
Building Web
Services with Java

Sams Publishing, 800 East 96th Street, Indianapolis, Indiana 46240

DEVELOPER’S
LIBRARY

M A K I N G S E N S E O F X M L , S O A P ,
W S D L , A N D U D D I

Steve Graham
Doug Davis

Simeon Simeonov
Glen Daniels

Peter Brittenham
Yuichi Nakamura
Paul Fremantle
Dieter König

Claudia Zentner

Second Edition

00 0672326418 FM 6/4/04 9:49 AM Page i

Building Web Services with Java,
Second Edition
Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.Although
every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omis-
sions. Nor is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32641-8

Library of Congress Catalog Card Number: 2004091343

Printed in the United States of America

First Printing: July 2004

07 06 05 4

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied.The infor-
mation provided is on an “as is” basis.The author and the publisher
shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information
contained in this book or from the use of the CD or programs
accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

Associate Publisher
Michael Stephens

Acquisitions Editor
Todd Green

Development Editor
Tiffany Taylor

Managing Editor
Charlotte Clapp

Senior Project Editor
Matthew Purcell

Indexer
Larry Sweazy

Proofreader
Eileen Dennie

Technical Editors
Alan Moffet
Alan Wexelblat
Marc Goldford
Kunal Mittal

Publishing Coordinator
Cindy Teeters

Designer
Gary Adair

00 0672326418 FM 7/20/05 4:52 PM Page ii

9
Securing Web Services

IN PART I,“WEB SERVICES BASICS,” you saw how SOAP enables applications to interact
with each other, and how Web Services Definition Language (WSDL) and Universal
Description, Discovery, and Integration (UDDI) integrate applications among businesses.
With Web services technologies, applications can be coupled loosely—that is, in a decen-
tralized manner beyond the enterprise boundary.This situation suggests a new challenge
related to security: Most existing technologies are only concerned with how to protect
applications within a single security domain g. Soon, however, we’ll have to be
concerned with how to federate security domains, because each enterprise has its own
security boundary.The Web services security roadmap document (referred as the roadmap
document in this chapter) addresses this issue; it not only provides a security model, but
also shows a collection of specifications to be published.

In this chapter, we’ll look at the concept of Web services security and review its
pending specifications. Because the specification drafts are often abstract (especially for
non–security experts), we’ll provide concrete examples using SkatesTown scenarios. In
particular, we’ll first review existing security technologies and take a closer look at the
mapping from Web services security onto those technologies. In addition, we’ll review
how Web services security technologies are integrated into enterprise applications using
the J2EE model.

Example Scenario
In our discussion of security, we’ll continue our SkatesTown example. SkatesTown’s
CTO, Dean Caroll, is becoming concerned with security now that the business is
expanding. SkatesTown is doing business with a large number of companies, and most of
them aren’t Fortune 500 companies. Currently, SkatesTown’s Web services are secured
only with Secure Socket Layer (SSL) and HTTP Basic Authentication.The combination
of the two won’t be enough in the future because SkatesTown has to transact with vari-
ous business partners, some of which may want to use other security technologies such
as Kerberos. Specifically, when SOAP messages travel through intermediaries, end-to-end

12 0672326418 CH09 6/4/04 9:42 AM Page 445

446 Chapter 9 Securing Web Services

security may be required. Dean can see that the combination of SSL and HTTP Basic
Authentication can support point-to-point security. However, he doesn’t know what
kind of security mechanisms SkatesTown should support.

To ease Dean’s concern,Al Rosen of Silver Bullet Consulting has been asked to
advise Dean about what kind of security features to address in the next development
phase.This hasn’t been an easy task for Al either, because numerous security technologies
and specifications are available; it won’t be possible or meaningful for him to cover all of
them.Therefore, he has addressed Web services security and considered how its mecha-
nisms would fit into SkatesTown’s SOAP-based transactions, as we’ll present throughout
this chapter.

Security Basics
In this section, we’ll introduce basic security concepts and technologies that are relevant
to Web services security.We’ll begin by reviewing security requirements, and then discuss
a collection of security technologies. Finally, we’ll describe a requirement specific to Web
services: the federation of security domains.

Note that we won’t discuss security risks in a generic sense; instead, we’ll address net-
work security. For example, physical site security and insider problems are outside the
scope of this chapter. It’s also worthwhile to clarify that we’re assuming machine-to-
machine interactions rather than human-to-machine interactions.

Security Requirements
E-business relies on the exchange of information between trading partners over insecure
networks (often the Internet).There are always security risks, because messages could be
stolen, lost, or modified.

Four security requirements must be addressed to ensure the safety of information
exchanged among trading partners:

n Confidentiality g guarantees that exchanged information is protected against
eavesdroppers. For example, purchase orders and invoices shouldn’t be exposed to
outsiders.Your credit card information shouldn’t be wiretapped by third parties.

n Integrity g refers to the assurance that a message isn’t modified accidentally or
deliberately in transit. For example, an invoice or order shouldn’t be modified as it
moves between a buyer and a seller.

n Authentication g guarantees that access to e-business applications and data is
restricted to those who can provide appropriate proof of identity. For example,
when a buyer accesses a seller’s site for a purchase order, the buyer is typically
required to give an ID and password as proof of their identity.

n Nonrepudiation g guarantees that the message’s sender can’t deny having sent it.
This requirement is important when you exchange business documents such as a
purchase order or bill, because document recipients want transaction records with

12 0672326418 CH09 6/4/04 9:42 AM Page 446

447Security Basics

proof.With nonrepudiation, once a purchase order is submitted, the buyer can’t
repudiate it.

In addition to these requirements for message protection, you must consider how to pro-
tect resources such as data and applications such that only appropriate entities are
allowed to access them.A fifth requirement is as follows:

n Authorization g is a process that decides whether an entity with a given identity
can access a particular resource. For example, authorized buyers can view a product
list and submit a purchase order.The former indicates authorization on data, and
the latter indicates authorization on an application—that is, an order-management
system.

Message protection requires you to define how to include security information in
exchanged messages. On the other hand, authorization often doesn’t affect messages, but
is provided as a mechanism embedded in a platform such as a Web server, an application
server, or a database management system.We’ll use the J2EE platform as an example to
explain authorization in the “Enterprise Security” section of this chapter.

Cryptography
Cryptography technologies provide a basis for protecting messages exchanged between
trading partners. Confidentiality and integrity can be ensured with encryption g and
digital signature g technologies, respectively.These cryptography technologies can be
categorized into two types in terms of an orthogonal dimension: symmetric and asym-
metric keys.Table 9.1 shows four categories based on the two dimensions; the table clas-
sifies widely used algorithms.The following subsections review each category in more
detail.

Table 9.1 Classification of Cryptography Algorithms

Technology Symmetric Key Asymmetric Key

Encryption 3DES,AES, RC4 RSA15

Digital signature HMAC-SHA1, HMAC-MD5 RSA-SHA1

Symmetric Encryption

Symmetric encryption g requires that you use the same key for encryption and decryp-
tion. For example, assume that Alice wants to send data to Bob.According to standard
cryptography terminology, the original data is called plaintext g and the encrypted data
is called ciphertext g.As shown in Figure 9.1,Alice encrypts the plaintext with a key to
send it to Bob, and Bob decrypts the ciphertext with the same key to extract the plain-
text. Because the same keys are used at the both endpoints, this kind of encryptions is
referred to as symmetric, and the keys used are often called symmetric keys.

12 0672326418 CH09 6/4/04 9:42 AM Page 447

448 Chapter 9 Securing Web Services

Figure 9.1 Symmetric encryption

This category of encryption includes Triple DES (3DES), which is a minor variation of
the Data Encryption Standard (DES) developed by an IBM team 30 years ago; and the
Advanced Encryption Standard (AES), which has been proposed as a replacement for
3DES by the National Institute of Standards and Technology (NIST). RC4, which was
designed at RSA Laboratories by Ron Rivest in 1987, is also widely used with SSL.

Asymmetric Encryption

Asymmetric encryption g allows you to make your encryption key public and thus sim-
plifies key distribution.Two different keys are used: a public key g and a private key g.
Assume that Bob has a pair of private and public keys, and he only publishes the public
key.Alice encrypts her plaintext with the public key to send it to Bob, and Bob decrypts
the ciphertext with his private key (see Figure 9.2).

Key

Encrypt

Ciphertext

Plaintext

Key

Decrypt

Plaintext

Alice Bob

Bob’s
Public
Key

Encrypt

Ciphertext

Plaintext

Bob’s
Private

Key
Decrypt

Plaintext

Alice Bob

Figure 9.2 Asymmetric encryption

Unlike symmetric encryption schema, different keys are used at the endpoints.The keys
are called asymmetric keys, reflecting their asymmetric nature.An example of an
algorithm in this category is RSAES-PKCS1-v1_5 (RSA-15), which is specified in
RFC 2437.

Message Authentication Code

Although the next category of security technology is symmetric digital signature, it’s
called Message Authentication Code (MAC) g in cryptography terminology. It relies on
mathematical algorithms known as hashing functions g to ensure data integrity.A hash-
ing function takes data as input and produces smaller data called a digest g as output. If

12 0672326418 CH09 6/4/04 9:42 AM Page 448

449Security Basics

the original data changes even slightly, the digest is different. MAC is an extension of this
idea:A digest is created with a key in addition to the input data. Such an extension is
necessary because an attacker could otherwise capture both the data and the digest, and
then tamper with the data and construct a new digest.As shown in Figure 9.3, MAC
requires the same key at both ends; hence Bob can check the integrity of Alice’s data
with the key.

Key

Add
MAC

Plaintext with MAC

Plaintext

Key

Verify

Plaintext

Alice Bob

Figure 9.3 Message Authentication Code (MAC)

Keyed-Hashing for Message Authentication Code (HMAC) is an example of MAC.
HMAC must be combined with hashing functions such as MD5 and SHA-1.Therefore,
the algorithm names are HMAC-SHA1, HMAC-MD5, and so on, as listed in Table 9.1.

Digital Signature

The asymmetric digital signature technology is referred to as digital signature g.As
shown in Figure 9.4,Alice signs the plaintext with her private key. Signing here means
creating a signature value that’s sent with the original plaintext. Bob can verify the
integrity of the incoming message by generating the signature value from the plaintext
with Alice’s public key; he can compare this value with the signature value that accom-
panies the incoming plaintext.

