256
Inner join, 210
Inspection, 35
Internal session, 227
Internal tables, 253

APPEND, 265
COLLECT, 275
copy, 279
costs for copying, 277
DELETE, 274
fill, 265
hash administration, 262
hashed tables, 260
index, 260
index tables, 259
INITIAL SIZE, 256
INSERT, 265
limitations, 263
linear index, 260
LOOP, 268
MODIFY, 273
nested loops, 282
organization in the main memory, 255
performance aspects, 265
read, 268
READ TABLE, 270
secondary indexes, 278
secondary key, 314
SORT, 276
sorted tables, 259
standard tables, 259
table sharing, 279
table types, 258
tree-like index, 260

Inter Process Communication (IPC), 148
IS NULL, 250

J

Java stack, 22, 23
Job state query, 141
Join, 179, 210, 325, 328, 331, 334, 337, 340

Join method, 179, 182
Journal, 154

K

Kiwi approach, 18

L

Latency time, 300
Lazy copy, 280
Lazy index update, 315
Leaf, 262
Least Frequently Used, 154, 241
Least Recently Used, 154, 232, 241
Left outer join, 210
Linear index, 260
Load distribution, 139
Local update, 295, 297
Lock, 132
Lock escalation, 135
Logical row ID, 159
Logical structures, 155
LOOP, 268

M

Main session, 226
Mapping area, 224
Mass data, 124
Measurement data overview, 313
Memory architecture, 223

cross-user memory, 225
memory areas, 223
user-specific memory, 225

Memory area, 223
Memory Inspector, 32, 48, 49, 281

create memory snapshots, 49
Memory snapshot, 48, 49
Merge scan join, 179
Message service, 26, 301
Microsoft SQL Server, 337
MODIFY, 273

289_Book.indb 344 6/5/09 9:35:16 AM

www.sap-press.com

345

Index

Modularization unit, 95
Multiblock I/O, 165

N

Nametab buffer, 225, 232
Native SQL, 216

dynamic, 217
Nested loop join, 179, 180
Nested loops, 36, 282
Nested SELECT, 208
Nested SELECT statement, 179
Nested tables, 36
Network package size, 185

O

Object set, 35
Open SQL, 216

dynamic, 216
Operator, 167
Optimization, 124
Optimizer, 169
Oracle, 334
ORDER BY, 217, 249
OTR buffer, 232
Overhead for copying, 244

P

Package processing, 127
array interface, 127
error handling, 128
package size, 127

Package size, 127, 135, 185, 205
Packaging, 127
Page, 255
Parallel processing, 127, 129, 130

asynchronous RFC, 141
balanced utilization of the hardware, 139
batch job, 140
batch server group, 140
canceled packages, 138

capacity limits of the hardware, 140
challenges, 131
deadlock, 134
distribution of packages, 137
dynamic distribution, 138
load distribution, 139
lock, 132
package size, 135
parallel processing criterion, 130
parallel processing technologies, 140
restartability, 138
static distribution, 137
status of the processing, 138
synchronization time, 131

Parameter memory, 231
Parameter passings, 298
Parse, 149, 153
Passport, 101
Performance, 17

ABAP tuning, 17
application tuning, 18
hardware, 18
response time, 17
scalability, 17
system tuning, 18
throughput, 17

Performance analysis, 29, 303
Performance management, 18
Performance trace, 29, 30, 54, 70, 303

activate, 54
deactivate, 55
display, 55
save, 57

Physical I/O, 150
Pool and cluster tables, 218
Post runtime analysis, 109
Presentation layer, 21, 22
Prevention, 123
PRIV mode, 225
Process analysis, 44

global process overview, 46
local process overview, 46
process details, 46
status, 44

Process chain, 137
Process monitor, 110
Profile tool, 312

289_Book.indb 345 6/5/09 9:35:16 AM

www.sap-press.com

346

Index

Program buffer, 225, 232
Puffer trace, 251

Q

Queued RFC (qRFC), 145, 289
Quota, 224

R

Random I/O, 165
Raw device, 150
Read accesses, 153
Read ahead, 164
Read processing, 200
READ TABLE, 270
Reduce columns, 185, 188
Reduce rows, 185, 190
Requests Tree, 107
Response time, 17
Restartability, 138
Resulting set, 185
RETURNING parameter, 298
RFC, 287, 288

data transfer, 292
round trips, 292

RFC communication, 288
RFC overhead, 290
RFC server group, 142

configuration, 144
RFC trace, 70
Round trip, 300
Rule-based optimizer, 169
Runtime behavior, 124
Run Time Type Identification, 260
RZ12, 142

S

SAP Business Explorer, 22
SAP Code Inspector, 33, 34, 249

ad-hoc inspection, 37
limits, 37

results screen, 38
SQL trace, 308
tests, 35

SAP EarlyWatch Check, 183
SAP enqueue, 132
SAP GoingLive Check, 183
SAP GUI, 22
SAP HTTP plug-in, 103
SAPHTTPPlugIn.exe, 103
SAP MaxDB, 331
SAP memory, 225, 231
SAP NetWeaver Application Server, 22
SAP NetWeaver Business Client, 22
SAP NetWeaver Portal, 22
SAP system architecture, 21
SAP table buffer, 227
SAT, 309

filter tool, 312
measurement data overview, 313
profile tool, 312
time tool, 312

Scalability, 17
SCI, 30, 32, 33, 34, 35
SCII, 35, 37
Screen buffer, 232
SE11, 209, 220
SE12, 220
SE16, 178, 183, 251
SE17, 251
SE24, 35
SE30, 29, 30, 46, 77, 174, 188, 191, 195, 196,
197, 207, 210, 211, 214, 266, 271, 275, 278,
279, 284, 299, 306

aggregation, full, 82
aggregation, per call position, 82
aggregation, without, 82
call hierarchy, 87
create trace, 82
define measurement variant, 80
Duration/type, 81
evaluate trace, 83
gross and net time, 85
in parallel session, 82
in the current session, 82
manage trace files, 89
program parts, 80

289_Book.indb 346 6/5/09 9:35:17 AM

www.sap-press.com

347

Index

statements, 81
SE37, 35
SE38, 35
SE80, 235
Secondary index, 159, 278

unique, 159
Secondary key, 314
SELECT in loops, 207
Selectivity, 174
selectivity analysis, 33
Selectivity analysis, 32, 34, 40
SELECTóCode Inspector checks, 36
Sequential I/O, 165
Sequential processing, 130
SET PARAMETER ID, 231
Shared buffer, 225, 232
Shared memory, 225, 233
Shared objects, 225, 234
SHMA, 235
SHMM, 235
Single block I/O, 165
Single record access, 128
Single record buffering, 239
Single record operation, 266
Single records statistics, 29
Single Statistical Record, 107
SM37, 41
SM50, 30, 44, 46, 110, 171, 172, 231
SM61, 141
SM66, 30, 44, 46
SMD, 101
S_MEMORY_INSPECTOR, 31, 49
SMTP, 287
Solution Manager Diagnostics, 101
Sort, 217
SORT, 276
Sorted table, 259, 264
Sort merge join, 179, 181
SPTA_PARA_TEST_1, 142
SQL, 147

efficient, 155
execution, 151

SQL cache, 148, 149
SQL statement summary, 61
SQL trace, 29, 57, 70, 174, 183, 189

aggregated table summary, 69

call position in ABAP program, 66
database interface, 57
details of the selected statement, 64
EXPLAIN, 65
identical selects, 66
statement summary, 61
table summary, 68
trace list, 58

SSR, 107
ST02, 225, 233, 234, 248
ST04, 45, 166
ST05, 30, 46, 54, 170, 172, 174, 183, 184,
189, 197, 207, 208, 220, 246, 251, 303

enqueue trace, 72
HTTP trace, 308
performance trace, 70
RFC trace, 70
SQL trace, 57
stack trace, 305
table buffer trace, 74