Alice’s
Private

Key

Alice’s
Public
Key

Plaintext with
Signature

Plaintext

VerifySign

Plaintext

Alice Bob

Figure 9.4 Digital signature

Like MAC algorithms, digital signature algorithms are also combined with hashing func-
tions such as SHA-1.Table 9.1 shows an example: in RSA-SHA1, a digest is calculated
with SHA-1, and a signature value on the digest is created with a private key.

12 0672326418 CH09 6/4/04 9:42 AM Page 449

450 Chapter 9 Securing Web Services

You can use the digital signature technology to ensure nonrepudiation as well as
integrity. In Figure 9.4, Bob can make sure that the incoming plaintext is signed by
Alice, because he uses Alice’s public key. However, how can he know that Alice is the
holder of the public key? Public Key Infrastructure (PKI) provides a solution:An author-
ity issues digital certificates, each of which binds a party to a public key. PKI and X.509
digital certificates are reviewed later in this chapter.

Asymmetric Versus Symmetric Technologies

Asymmetric keys may seem more useful than symmetric ones because the former can
solve the issue of key distribution—symmetric keys must be transmitted and managed
carefully so that attackers can’t steal them. However, asymmetric keys have some limita-
tions. One of their practical problems is performance.Asymmetric operations with pri-
vate keys (decryption and signing) are a great deal slower than symmetric key operations.
Even asymmetric public key operations such as encryption and signature verification are
much slower than symmetric key operations. Based on such performance characteristics,
it’s best to combine asymmetric and symmetric key operations to take advantage of both
benefits.

Authentication
Password authentication g is the most commonly used authentication method on the
Internet.A client shows its ID or username and password, and the server checks the
ID/password pair by referring to a user registry that manages a collection of such pairs.

Password authentication to access Web servers over HTTP is called HTTP Basic
Authentication (BASIC-AUTH); it’s defined in RFC 2617.The specification defines an
interaction protocol between Web browser and Web server in addition to how to encode
the ID/password into the HTTP header (see the sidebar “HTTP Basic Authentication”).

HTTP Basic Authentication
You’ve probably experienced being required to enter a user ID and password while visiting a Web site. This

process is based on HTTP Basic Authentication (BASIC-AUTH), which is defined in RFC 2617. The typical

BASIC-AUTH interaction between a Web browser and a Web server is illustrated in Figure 9.5.

Web Browser Web Server

GET/protected/index.html HTTP/1.0

HTTP/1.0 200 OK

HTTP/1.0 401 Unauthorized
WWW-Authenticate: Basic realm=“Basic Authentication Area”

GET/protected/index.html HTTP/1.0
Authorziation: Basic dG9tY2F0OnRvbWNhdA==

Input password

Figure 9.5 Interaction protocol for HTTP Basic Authentication

12 0672326418 CH09 6/4/04 9:42 AM Page 450

451Security Basics

When the Web browser sends an HTTP request to access a protected Web resource, the Web server returns

an HTTP response that includes the error code “401 Unauthorized” and the following HTTP header:

WWW-Authenticate: Basic realm=”Realm Name”

Realmg is a name given to a set of Web resources; it’s a unit to be protected. Basic in front of realm
indicates a type of authentication—in this case, BASIC-AUTH. Based on this information, the Web browser

shows a login dialog to the user. Then, the Web browser sends an HTTP request again, including the follow-

ing HTTP header:

Authorization: Basic credential

Although the credential looks like encrypted text, it’s logically plaintext because its format is

UserName:Password encoded with Base64 g—for example, dG9tY2F0OnRvbWNhdA in Figure 9.5 can

be decoded to SkateboardWarehouse:wsbookexample. Because BASIC-AUTH isn’t secure alone,

it’s combined with another security mechanism such as SSL.

The Web server authenticates the user with the user ID and password included in the credential. If the given

user ID and password are wrong, “401 Unauthorized” is returned. Moreover, the Web server has an access
control list (ACL) g that specifies who can access what and checks whether the authenticated user can

access the Web resource. If the check succeeds, then “200 OK” is returned; otherwise, “401 Unauthorized” is

returned.

The digital signature technology can also be used for authentication.As we mentioned
in the previous section, a message’s signature can be bound to a digital certificate.
Because the certificate is bound to a particular entity such as a user or a trading partner,
you can identify a holder of the certificate.

Authentication with a digital signature is in principle more convenient than password
authentication because you can assume that a certificate authority manages certificates.
However, client certificates aren’t widely used, because it isn’t easy for Web browser users
to install certificates. On the other hand, server certificates are commonly used when
Web browsers authenticate servers.

Security Protocols
Symmetric and asymmetric keys each have pros and cons, so combining them is a good
idea.There has been a great deal of research in the area of network security to define
security protocols, with which symmetric keys can be shared between two parties in a
secure manner. In a simple protocol, two parties only agree on a key, exchanging random
numbers. However, commonly used protocols also perform authentications during the
key agreement process.

The Secure Socket Layer (SSL) defined by Netscape for Web browsers is the most
widely used protocol on the Internet.With SSL, two parties can share a symmetric key,
and authentication is also performed.The protocol works as follows:

1. The client accesses a server.

2. The server returns its certificate.

12 0672326418 CH09 6/4/04 9:42 AM Page 451

452 Chapter 9 Securing Web Services

3. The client prepares a random number that is a seed for generating a symmetric
key, encrypts the seed number with a public key contained in the server certificate,
and sends the encrypted data to the server.

4. The server decrypts the received data to extract the seed number.

5. Both the client and the server have the same seed number, so they can generate a
symmetric key from it.

Note that authentication isn’t based on digital signature technology, but on encryption.
After the negotiation has been completed, the client sends its application data, encrypt-
ing it with the symmetric key. If the server’s response is properly encrypted, the client
can authenticate the server.

The server can authenticate the client two ways. First, when the client sends a request
after the SSL negotiation, the server can return an HTTP “401 Unauthorized” message
to the client (see the sidebar “HTTP Basic Authentication”).Then the client attaches the
username and password to be authenticated by the server. Second, the server can use
another variation of the SSL negotiation protocol, where the client is required to
decrypt a random number encrypted with its public key. If the decryption is performed
properly, the server can authenticate the client.

Security Infrastructures
It’s difficult for developers to combine security technologies properly, so security infrastruc-
tures g have been developed and are used today in real systems. Essentially, a security
infrastructure is a basis on which applications can interact with each other securely.As
illustrated in Figure 9.6, applications and the communication between them can be pro-
tected.

Application

Protect Protect

Application

Protect

Communication

Security Infrastructure

Figure 9.6 Security infrastructure

Each security infrastructure has different design requirements.Although we listed five
items in the “Security Protocols” section of this chapter, not all of them have to be
addressed in each infrastructure. Security infrastructures vary in terms of their design and
architecture. In this section we’ll review three security infrastructures that are commonly
used in real-world systems: user registries, PKI, and Kerberos.

12 0672326418 CH09 6/4/04 9:42 AM Page 452

453Security Basics

User Registries

One of the most basic security infrastructures is the user registry g. User registries ordi-
narily manage user IDs and their associated passwords, which are used for authentication.
As shown in Figure 9.7, an authentication module sitting in front of the applications
checks each ID/password pair with the user registry. Only authenticated users can access
the applications.

Requester Application

Message with
ID/Password

A
uthentication

User Registry

Figure 9.7 User registry for password authentication

One of the advantages of this mechanism is its simplicity. Most commonly used systems
such as operating systems, database management systems, and HTTP servers incorporate
user registries. Furthermore, although only authentication is involved, this simple system
can be combined with other infrastructures to meet additional security requirements, if
necessary.

On the other hand, user registries may be brittle. Once a password is stolen, an
attacker can easily access a system using the ID and the password. In spite of such
low-security level, password authentication is often chosen because its development and
management are much cheaper than for sophisticated mechanisms.This decision is
reasonable when the cost of any potential damage is much lower than the cost of
implementing the user registry.

Public Key Infrastructure

As we reviewed in the “Cryptography” section, asymmetric key operations offer an
advantage. Because public keys can be shown to anyone, you don’t have to worry about
key delivery. One remaining issue is how to bind a public key to a particular party. Public
Key Infrastructure (PKI) g provides a basis to certify holders of public keys.The key
constructs of PKI are the certificate and the certificate authority:

n A certificate g is a proof of identity.With a certificate, you can relate an entity
such as a trading party to its public key. Because the certificate is digitally signed,
you can trust its contents as long as you can trust the certificate’s issuer.Although
there are alternative certificate formats such as Pretty Good Privacy (PGP) and
X.509, we mainly use X.509 in our examples.

12 0672326418 CH09 6/4/04 9:42 AM Page 453

454 Chapter 9 Securing Web Services

n A certificate authority (CA) g is an entity that issues certificates. If you can trust
the CA, you can trust certificates issued by the CA. PKI assumes a fairly small
number of CAs (such as VeriSign) and allows a CA to issue certificates for other
CAs.As a result, certificates are organized into a hierarchy, as shown in Figure 9.8.
The root is called a root CA, intermediary nodes are called subordinate CAs, and
terminal nodes are called end entities.The path for an end entity to a root CA is
called a certificate path. If two end entities have a common CA, they can establish
trust with each other.

Root CA

Subordinate CA

End Entity

SkatesTown
Skateboard
Warehouse

Figure 9.8 PKI trust model

Figure 9.9 illustrates how to use a certificate. First, a requestor registers its public key
with the CA, and a certificate is issued.The requestor signs a message with the private
key and sends the signed messages to a service provider, attaching the certificate.To veri-
fy the signature, the provider performs a cryptographic operation using a public key
included in the certificate.To verify the certificate, the provider checks whether the cer-
tificate is signed by the CA, potentially traversing subordinate CAs in the process.

12 0672326418 CH09 6/4/04 9:43 AM Page 454

455Security Basics

Figure 9.9 Using a certificate for a digital signature

Kerberos

Kerberos g was initially developed for workstation users who wanted to access a net-
work. One of the key requirements is single sign-on (SSO) g:A user provides an ID
and a password only once to access various applications within a certain interval.
Another requirement is no use of public key cryptography.With a symmetric key opera-
tion, you can achieve much higher performance.

The Kerberos architecture is illustrated in Figure 9.10.The requestor (Alice) first
requests and receives a ticket-granting ticket (TGT) g through password authentication
by accessing the Key Distribution Center (KDC) g. Next,Alice requests and receives a
service ticket (ST) for a provider (Bob), showing the TGT to the KDC.Alice can now
access Bob by including the ST in a request message.The TGT contains Alice’s ID, her
session key, and TGT expiration time.Therefore, as long as the TGT is valid,Alice can
get various STs without giving her ID and password. In this way, SSO is achieved.

The KDC is a core of the Kerberos system: It authenticates users to issue tickets and,
more importantly, manages all participants’ IDs and secret keys (called master keys g).
For example, when issuing an ST for Bob, the KDC encrypts Alice’s information with
Bob’s key.As a result, only Bob can decrypt Alice’s ID in the ST, and therefore he can
authenticate her.The ST contains a session key between Alice and Bob, so they can
securely exchange messages with encryption and digital signatures.

Security Domains
Before moving on to Web services security, let’s define the term security domain g.As
you’ve seen, each security infrastructure has a scope of management in terms of partici-
pants and resources.A user registry or a Kerberos KDC has explicit participant databases.
On the other hand, the root CA implicitly prescribes a set of participants in PKI.We call

Certificate

Certificate

Signed Message
Requester Provider

Certificate Authority (CA)

Public Key

Register

Trust

Verify Signature
Verify Certificate

Issue

12 0672326418 CH09 6/4/04 9:43 AM Page 455

456 Chapter 9 Securing Web Services

such scope a security domain. Note that security domains can be different even if they’re
based on the same security infrastructure. For example, there are multiple root CAs in
PKI, and certificates that have different root CAs can’t trust each other.

Ticket-Granting
Ticket (TGT)

Service Ticket

Service Ticket

Encrypted Message
Requester Provider

Key Distribution Center (CA)

BobAlice

login
TGT

Figure 9.10 Kerberos architecture

As you can imagine, numerous security domains exist in the real world, and there is no
point in considering a single security infrastructure to integrate them.Web services secu-
rity—which is a main topic of this chapter—addresses how to integrate security domains
that are often based on different security infrastructures.

Web Services Security
Because applications are integrated across business boundaries according to the Web
services concept,Web services have specialized security requirements.As discussed in the
“Security Domains” section of this chapter, numerous security domains already exist on
the Internet and in intranets.Although applications and business entities belong to one
or more security domains, they have to interact with one another beyond the security
domain boundary.Thus, the federation g of different security domains is extremely
important, although the issue hasn’t been addressed in existing security technologies.The
Web services security architecture discussed in the roadmap document addresses the issue
of integration of security domains.

This section examines the overall architecture of Web services security. In subsequent
sections, we’ll take a closer look at the security specifications.

Security Model for Web Services
Each business has its own security infrastructure and mechanism, such as PKI or
Kerberos. In the context of Web services, these security systems need to interoperate over

12 0672326418 CH09 6/4/04 9:43 AM Page 456

457Web Services Security

different security domains.The Web services security architecture defines an abstract
model for that purpose.

As shown in Figure 9.11, three parties are identified: the requestor, the Web service,
and the security token service. Each has its own claims, security token, and policy.The
roadmap document defines several terms to discuss the security model, as follows:

n Subject—A principal (for example, a person, an application, or a business entity)
about which the claims expressed in the security token apply.The subject, as the
owner of the security token, possesses information necessary to prove ownership of
the security token.

n Claim—A statement about a subject either by the subject or by a relying party that
associates the subject with the claim.This specification doesn’t attempt to limit the
types of claims that can be made, nor does it attempt to limit how these claims
may be expressed. Claims can be about keys that may be used to sign or encrypt
messages. Claims can be statements the security token conveys. For example, a
claim may be used to assert the sender’s identity or an authorized role.

n Security token—A representation of security-related information (X.509 certificate,
Kerberos ticket and authenticator, mobile device security token from a SIM card,
username, and so on).

n Web service endpoint policy—Collectively, the claims and related information that
Web services require in order to process messages (the Web Services have complete
flexibility in specifying these claims). Endpoint policies may be expressed in XML
and can be used to indicate requirements related to authentication (for example,
proof of user or group identity), authorization (such as proof of execution capabili-
ties), or other requirements.

Based on this terminology, the highly abstracted security model is designed to fit many
diverse situations.

Policy

Claims

Claims

Security
Token

Requester

Security
Token

Service

Web
Service

Policy

Security
Token

Claims

Policy

Security
Token

Figure 9.11 Security model for Web services

12 0672326418 CH09 6/4/04 9:43 AM Page 457

458 Chapter 9 Securing Web Services

Let’s examine the security model with some example scenarios.Assume that a requestor
wants to invoke a Web service.The requestor has claims such as its identity and its privi-
leges. On the other hand, the invoked Web service has a policy that requires encryption
of messages and authentication of the requestor. Note that the word policy isn’t a general
term, but has a specific meaning such as “security requirements to access the Web serv-
ice.”Therefore, the requestor has to send messages that meet the security policy.

When you’re sending security claims, you have to consider how to represent them in
messages.The Web services security model suggests that all claims are included in the
security token that’s attached to request messages. For example, identity via a password or
X.509 certificate is a security claim; therefore it’s represented as a security token.

Although the requestor creates a security token, some security tokens (such as X.509
certificates) must be issued by a third party. Such a third party is called a Security Token
Service (STS) in the security model (see Figure 9.11).The certificate authority in PKI
and the Key Distribution Center in Kerberos are good examples. Because the STS is a
Web service, it has security policies, claims, and security tokens. Most security systems
include security servers, each of which manages its security domain.The STS is an
abstraction of such security servers.

The Web services security model attempts to define an abstraction of existing security
mechanisms, aiming at a generic security model.An opposite approach would be to
define a generic security mechanism.There are security mechanisms running already, and
we don’t want to replace all of them.Therefore, instead of the mechanism, we use an
abstract model with which we can unite different mechanisms without changing them.

Web Services Security Specifications
No Web services security specifications have been finalized yet during the writing of this
book. Rather, draft specifications have been published, and some of them are being stan-
dardized in OASIS. However, a diagram of the specification release is summarized in the
roadmap document, as shown in Figure 9.12:

n WS-Security defines how to include security tokens in SOAP messages and how to
protect messages with digital signatures and encryption.

n WS-Policy provides a framework for describing Web services meta-information.
Based on the framework, domain-specific languages can be defined, such as WS-
SecurityPolicy (described later).

n WS-Trust prescribes an interaction protocol to access Security Token Services.
n WS-SecureConversation defines a security context with which parties can share a

secret key to sign and encrypt parts of messages efficiently.
n WS-Federation provides a framework for federating multiple security domains. For

example, it defines how to get a temporary identity to access a Web service in
another security domain.

n WS-Privacy provides a framework for describing the privacy policy of Web
services.

12 0672326418 CH09 6/4/04 9:43 AM Page 458

459Web Services Security

n WS-Authorization defines how to exchange authorization information among par-
ties.The authorization is defined as a security token.

WS-
SecureConversation

WS-
Federation

WS-
Authorization

WS-Policy WS-Trust WS-Privacy

WS-Security

SOAP Foundation

Figure 9.12 Roadmap of Web services security specifications

As of the time of this writing, draft specifications of WS-Authorization and WS-Privacy
haven’t been released. Other specifications are discussed in the remainder of this chapter.

Extended SkatesTown Security Scenario
Although SkatesTown’s CTO, Dean Caroll, has an overview of the Web services security
model, he doesn’t realize how these technologies can help his business.Therefore, he
asked Al Rosen of Silver Bullet Consulting to show him some scenarios that employ
Web services security.

Al Rosen envisioned a buyer/seller/supplier scenario that might happen in the near
future. Figure 9.13 shows the addition of a credit card company.A typical transaction is
carried out as follows:

1. Buyer submits a purchase order to SkatesTown, specifying a product, a delivery
date, and a credit card number.

2. SkatesTown allocates stock to Part Supplier to confirm the order.

3. If the stock is allocated, SkatesTown checks with Credit to determine whether the
buyer’s purchase is possible.

4. SkatesTown returns an invoice to Buyer.

Let’s consider how Web services security helps protect each process in the transaction.
When accepting the purchase order message, SkatesTown considers three security
requirements: nonrepudiation, authentication, and confidentiality. Note that integrity is
not a requirement, but nonrepudiation ensures integrity.WS-Security can be used to sat-
isfy these requirements.

12 0672326418 CH09 6/4/04 9:43 AM Page 459

460 Chapter 9 Securing Web Services

Figure 9.13 Extended SkatesTown scenario for security

A digital signature is applied to Buyer’s order information as part of WS-Security. During
order submission, SkatesTown wants to ensure nonrepudiation so that Buyer can’t deny
their request. If Buyer signs the order with its private key, SkatesTown can verify the sig-
nature with Buyer’s public key.

SkatesTown also can verify Buyer’s identity with Buyer’s certificate.Through the sig-
nature verification, SkatesTown already has proof of possession on the certificate.Thus,
authentication can be performed during the signature verification.

The card information involves a special requirement: SkatesTown can’t see Buyer’s
number, but Credit can see it. In order to achieve this requirement, they can use the
encryption feature provided in WS-Security. Specifically, the card number is encrypted
with Credit’s public key by Buyer and then decrypted with Credit’s private key by
Credit.

WS-Trust can be viewed as an API to access an STS. In this scenario, when
SkatesTown receives a signed purchase order, it verifies not only the signature, but also
the certificate used for the signature. In this case, SkatesTown may access an STS (STS-A
in Figure 9.13) with WS-Trust in order to validate the certificate.

With WS-Policy and WS-SecurityPolicy, administrators of Web services can specify
security requirements to access their services. SkatesTown requires a digital signature for
purchase order submission. If such a security policy is published, buyers will be prepared
to insert digital signatures into their messages.

WS-SecureConversation is used to establish a security context; it fits into the message
exchange between SkatesTown and Supplier. SkatesTown interacts with many buyers but
only a small number of suppliers, but the number of messages it exchanges with suppli-
ers is much larger.Although you can apply WS-Security directly using PKI, such a

Part Supplier

Credit

Buyer

SOAP Message

SOAP Message

SOAP Message

Dsig for SkatesTown
Enc for Credit

Security
Token

Service-B

Security
Token

Service-A

PKI

PKI

SkatesTown

WS-Trust WS-Trust

WS-Trust WS-Trust

WS-Trust

12 0672326418 CH09 6/4/04 9:43 AM Page 460

461WS-Security

solution isn’t efficient because public key operations are expensive. In this case, it’s a
good idea to use WS-SecureConversation to establish a security context, and then com-
municate with partners, utilizing efficient symmetric key operations.

WS-Federation is required for authentication across security boundaries.Assume that
Buyer and SkatesTown belong to security domain A, and Credit and SkatesTown belong
to security domain B. In this case, Credit wants to authenticate Buyer, although Buyer
can show a security token issued in domain A.WS-Federation provides a framework for
resolving such federation issues as described later.

No draft specification has been published for WS-Privacy or WS-Authorization, but
we’ll briefly describe how they fit into this scenario.With WS-Privacy, SkatesTown could
define a privacy policy dictating that purchase order information must not be used for
other purposes (such as direct mail). Under such a policy, Buyer would decide whether
to submit an order.WS-Privacy is provided as a specific language of WS-Policy, like WS-
SecurityPolicy.This way, buyers can get the privacy policy in advance when they submit
a purchase order.

WS-Authorization would define a security token for authorization. In our scenario,
Supplier would have access control on its stock allocation service and would require a
particular authorization token.The authorization token would prove a rank for the
requestor, such as AAA or BB. Supplier would then specify the maximum amount of the
transaction according to the ranking. For example, $10,000 total allocation might be
allowed for an AAA requestor, but only $3,000 might be allowed for a BB requestor.

In the following sections, we’ll review the specifications in more detail.

WS-Security
The WS-Security specification defines a format to include security tokens and mecha-
nisms to protect SOAP messages. Digital signatures serve as integrity and/or nonrepudia-
tion checks to ensure message protection, and encryption guarantees confidentiality. In
addition,WS-Security provides a flexible mechanism to include various claims in SOAP
messages with security tokens.With message protection and security tokens,WS-Security
can provide a basis for other specifications in the roadmap.

Listing 9.1 illustrates the syntax of WS-Security.A Security element is defined and
included in a SOAP header. Under the Security element can appear a Signature ele-
ment (defined in the XML Digital Signature specification), an encryption-related ele-
ment such as EncryptedKey (defined in the XML Encryption specification), and security
tokens such as UsernameToken (defined in WS-Security).The following sections review
digital signatures, encryption, and security tokens.

Listing 9.1 Basic Syntax of WS-Security

<S:Envelope xmlns:S=”http://schemas.xmlsoap.org/soap/envelope/” >

<S:Header>

<wsse:Security xmlns:wsse=”http://schemas.xmlsoap.org/ws/2003/06/secext” >

<Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>
</Signature>

12 0672326418 CH09 6/4/04 9:43 AM Page 461

462 Chapter 9 Securing Web Services

<EncryptedKey xmlns=”http://www.w3.org/2001/04/enc-enc-enc#”>
</EncryptedKey>

<wsse:UsernameToken xmlns=”http://schemas.xmlsoap.org/ws/2003/06/secext”>
</wsse:UsernameToken>

</wsse:Security>

</S:Header>

<S:Body>

...

</S:Body>

</S:Envelope>

Digital Signatures
Returning to the example scenario, Dean Caroll now understands an immediate prob-
lem:Without nonrepudiation, the buyer can deny their purchase order even if the buyer
sent the order request, or the buyer can claim that the number of products ordered is
wrong.With respect to the exchange of messages between two parties, a digital signature
provides a means to prove that the sending party created the message.Al Rosen empha-
sized that WS-Security incorporates the World Wide Web Consortium (W3C) g/IETF
standard, the XML Digital Signature specification.

The XML Digital Signature specification defines how to sign part of an XML docu-
ment in a flexible manner.Whereas in the “Cryptography” section we assumed that data
is signed, we are now concerned with how to create the signed data from an XML
document.The specification defines ways to specify parts of the document and accompa-
nying canonicalization methods, as we’ll review later.The specification also permits
signature algorithms.As we discussed earlier, digital signatures and Message
Authentication Code (MAC) are similar—the difference only involves their use of asym-
metric and symmetric keys. Based on this similarity, both digital signatures and MAC are
handled in an integrated manner in the specification. For example, you can specify
HMAC-SHA1 (see Table 9.1) as a signature algorithm. In that case, you can only ensure
integrity—that is, you can only ensure that the message hasn’t been modified during
transmission.

In our extended example, Buyer sends a purchase order document and receives an
invoice document. In practice, these two documents should be signed; otherwise, one of
the parties can repudiate that it sent the document. Listing 9.2 shows a digitally signed
purchase order document.The Signature element includes a signature on the purchase
order and specifies a collection of parameters to create the signature.

Listing 9.2 Digital Signature Sample

<SOAP-ENV:Envelope xmlns:SOAP-ENC=http://schemas.xmlsoap.org/soap/encoding/

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

Listing 9.1 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 462

463WS-Security

<SOAP-ENV:Header>

<wsse:Security xmlns:wsse=”http://schemas.xmlsoap.org/ws/2003/06/secext”>
<wsse:BinarySecurityToken xmlns:wsu=

“http://schemas.xmlsoap.org/ws/2003/06/utility”
EncodingType=”wsse:Base64Binary” ValueType=”wsse:X509v3” wsu:Id=”bst_id”>

MIIDQTCCAqqgAwIBAgICAQQwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCSlAxETAP

BgNVBAgTCEthbmFnYXdhMQwwCgYDVQQKEwNJQk0xDDAKBgNVBAsTA1RSTDEQMA4GA1UE

...

</wsse:BinarySecurityToken>

<Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<SignedInfo>

<CanonicalizationMethod Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”>
</CanonicalizationMethod>

<SignatureMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#rsa-sha1”>
</SignatureMethod>

<Reference URI=”#body_id”>
<Transforms>

<Transform Algorithm=”http://www.w3.org/2001/10/xml-exc-c14n#”>
</Transform>

</Transforms>

<DigestMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#sha1”>
</DigestMethod>

<DigestValue>U2BIJSk6OL0W0mGXXiGVn5XPV54=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

Ojjw8nkT3jJoNN/AxsdOwTqWnhfZewubBWp0Sa0vJTTjQBrnKR18brODc8byuwVf2v

iFdvMY4mT7Iumk/ZRLRNF1tEBCFRki2++W2LIXBIXVtmwo1riS98kmFZo6dBvhFOnX

wKE1ag6C8x/UgAMVU+YzYd11KqNXtpwvi9Ydoq4=

</SignatureValue>

<KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI=”#bst_id”></wsse:Reference>
</wsse:SecurityTokenReference>

</KeyInfo>

</Signature>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body xmlns:wsu=”http://schemas.xmlsoap.org/ws/2003/06/utility”
wsu:Id=” body_id”>

<po xmlns=”http://www.skatestown.com/ns/po” id=”43871” submitted=

“2004-01-05” customerId=”73852”>
<billTo>

Listing 9.2 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 463

464 Chapter 9 Securing Web Services

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</billTo>

<shipTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</shipTo>

<order>

<item sku=”318-BP” quantity=”5”>
<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12”>
<description>Street-style titanium skateboard.</description>

</item>

<item sku=”008-PR” quantity=”1000”>
</item>

</order>

</po>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In the XML Digital Signature specification (XML Signature), an element Signature is
defined with its descendants under the namespace http://www.w3.org/2000/09/
xmldsig#.The WS-Security specification defines how to embed the Signature element
in SOAP messages as a header entry.You can sign all or part of the message. In our
example, the body part is signed.The digest value of the body part is calculated, and the
value is signed and included in the Signature element.

Let’s review how to get the digest value of the target.The target is specified by
Reference under the SignedInfo element. Its URI attribute indicates the target in such
a way that the id attribute of the body element is referenced.The target is transformed
by EXC-C14N—that is, an exclusive canonicalization g method for XML. (Exclusive
canonicalization is a W3C Recommendation to generate a canonical form for physically
different but logically equivalent XML documents.) With EXC-C14N, you can check
whether XML documents are semantically equivalent using a standardized code set, the
order of attributes, tab processing, and so on.

Listing 9.2 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 464

465WS-Security

Let’s look at a canonicalization example.The following two documents appear quite
different at a glance:
<?xml version=”1.0” encoding=”us-ascii”?>
<foo

b=”b”
a=”a”

></foo>

<?xml version=”1.0” encoding=”us-ascii”?>
<foo a=”a” b=”b”/>

However, with canonicalization, they’re both translated into the following document:
<?xml version=”1.0” encoding=”us-ascii”?>
<foo a=”a” b=”b”></foo>

The rules applied here are as follows:
n White spaces and new line feeds in a begin tag are normalized to a single white

space.
n Attributes in a begin tag are sorted in alphabetical order.
n An empty element is converted to a start-end tag pair.
n Characters are encoded with UTF-8 (although you can’t see it in the printed

text).

There are two specifications for XML canonicalization: XML-C14N and EXC-C14N.
The key difference is how to handle namespaces. Specifically, the outer element name-
space can affect the canonicalization of the inner elements with XML-C14N. However,
this behavior isn’t good when you want to insert a signed part into another XML docu-
ment, such as a SOAP envelope. For this reason, in WS-Security, EXC-C14N is recom-
mended rather than XML-C14N.

After translation with EXC-C14N, a digest value is calculated with an algorithm
specified by the DigestMethod element. Here SHA1 is used.The calculated value is
inserted in the DigestValue element, represented in Base64 format.

The value of the target isn’t signed directly. Rather, the SignedInfo element is
signed.An algorithm specified by the CanonicalizationMethod element—that is,
XML-C14N—canonicalizes SignedInfo.The canonicalized SignedInfo is signed with
an algorithm specified by SignatureMethod: RSA-SHA1.This algorithm calculates a
digest value of the SignedInfo subtree and then signs it with an RSA private key.The
calculated value is inserted into the SignatureValue element, represented in Base64
format.

Optionally, the signer can include a KeyInfo element to attach key information. More
specifically, the example includes a reference (via SecurityTokenReference and
Reference elements) to a BinarySecurityToken element that contains an X.509 certifi-
cate. (Security tokens are discussed in more detail in the “Security Tokens” section.)

12 0672326418 CH09 6/4/04 9:43 AM Page 465

466 Chapter 9 Securing Web Services

So far, we’ve reviewed the XML Signature syntax in the signature-processing process.
Verification is carried out in the same manner. First, you check the value of the
DigestValue element according to EXC-C14N and SHA1. Next, you calculate a digest
value for the SignedInfo subtree to compare it with the value in the SignatureValue
element. More precisely, the signature value is decrypted with the public key and then
compared to the calculated value.

Encryption
In our scenario, credit card information should be encrypted, because SkatesTown
doesn’t have to know the card number.The XML Encryption specification defines a
means to encrypt portions of XML documents; this selective encryption feature is incor-
porated into WS-Security.

We can now update the purchase order document to include credit card information,
as shown in Listing 9.3. Instead of a billTo element, we insert cardInfo so that the
service requestor can pay with the card.When it receives the document from Buyer,
SkatesTown doesn’t have to know the credit card information. Rather, SkatesTown wants
verify with Credit that SkatesTown can charge the purchase on the card. In order to
achieve this scenario, the credit card information must be encrypted in such a way that
only Credit can decrypt it.

Listing 9.3 Purchase Order that Includes Card Information

<po xmlns=”http://www.skatestown.com/ns/po-with-card” id=”43871”
submitted=”2004-01-05” customerId=”73852”>

<cardInfo>

<name>The Skateboard Warehouse</name>

<company>VISA</company>

<expiration>02/2005</expiration>

<number>1234123412341234</number>

</cardInfo>

<shipTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</shipTo>

<order>

<item sku=”318-BP” quantity=”5”>
<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12”>
<description>Street-style titanium skateboard.</description>

</item>

12 0672326418 CH09 6/4/04 9:43 AM Page 466

467WS-Security

<item sku=”008-PR” quantity=”1000”>
</item>

</order>

</po>

XML Encryption Example

Let’s look at a simple XML Encryption sample first. Listing 9.4 is an encrypted version
of the purchase order document. In this example, we assume that two parties share a
common symmetric key indicated by a key name. Note that the namespace ds is a prefix
for the XML Digital Signature namespace; the XML Encryption specification reuses ele-
ments from the XML Digital Signature namespace as much as possible.

Listing 9.4 Encrypted Purchase Order Document

<po xmlns=”http://www.skatestown.com/ns/po-with-card”
id=”43871” submitted=”2004-01-05” customerId=”73852”””>

<enc:EncryptedData

Type=”http://www.w3.org/2001/04/xmlenc#Element”>
<enc:EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#tripledes-cbc”/>
<ds:KeyInfo>

<ds:KeyName>Shared key</ds:KeyName>

</ds:KeyInfo>

<enc:CipherData>abCdeF...</enc:CipherData>

</enc:EncryptedData>

<shipTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</shipTo>

<order>

<item sku=”318-BP” quantity=”5”>
<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12”>
<description>Street-style titanium skateboard.</description>

</item>

<item sku=”008-PR” quantity=”1000”>
</item>

</order>

</po>

Listing 9.3 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 467

468 Chapter 9 Securing Web Services

The EncryptedData element is a root element for the encrypted part, and its Type
attribute indicates that the encrypted data is an XML element.The EncryptionMethod
element specifies an encryption algorithm, and KeyInfo specifies a secret key. Based on
the secret key and the algorithm, the credit card information is encrypted and stored in
the CipherData element.The data to be encrypted must be a portion of the XML doc-
ument encoded with UTF-8.

Listing 9.5 shows encryption with a public key.

Listing 9.5 Encryption with a Public Key

<po xmlns=”http://www.skatestown.com/ns/po-with-card” id=”43871”
submitted=”2004-01-05” customerId=”73852”>

<enc:EncryptedData

Type=”http://www.w3.org/2001/04/xmlenc#Element”>
<enc:EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#tripledes-cbc”/>
<ds:KeyInfo>

<enc:EncryptedKey>

<enc:EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-1_5”/>
<ds:KeyInfo>

<ds:KeyName>Receiver’s key</ds:KeyName>

</ds:KeyInfo>

<enc:CipherData>ghIjkL...</enc:CipherData>

</enc:EncryptedKey>

</ds:KeyInfo>

<enc:CipherData>abCdeF...</enc:CipherData>

</enc:EncryptedData>

<shipTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</shipTo>

<order>

<item sku=”318-BP” quantity=”5”>
<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12”>
<description>Street-style titanium skateboard.</description>

</item>

<item sku=”008-PR” quantity=”1000”>
</item>

</order>

</po>

12 0672326418 CH09 6/4/04 9:43 AM Page 468

469WS-Security

The idea here is that a random symmetric key is generated to encrypt the data, and the
symmetric key itself is encrypted with the receiver’s public key. Let’s first look at how
the symmetric key is encrypted. EncryptedKey includes the encrypted symmetric key,
specifying how it’s encrypted. EncryptionMethod specifies the encryption algorithm, and
the inner KeyInfo specifies the receiver’s public key. Based on these elements, the
encrypted key is stored in CipherData.The outer CipherData comes from an encryp-
tion based on the symmetric key and an encryption algorithm specified by the outer
EncryptionAlgorithm.

WS-Security Example

Let’s move on to encryption in WS-Security. Listing 9.6 shows a WS-Security example
for encryption. In addition to the encrypted data in the body, the EncryptedKey element
is located under the Security element.This indicates that the header element is used as
an instruction to process the body.

EncryptedKey contains an encrypted symmetric key and a reference to the encrypted
body. CipherData contains a symmetric key encrypted with the RSA-1.5 algorithm and
a public key identified in the KeyIdentifier element.When you specify a reference to
an X.509 certificate with KeyIdentifier, you have to use the SubjectKeyIdentifier
attribute in the X.509 certificate.

The decrypted symmetric key is used to process the EncryptedData element in the
body. DataReference in ReferenceList has a reference to the EncryptedData element.

Listing 9.6 WS-Security Encryption Example

<SOAP-ENV:Envelope xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Header>

<wsse:Security xmlns:wsse=

“http://schemas.xmlsoap.org/ws/2003/06/secext”
SOAP-ENV:mustUnderstand=”1”>

<EncryptedKey xmlns=”http://www.w3.org/2001/04/xmlenc#”>
<EncryptionMethod Algorithm=

“http://www.w3.org/2001/04/xmlenc#rsa-1_5”></EncryptionMethod>
<KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>

<wsse:SecurityTokenReference>

<wsse:KeyIdentifier>u3AA1M+DMOAlbX/vWJWnFtOKBck=

</wsse:KeyIdentifier>

</wsse:SecurityTokenReference>

</KeyInfo>

<CipherData>

<CipherValue>cdck0cWh94oF5xBoEm9x/LjjJfmfnVn3SmhryPr5Rui/Y5tJQz8hQq

➥729vPHETtKWwwRBkpkp6wqFlHztCw2h

12 0672326418 CH09 6/4/04 9:43 AM Page 469

470 Chapter 9 Securing Web Services

KMBMubZzPTODzzgAU0ZvbHtjRKtqPnNuq3ZDYDGQ9RBIfyjPyVdwrwlPaR9eaXtmbLK/G3e3iGaxAW4jh

➥Lq+wM=</CipherValue>

</CipherData>

<ReferenceList>

<DataReference URI=

“#wssecurity_encryption_id_519136303015631520_1045115597786”>
</DataReference>

</ReferenceList>

</EncryptedKey>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<po xmlns=”http://www.skatestown.com/ns/po-with-card” id=”43871”
submitted=”2004-01-05” customerId=”73852”>

<EncryptedData xmlns=”http://www.w3.org/2001/04/xmlenc#”
Id=”wssecurity_encryption_id_519136303015631520_1045115597786”
Type=”http://www.w3.org/2001/04/xmlenc#Content”>

<EncryptionMethod Algorithm=

“http://www.w3.org/2001/04/xmlenc#tripledes-cbc”>
</EncryptionMethod>

<CipherData>

<CipherValue>Ew7Zggr8z3/uFGzKVNP69SPSij+Y65L/jyk5sggKcKjkBv1hip5npg

==</CipherValue>

</CipherData>

</EncryptedData>

<shipTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</shipTo>

<order>

<item sku=”318-BP” quantity=”5”>
<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12”>
<description>Street-style titanium skateboard.</description>

</item>

<item sku=”008-PR” quantity=”1000”>
</item>

</order>

</po>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 9.6 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 470

471WS-Security

The EncryptedKey in the header is intended to be a directive to message recipients.The
recipients can know in advance which portions are encrypted and how to decrypt them.
In this scenario, the recipient isn’t SkatesTown but Credit.Therefore, Buyer should use
Credit’s public key so that SkatesTown can’t decrypt the data. Furthermore, the
Security element that contains EncryptedKey should have an actorURI to specify a
particular recipient.

Java Cryptography Extension
To implement digital signatures and encryption for WS-Security, you need to use Java Cryptography
Extension (JCE) g. Let’s review JCE to help you understand Java’s cryptography architecture.

JCE provides a framework for accessing and developing core cryptographic functions. Implementation and

algorithm independence are addressed so that applications are insulated from cryptographic details. In other

words, you can change the cryptographic implementation and algorithms without modifying applications.

Implementation independence is achieved through the security provider architecture. If you look at the file

java-home>\jre\lib\security\java.security, you’ll find the following format:

security.provider.<n>=<Security Provider Class>

The number indicates a priority, and the right side specifies a security provider class. Each provider class is a

subclass of java.security.Provider and supports some or all Java security algorithms, such as

DSA, RSA, MD5, and SHA-1. For example:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.sun.rsajca.Provider

security.provider.3=com.sun.net.ssl.internal.ssl.Provider

Note that this example also specifies an SSL provider with priority 3. When a security algorithm is required,

providers are asked whether they support the particular algorithm according to the priority. For example, if

SHA1withRSA is required, the second provider is chosen. Although the second and third providers both

support it, the second one has higher priority. If SSL is required, the third provider is chosen because only it

supports SSL.

Even if you want to use another provider, such as IBM JCE, you don’t have to change your program. Rather,

you only have to change the security configuration file.

Security Tokens
In addition to message protection with digital signatures and encryption,WS-Security
defines security tokens, which can contain various requestors’ claims (such as a username
and optional password, an X.506 certificate, or a Kerberos ticket).As we reviewed earlier
in this chapter, a key purpose of the Web services security model is to integrate various
security infrastructures and domains. In these security infrastructures, security claims are
represented in different ways; therefore, you need an abstraction to integrate these differ-
ences.

12 0672326418 CH09 6/4/04 9:43 AM Page 471

472 Chapter 9 Securing Web Services

A security token is an XML representation that can contain security claims. Because
the security token can contain any mechanism-specific security data, it serves as the inte-
gration of different security infrastructures. Let’s take a closer look at two types of
tokens: UsernameToken and BinarySecurityToken. In addition, we’ll review other
tokens that can be embedded in the WS-Security Security element.

UsernameToken

The simplest security token is UsernameToken, which contains a mandatory Username
and an optional Password. Listing 9.7 shows an example.

Listing 9.7 UsernameToken Example

<wsse:UsernameToken>

<wsse:Username>testName</wsse:Username>

<wsse:Password>testPassword</wsse:Password>

</wsse:UsernameToken>

UsernameToken is used for password authentication, such as HTTP Basic Authentication
(see the sidebar “HTTP Basic Authentication”). From a security point of view, this plain-
text representation is extremely insecure.Therefore, BASIC-AUTH needs to be used
with security protection methods such as WS-Security encryption and SSL/TLS (see the
sidebar).

Without a password, UsernameToken can be viewed as ID assertion. If you have a
secured intranet, ID assertion is enough. If you have a gateway server that maps external
IDs to internal IDs, the downstream server only needs the internal ID represented with
UsernameToken.

BinarySecurityToken

Unlike UsernameToken, some tokens such as X.509 certificates and Kerberos tickets are
represented as binary data. BinarySecurityToken is defined to contain such binary data.
Look at the format in Listing 9.8.The Id attribute with the wsu prefix is used for refer-
encing from another place in the SOAP message.The ValueType attribute specifies the
kind of data. In this example, X509v3 indicates an X.509 v3 digital certificate; you can
also specify Kerberos5TGT for a Kerberos ticket-granting ticket and Kerberos5ST for a
Kerberos service ticket.The EncodingType attribute specifies the encoding format of the
binary data. Because Base64Binary is specified, a Base64 representation of an X.509 cer-
tificate is included in the BinarySecurityToken element.

Listing 9.8 BinarySecurityToken Example

<wsse:BinarySecurityToken xmlns:wsu=

“http://schemas.xmlsoap.org/ws/2003/06//utility”
EncodingType=”wsse:Base64Binary” ValueType=”wsse:X509v3”
wsu:Id=”wssecurity_binary_security_token_id_2343669525027134511_1045057262242”>

12 0672326418 CH09 6/4/04 9:43 AM Page 472

473WS-Security

MIIDQTCCAqqgAwIBAgICAQQwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCSlAxETAP

BgNVBAgTCEthbmFnYXdhMQwwCgYDVQQKEwNJQk0xDDAKBgNVBAsTA1RSTDEQMA4GA1UE

...

</wsse:BinarySecurityToken>

As in Listing 9.2, X.509 certificates are often combined with digital signatures. Because
any third party can take a certificate and include it in their messages, the certificate alone
can’t serve as proof of possession g.Therefore, the X.509 certificate in a binary security
token should be used for authentication only when combined with an XML Signature.

Other Security Tokens

WS-Security only provides a framework to include security tokens, mentioning how to
use them with signatures and encryption; defining concrete tokens is outside the scope
of the specification. Rather, security tokens are defined as separate profiles.As of
December 2003, profiles for username token and X.509 have been published by OASIS.
For example,“Web Services Security: X509 Token Profile” defines the value type for the
ValueType attribute of the BinarySecurityToken element.As you saw in the previous
section, X509v3 is defined to indicate an X.509 v3 digital certificate.

In addition,“Web Services Security: Kerberos Binding” is also being discussed. It
defines Kerberos5TGT for a Kerberos ticket-granting ticket and Kerberos5ST for a
Kerberos service ticket. Like the X.509 sample, a Kerberos ticket can be contained in
BinarySecurityToken as a Base64 representation, specifying either of the Kerberos
value types in ValueType.

The Secure Assertion Markup Language (SAML) is another candidate that will be
embedded in WS-Security as a security token. SAML lets you represent security asser-
tions in XML format.The assertions are similar to claims in WS-Security, and they can
relate to authentication, authorization, or attributes of entities (either human or comput-
er).“Web Services Security: SAML Binding” defines how to represent such assertions as
security tokens in accordance with WS-Security.

In order to understand security tokens from a broader perspective, let’s consider a
security context defined in WS-SecureConversation.As we’ll review later,WS-
SecureConversation defines SecurityContextToken and key derivation mechanisms.
The security context is like that in SSL and is established through a security handshake.
It’s important to note that the context is considered a security token in the specification.
This abstraction contributes to simplifying digital signatures and encryption with the
security context, as you’ll see in the section on WS-SecureConversation.

Security tokens are a key concept of abstraction in WS-Security. Like the security
context, you can define various types of security tokens. If you define new tokens, you
can use them in WS-Security—that is, you can use a new token for digital signatures and
encryption.This way, you can extend WS-Security by defining your own tokens for
future use.

Listing 9.8 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 473

474 Chapter 9 Securing Web Services

WS-Trust
WS-Trust defines how to request and issue security tokens and how to establish trust
relationships.At its heart,WS-Trust assumes a security token service that issues security
tokens and manages a security domain. In Figure 9.14, we assume that STS-A is a cer-
tificate authority (CA) in PKI and STS-B is a Key Distribution Center (KDC) in
Kerberos. In this section, we’ll review PKI and Kerberos as examples, mapping them
onto WS-Trust.Through these examples, you’ll see how the STS concept abstracts exist-
ing security infrastructures.We’ll also review the XML Key Management Specification
(XKMS), relating it to WS-Trust.

Buyer Skates
Town

Part
Supplier

SOAP Message

STS-A
(CA)

WS-Trust

WS-Trust

SOAP Message

STS-B
(KDC)

WS-Trust

WS-Trust

Figure 9.14 Using PKI and Kerberos with WS-Trust

Public Key Infrastructure
In terms of WS-Trust, a CA can be considered a Security Token Service (STS). Of
course, in that case, the CA must implement WS-Trust. Let’s review some WS-Trust
examples, assuming that STS-A in Figure 9.14 is a CA. In our scenario, Buyer requires a
Credit public key to encrypt credit card information. In this case, Buyer can get a Credit
X.509 certificate from STS-A through WS-Trust.

As shown in Listing 9.9, the WS-Trust request is contained in the SOAP body.The
RequestSecurityToken element is used for requesting tokens, and its child elements
specify details. wsse:X509v3 in TokenType indicates that an X.509 certificate is involved.
wsse:ReqIssue in RequestType indicates that the required action is to issue a token.
The Base element references a base token that is used to validate the authenticity of a
request. In this example, UsernameToken is referred to in the header; thus the ID and
password are used for authentication. Furthermore, because we need to get a Credit cer-
tificate, we want to specify it within the request.WS-Trust doesn’t define how to specify
a target party, so we use AppliesTo, which is defined in WS-Policy.

Listing 9.9 Request to Issue an X.509 Certificate

<S:Envelope xmlns:S=”...” xmlns=”.../secext” xmlns:wsu=”.../utility>
<S:Header wsu:Id=”req”>

12 0672326418 CH09 6/4/04 9:43 AM Page 474

475WS-Trust

<wsse:Security>

<wsse:UsernameToken wsu:Id=’Me’ >

<wsse:Username>Buyer</wsse:Username>

<wsse:Password>buyerPW</wsse:Password>

</wsse:UsernameToken>

</wsse:Security>

</S:Header>

<S:Body>

<wst:RequestSecurityToken>

<wst:TokenType>wsse:X509v3</wst:TokenType>

<wst:RequestType>wsse:ReqIssue</wst:RequestType>

<wst:Base>

<wsse:Reference URI=’#Me’

ValueType=’wsse:UsernameToken’ />

</wst:Base>

<wsp:AppliesTo

xmlns:wsp=’http://schemas.xmlsoap.org/ws/2002/12/policy’ >

<wsa:EndpointReference>

<wsa:Address>http://credit.com/service</wsa:Address>

</wsa:EndpointReference>

</wsp:AppliesTo>

</wst:RequestSecurityToken>

</S:Body>

</S:Envelope>

Listing 9.10 shows a response example. RequestedSecurityToken in
RequestSecurityTokenResponse contains a token. Because a Credit X.509 certificate is
returned, BinarySecurityToken is used to contain it in a Base64 representation.

Listing 9.10 Response for an X.509 Certificate Request

<S:Envelope xmlns:S=”...” xmlns=”.../secext” xmlns:wsu=”.../utility>
<S:Body wsu:Id=”req”>

<RequestSecurityTokenResponse>

<RequestedSecurityToken>

<BinarySecurityToken ValueType=”wsse:X509v3”
EncodingType=”wsse:Base64Binary”>

MIIEZzCCA9CgAwIBAgIQEmtJZc0...

</BinarySecurityToken>

</RequestedSecurityToken>

</RequestSecurityTokenResponse>

</S:Body>

</S:Envelope>

Listing 9.9 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 475

476 Chapter 9 Securing Web Services

Kerberos
As shown in Figure 9.14, SkatesTown and Part Supplier are managed by a Kerberos
security domain in our scenario.As we discussed earlier, users first get a ticket-granting
ticket (TGT) via password authentication, next get a Service Ticket (ST) for a particular
service, and then can access the service with the ST (see Figure 9.10). Once the user gets
a TGT, they can get other STs for other services without further authentication. In this
way, single sign-on (SSO) is achieved.

Requests from a client to KDC can be represented in a WS-Trust request. Listing
9.11 shows a request to issue a Kerberos TGT. Password authentication is required, so
UsernameToken is included and referenced from the Base element. wsse:Kerberos5TGT
is specified in TokenType.

Listing 9.11 Request for Issuing a Kerberos TGT

<S:Envelope>
<S:Header>

<Security>

<UsernameToken wsu:Id=”myToken”>
<Username>SkatesTown</Username>
<Password>pwd</Password>

</UsernameToken>

</Security>
</S:Header>

<S:Body>

<RequestSecurityToken>

<TokenType>wsse:Kerberos5TGT</TokenType>

<RequestType>wsse:ReqIssue</RequestType>

<Base>

<Reference URI=’#myToken’

ValueType=’wsse:UsernameToken’/>

</Base>

</RequestSecurityToken>

</S:Body>

</S:Envelope>

The client can sign and/or encrypt request messages based on the ST. Listing 9.12 shows
an example of a signature with a Kerberos ST. Notice that there isn’t a significant differ-
ence between this and the X.509 signature example (Listing 9.2); the ValueType attrib-
ute in BinarySecurityToken is the only change. However, unlike PKI, a Kerberos ticket
contains a shared secret; therefore HMAC-SHA1 is used for the signature processing
instead of RSA-SHA1.

Listing 9.12 Signature with Kerberos Service Ticket

<SOAP-ENV:Envelope xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

12 0672326418 CH09 6/4/04 9:43 AM Page 476

477WS-Trust

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Header>

<wsse:Security xmlns:wsse=”http://schemas.xmlsoap.org/ws/2003/06/secext”
SOAP-ENV:mustUnderstand=”1”>

<wsse:BinarySecurityToken xmlns:wsu=

“http://schemas.xmlsoap.org/ws/2003/06//utility”
EncodingType=”wsse:Base64Binary” ValueType=”wsse:Kerberos5ST”
wsu:Id=

“wssecurity_binary_security_token_id_2343669525027134511_1045057262242”>
MIIDQTCCAqqgAwIBAgICAQQwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCSlAxETAP

BgNVBAgTCEthbmFnYXdhMQwwCgYDVQQKEwNJQk0xDDAKBgNVBAsTA1RSTDEQMA4GA1UE

AxMHSW50IENBMjAeFw0wMTEwMDEwOTU0MDZaFw0xMTEwMDEwOTU0MDZaMFQxCzAJBgNV

BAYTAkpQMREwDwYDVQQIEwhLYW5hZ2F3YTEMMAoGA1UEChMDSUJNMQwwCgYDVQQLEwNU

UkwxFjAUBgNVBAMTDVNPQVBSZXF1ZXN0ZXIwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJ

AoGBAMy3PfZ1mPhrEsBvYiOuIlPV3Uis5Yy6hmxo2YwYC2nNDBPzKslWUi/Q+fK+DNdY

6KEHmuDrcVcEma48J9X1a5avRlksQfKptKoVn4eBys2i/wkwyzQhDaFji79/MvnTRW8E

Vy99FNKw4PFnhOoe1tlDcNBuIH/fIuGOz9ElTV+fAgMBAAGjggEmMIIBIjAJBgNVHRME

AjAAMAsGA1UdDwQEAwIF4DAsBglghkgBhvhCAQ0EHxYdT3BlblNTTCBHZW5lcmF0ZWQg

Q2VydGlmaWNhdGUwHQYDVR0OBBYEFIW3FD1cXie4j4zw1gAp4cuOAZ4lMIG6BgNVHSME

gbIwga+AFL35INU4+WRy09vaf9zOsP7QvO9voYGSpIGPMIGMMQswCQYDVQQGEwJKUDER

MA8GA1UECBMIS2FuYWdhd2ExDzANBgNVBAcTBllhbWF0bzEMMAoGA1UEChMDSUJNMQww

CgYDVQQLEwNUUkwxGTAXBgNVBAMTEFNPQVAgMi4xIFRlc3QgQ0ExIjAgBgkqhkiG9w0B

CQEWE21hcnV5YW1hQGpwLmlibS5jb22CAgEBMA0GCSqGSIb3DQEBBQUAA4GBAHkthdGD

gCvdIL9/vXUo74xpfOQd/rr1owBmMdb1TWdOyzwbOHC7lkUlnKrkI7SofwSLSDUP571i

iMXUx3tRdmAVCoDMMFuDXh9V7212luXccx0s1S5KN0D3xW97LLNegQC0/b+aFD8XKw2U

5ZtwbnFTRgs097dmz09RosDKkLlM

</wsse:BinarySecurityToken>

<Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<SignedInfo>

<CanonicalizationMethod Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></CanonicalizationMethod>
<SignatureMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#hmac-sha1”></SignatureMethod>
<Reference URI=

“#wssecurity_body_id_2934309014555244973_1045057262232”>
<Transforms>

<Transform Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></Transform>
</Transforms>

<DigestMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#sha1”></DigestMethod>
<DigestValue>U2BIJSk6OL0W0mGXXiGVn5XPV54=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

Listing 9.12 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 477

478 Chapter 9 Securing Web Services

Ojjw8nkT3jJoNN/AxsdOwTqWnhfZewubBWp0Sa0vJTTjQBrnKR18brODc8byuwVf2v

iFdvMY4mT7Iumk/ZRLRNF1tEBCFRki2++W2LIXBIXVtmwo1riS98kmFZo6dBvhFOnX

wKE1ag6C8x/UgAMVU+YzYd11KqNXtpwvi9Ydoq4=

</SignatureValue>

<KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI=”#wssecurity_binary_security_token_id_
➥2343669525027134511_1045057262242”></wsse:Reference>

</wsse:SecurityTokenReference>

</KeyInfo>

</Signature>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body xmlns:wsu=”http://schemas.xmlsoap.org/ws/2003/06/utility”
wsu:Id=”wssecurity_body_id_2934309014555244973_1045057262232”>

<po xmlns=”http://www.skatestown.com/ns/po” id=”43871”
submitted=”2004-01-05” customerId=”73852”>

<billTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</billTo>

<shipTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</shipTo>

<order>

<item sku=”318-BP” quantity=”5”>
<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12”>
<description>Street-style titanium skateboard.</description>

</item>

<item sku=”008-PR” quantity=”1000”>
</item>

</order>

</po>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 9.12 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 478

479WS-Trust

XML Key Management Specification
Although WS-Trust provides a framework to access security token services, it doesn’t
encompass all aspects of key management: retrieval, registration, backup, revocation, and
recovery.The XML Key Management Specification (XKMS) defines concrete operations
for key managements, addressing PKI. In this section, we’ll review XKMS and discuss
how it relates to WS-Trust.

With XKMS, applications can interact using PKI without focusing on the myriad of
fine details in PKI, such as ASN.1.There is some overlap between XKMS and WS-Trust,
although they’re being developed independently.

XKMS was published as a W3C Note in March 2001 by VeriSign, Microsoft, and
WebMethods. XKMS has two major components: the XML Key Information Service
Specification (X-KISS) and the XML Key Registration Service Specification (X-KRSS).
One of the main goals of XKMS is to complement emerging W3C standards, such as
XML Digital Signature and XML Encryption.

Let’s go back to our example scenario, where Buyer requires a Credit X.509 certifi-
cate for encrypting credit card information.The WS-Trust request in Listing 9.9 can be
represented as a XKMS request as shown in Listing 9.13.The key value of the public key
can be retrieved via X-KISS, as in Listing 9.14.

Listing 9.13 Query for Retrieving a Key Value

<SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://schemas.xmlso ap.org/soap/envelope/”>
<SOAP-ENV:Body>

<Locate xmlns=”http://www.xkms.org/schema/xkms-2001-01-20”>
<Query>

<KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<KeyName>

➥CN=Purchase Order Client, OU=Purchase Department,

➥O=SkateboardWarehouse, L=..., S=NY, C=US</KeyName>

</KeyInfo>

</Query>

<Respond>

<string>KeyValue</string>

</Respond>

</Locate>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The Locate element includes a query on KeyInfo and a format for the response.This
message requests a public key for the Distinguished Name (DN) specified by the
KeyName element. Note that WS-Trust doesn’t define how to specify the DN. Listing
9.14 shows its response.

12 0672326418 CH09 6/4/04 9:43 AM Page 479

480 Chapter 9 Securing Web Services

Listing 9.14 Response to the Key Value Query

<SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/” >

<SOAP-ENV:Body>

<LocateResult xmlns=”http://www.xkms.org/schema/xkms-2001-01-20”>
<Result>Success</Result>

<Answer>

<KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<KeyValue>

<DSAKeyValue>

<P>

/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1

➥Y+r/F9bow9sbVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rf

➥GG/g7V+fGqKYVDwT7g/bTxR7DAjVUE1oWkTL2dfOuK2HXKu/yIgMZnd

➥FIAcc=

</P>

<Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q>

<G>

9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+Z

➥xBxCBgLRJFn

Ej6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+

➥2J6ASQ7zKTx

vqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSo=

</G>

<Y>

Q9N/x1cj2LSaV9ZdKPl0Sl9HhqbBdloc/AvxvY41sQREau9s/HmPwFd

➥Tgn6iRCdXrg

Y2HaiQYOlBdt09UW+q2XjvY1vdrWhXlxy8VdSFEdMCla926o38igZjF

➥qXF0LOlBKTK

LQTsCzWWxDB6sK8LkvaUikUFpudYa/rWP562GUI=

</Y>

</DSAKeyValue>

</KeyValue>

</KeyInfo>

</Answer>

</LocateResult>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The value of the public key is included in the KeyValue element.With this value, you
can verify the signature of the initial SOAP message.

As shown in the example, X-KISS helps applications obtain cryptographic key infor-
mation. In addition to key value retrieval, it can be used to validate a binding between a
key name and a key value. It’s also useful for getting key information from an X.509 cer-
tificate. In a complementary way, X-KRSS provides key registration, revocation, and
recovery services.

12 0672326418 CH09 6/4/04 9:43 AM Page 480

481WS-SecurityPolicy

As you’ve seen, there is overlap between WS-Trust and XKMS. Conceptually,WS-
Trust is a superset of X-KISS because it can cover other security mechanisms such as
Kerberos. On the other hand, XKMS defines retrieval operations more concretely than
WS-Trust, addressing PKI. Furthermore, X-KRSS operations such as key registration
and revocation aren’t considered in WS-Trust.At this moment, we don’t know whether
these specifications will converge, although duplicated functions should ideally be con-
verged.

WS-SecurityPolicy
When Buyer accesses SkatesTown services, it has to know the security requirements (the
security policy) in advance.As we reviewed in Chapter 4,“Describing Web Services,”
WS-Policy and WS-PolicyAttachment provide a framework to describe policies and to
associate them with particular services.WS-SecurityPolicy is a domain-specific language
to represent policies for WS-Security. For example, you can describe your desired policy
in such a way that a signature is required on a particular element and that a particular
element must be encrypted.

In our scenario, SkatesTown requires a signature on Buyer’s purchase order and there-
fore wants to represent this requirement as a policy.As in Listing 9.2, we assume that a
signature is required on the SOAP Body element. Listing 9.15 shows a sample policy for
Signature.

Listing 9.15 WS-SecurityPolicy Sample for Signature

<wsp:Policy xmlns:wsp=”...” xmlns:wsse=”...”>
<wsp:All wsp:Preference=”100”>
<wsse:Integrity wsp:Usage=”wsp:Required”>
<wsse:Algorithm Type=”wsse:AlgCanonicalization”

URI=”http://www.w3.org/Signature/Drafts/xml-exc-c14n”/>
<wsse:Algorithm Type=”wsse:AlgSignature”

URI=” http://www.w3.org/2000/09/xmldsig#rsa-sha1”/>
<MessageParts

Dialect=”http://schemas.xmlsoap.org/2002/12/wsse#soap”>
S:Body

</MessageParts>

</wsse:Integrity>

<wsse:SecurityToken>

<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>

</wsp:All>

</wsp:Policy>

Although XML Signature can be used for integrity and nonrepudiation, statements on
signatures are represented with the Integrity element. Specifically, when you use PKI-
based signatures, you can ensure the nonrepudiation of the signed message. On the other

12 0672326418 CH09 6/4/04 9:43 AM Page 481

482 Chapter 9 Securing Web Services

hand, if you use shared-secret-based signatures, you can’t ensure nonrepudiation—only
integrity.

In addition,WS-SecurityPolicy provides statements for confidentiality and security
tokens. Listing 9.15 contains a SecurityToken statement for an X.509 certificate.

From an implementation point of view, one of the difficult aspects is verifying that
necessary parts are signed or encrypted.WS-SecurityPolicy provides two mechanisms.
You can use XPath to specify any parts of the message.Although this is a generic mecha-
nism, its computational cost is often high.Therefore, if the part selection can be repre-
sented by the message part selection functions in WS-PolicyAssertion, it’s recommended
that you use those functions. S:Body in Listing 9.15 is an example of such a function.

WS-SecureConversation
SkatesTown and Part Supplier interact with each other frequently.Although you can use
public-key-based signatures and encryption for such interactions, you can easily get into
a performance problem.With WS-SecureConversation, the two parties can have a shared
secret, making possible more effective signature and encryption algorithms.

Let’s change our scenario a little, defining a security domain with PKI for
SkatesTown and Part Supplier. Based on X.509 certificates, the two organizations estab-
lish a security context that contains shared secrets.With the shared secrets, they can
interact with each other, ensuring integrity and confidentiality (see Figure 9.15).

Client Server

SkatesTown Part Supplier
SOAP Message

within
Security Context

PKI CA

WS-Trust

WS-Trust

Figure 9.15 Secure conversation with PKI

The security context idea is similar to that in SSL/TLS: first establish a security context
via handshake protocols, and then have a secure interaction with the security context. In
this section, after we examine WS-SecureConversation, we’ll review the SSL protocol in
detail.Then, we’ll consider a concrete authentication protocol based on WS-
SecureConversation.

12 0672326418 CH09 6/4/04 9:43 AM Page 482

483WS-SecureConversation

WS-SecureConversation Overview
WS-SecureConversation defines a format for security context mechanisms to establish a
security context, and for mechanisms to derive session keys from security contexts. Let’s
look at an example, shown in Listing 9.16.

Listing 9.16 Signature Based on SecurityContextToken

<SOAP-ENV:Envelope xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/” xmlns:xsd=

http://www.w3.org/2001/XMLSchema

xmlns:wsu=http://schemas.xmlsoap.org/ws/2003/06/utility

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Header>

<wsse:Security xmlns:wsse=”http://schemas.xmlsoap.org/ws/2003/06/secext”
SOAP-ENV:mustUnderstand=”1”>

<wsse:SecurityContextToken wsu:Id=”SecContext”>
<wsu:Identifier>uuid:...</wsu:Identifier>

</wsse:SecurityContextToken>

<Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<SignedInfo>

<CanonicalizationMethod Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></CanonicalizationMethod>
<SignatureMethod Algorithm=

“http://www.w3.org/2000/09/xm]ldsig#rsa-sha1”></SignatureMethod>
<Reference URI=

“#wssecurity_body_id_2934309014555244973_ 1045057262232”>
<Transforms>

<Transform Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></Transform>
</Transforms>

<DigestMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#sha1”></DigestMethod>
<DigestValue>U2BIJSk6OL0W0mGXXiGVn5XPV54=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

Ojjw8nkT3jJoNN/AxsdOwTqWnhfZewubBWp0Sa0vJTTjQBrnKR18brODc8byuwVf2v

iFdvMY4mT7Iumk/ZRLRNF1tEBCFRki2++W2LIXBIXVtmwo1riS98kmFZo6dBvhFOnX

wKE1ag6C8x/UgAMVU+YzYd11KqNXtpwvi9Ydoq4=

</SignatureValue>

<KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI=”#SecContext”></wsse:Reference>
</wsse:SecurityTokenReference>

</KeyInfo>

</Signature>

12 0672326418 CH09 6/4/04 9:43 AM Page 483

484 Chapter 9 Securing Web Services

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body wsu:Id=”wssecurity_body_id_2934309014555244973_1045057262232”>
<orderSupplies xmlns=
“http://www.wheelsandboards.com/services/orderSupplies”>

<item sku=”318-BP” quantity=”5”/>
<item sku=”947-TI” quantity=”12”/>
<item sku=”008-PR” quantity=”1000”/>

</orderSupplies>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A security context is represented as a SecurityContextToken element.An Identifier
element contains an ID for a shared secret, which is represented as a UUID or URI.
Because this message is sent from a client to a server after the establishment of the secu-
rity context, both parties can retrieve the secret from the ID. Note that the security con-
text is considered a security token.As a result, the context element can be referred to
from the Reference element within KeyInfo (boldface in the listing).

Although this example illustrates how to use a security context, we have to establish
the context in advance.WS-SecureConversation defines three ways to do this:

n A security token service creates a SecurityContextToken.
n One of the communicating parties (particularly the initiating party) creates a
SecurityContextToken.

n A SecurityContextToken is created through negotiation between the parties.

The first and second ways should be obvious.We’ll discuss the third approach in more
detail later in this section, using a sample negotiation protocol.

In Listing 9.16, the shared secret is used as a key for XML Signature. However, the
specification recommends using keys derived from the shared secret. Listing 9.17 shows a
sample for the derived key. DerivedKeyToken indicates how to derive a key from a par-
ticular shared secret. In this case, wsse:PSHA1 specified in the wsse:Algorithm attribute
indicates a P_SHA-1 function defined for the TLS specification.With this function, a
derived key is generated from a secret, a label, and a seed.The secret is shared already,
and the label and seed are included in the Properties element. Because the P_SHA-1
function takes two parameters, the secret, label, and seed are used as follows in the func-
tion:

P_SHA1 (secret, label + seed)

Although this function generates a new secret, you can generate other secrets, applying
the function to the generated secret repeatedly.You can specify how many times you
need to apply the function with the Generation element, as in the example.

Listing 9.16 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 484

485WS-SecureConversation

Listing 9.17 Using a Derived Key from SecurityContextToken

<SOAP-ENV:Envelope xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Header>

<wsse:Security xmlns:wsse=”http://schemas.xmlsoap.org/ws/2003/06/secext”
SOAP-ENV:mustUnderstand=”1”>

<wsse:SecurityContextToken wsu:Id=”SecContext”
<wsu:Identifier>uuid:...</wsu:Identifier>

</wsse:SecurityContextToken>

<Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<SignedInfo>

<CanonicalizationMethod Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></CanonicalizationMethod>
<SignatureMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#rsa-sha1”></SignatureMethod>
<Reference URI=

“#wssecurity_body_id_2934309014555244973_1045057262232”>
<Transforms>

<Transform Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></Transform>
</Transforms>

<DigestMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#sha1”></DigestMethod>
<DigestValue>U2BIJSk6OL0W0mGXXiGVn5XPV54=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

Ojjw8nkT3jJoNN/AxsdOwTqWnhfZewubBWp0Sa0vJTTjQBrnKR18brODc8byuwVf2v

iFdvMY4mT7Iumk/ZRLRNF1tEBCFRki2++W2LIXBIXVtmwo1riS98kmFZo6dBvhFOnX

wKE1ag6C8x/UgAMVU+YzYd11KqNXtpwvi9Ydoq4=

</SignatureValue>

<KeyInfo>

<wsse:DerivedKeyToken wsse:Algorithm=”wsse:PSHA1”>
<wsse:SecurityTokenReference>

<wsse:Reference URI=”#SecContext”></wsse:Reference>
</wsse:SecurityTokenReference>

<Properties>

<Label>NewLabel</Label>

<Nonce>FHFE...</Nonce>

</Properties>

<wsse:Generation>2</wsse:Generation>

</wsse:DerivedKeyToken>

</KeyInfo>

</Signature>

12 0672326418 CH09 6/4/04 9:43 AM Page 485

486 Chapter 9 Securing Web Services

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body wsu:Id=”wssecurity_body_id_2934309014555244973_1045057262232”>
<orderSupplies xmlns=
“http://www.wheelsandboards.com/services/orderSupplies”>

<item sku=”318-BP” quantity=”5”/>
<item sku=”947-TI” quantity=”12”/>
<item sku=”008-PR” quantity=”1000”/>

</orderSupplies>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In the WS-SecureConversation specification, the description of the establishment of the
security context is a little abstract. In particular, no concrete negotiation protocol is men-
tioned. In the following section, we’ll review the SSL protocol as an example of negotia-
tion, and then we’ll represent a protocol with WS-SecureConversation.

The SSL Protocol
SSL was proposed by Netscape Communications and has been used since the widespread
adoption of the World Wide Web, because it’s supported by Netscape Navigator and
Microsoft Internet Explorer.The latest version of SSL, 3.0, has been presented to the
Internet Engineering Task Force (IETF) g for standardization.

Note
Another closely related protocol called Transport Layer Security (TLS) g is currently on version 1.0, pub-

lished as RFC 2246. There are no major differences between SSL and TLS. TLS hasn’t yet become widely used,

so SSL 3.0 is still dominant.

Figure 9.16 illustrates how a security handshake g establishes a secure connection
between the client and server. Once the handshake completes, the server and client have
a common secret key with which data is encrypted and decrypted. In other words, SSL
uses the public key(s) to encrypt exchange messages for the sole purpose of generating
the shared secret key.

Despite the advantages of using public key encryption alone, SSL combines public
and shared key encryption. It does so because the public key encryption system takes
more time to encrypt and decrypt messages than the secret key encryption system.Thus,
the combination used by SSL takes advantage of both the easy maintenance of public
key encryption and the quicker operating speed of secret key encryption.

Let’s take a closer look at the SSL handshake protocol, again referring to Figure 9.16.
At phase I, the client starts the handshake and then sends a random number, a list of sup-
ported ciphers, and compression algorithms.At phase II, the server selects a cipher and a
compression algorithm and notifies the client.Then it sends another random number
and a server certificate (which includes a public key).At phase III, the client sends a

Listing 9.17 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 486

487WS-SecureConversation

premaster secret to the server, encrypting it with the server public key. Finally, the client
might send a client certificate. Now the handshake is completed.

SSL Client SSL Server

•Handshake Finished

•Server Random
•Decided Cipher Suite
•Decided Compression Algorithm
•Server Certificate
•Server Public Key

•Handshake Start
•Client Random
•