ST10, 31, 51, 243, 247, 251
status of buffered tables, 51

ST12, 30, 46, 89, 207, 284, 306
bottom-up analysis, 96
collect traces, 93
create trace, 91
evaluate trace, 93
grouped by modularization units, 94
overview, 90
SQL trace, 100
top-down analysis, 97

ST22, 31, 119
Stack trace, 305
STAD, 29, 30, 32, 33, 40, 109

evaluation, 112
selection, 110

Standalone enqueue server, 24
Standard table, 259, 264
Static distribution, 137
Statistical record, 109
Subquery, 249
Swap, 248
Synchronization time, 131
Synchronous RFC, 288
System statistics, 169
System tuning, 18

289_Book.indb 347 6/5/09 9:35:17 AM

www.sap-press.com

348

Index

T

Table body, 255
Table buffer, 223, 225

accesses that bypass the buffer, 246
analysis options, 251
architecture, 237
criteria for buffering, 243
displacement and invalidation, 248
full buffering, 241
generic buffering, 240
performance aspects, 244
read access, 238
single record buffering, 240
size of tables, 242
SQL statements that bypass the buffer, 248
types, 239
write access, 238

Table buffering, 236
Table buffer trace, 74
Table call statistics, 52
Table header, 255
Table reference, 255
Table sharing, 279
TABLES parameter, 298
Table statistics, 169
Table summary, 68, 69
Table type, 258
Three-layer architecture, 21, 22
Throughput, 17, 130
Time-based analysis, 123
Time split hierarchy, 98
Time split hierarchy top-down, 98
Time tool, 312
Tools, 29

ABAP trace, 77, 309
Debugger, 47
dump analysis, 119
E2E trace, 101
enqueue trace, 72
Memory Inspector, 49
overview, 29, 30
performance trace, 54, 303
process analysis, 44
RFC trace, 70
SAP Code InspectoróTransaction SCI, 34

selectivity analysis, 40
single record statistics, 109
single transaction analysis, 89
SQL trace, 57
table buffer trace, 74
Table Call Statistics, 51
traces, 33
usage time, 31

Top-down analysis, 97
Trace level, 101, 102
Trace list, 58
Traces, 33
Transactional RFC (tRFC), 289
Transaction log, 154
Tree-like index, 260
Type conversion, 299

U

Unicode, 242
Update, 196

asynchronous, 295
local, 295, 297

UPDATE dbtab FROM..., 200
UPDATE SET..., 200
Update table, 295
UP TO n ROWS, 193
User session, 226
User-specific memory, 225

V

Varchar, 242
Vertical distribution, 24
View, 209

W

Web Dynpro Java, 22
WHERE, 35
Work Process Monitor, 32
Write accesses, 154
Write processing, 200

289_Book.indb 348 6/5/09 9:35:17 AM

www.sap-press.com

	SAP PRESS – reading sample
	ABAP Performance Tuning
	Hermann Gahm
	--
	Contents at a Glance
	Contents
	--
	chapter 7: Processing of Internal Tables
	7.1 Overview of Internal Tables
	7.2 Organization in the Main Memory
	7.3 Table Types
	7.4 Performance Aspects
	7.4.1 Fill
	7.4.2 Read
	7.4.3 Modify
	7.4.4 Delete
	7.4.5 Condense
	7.4.6 Sort
	7.4.7 Copy Cost-Reduced or Copy Cost-Free Access
	7.4.8 Secondary Indexes
	7.4.9 Copy
	7.4.10 Nested Loops and Nonlinear Runtime Behavior
	7.4.11 Summary

	--
	Index
	--
	www.sap-press.com
	(c) Galileo Press GmbH 2009

	www:
	sap-press:
	com: www.sap-press.com

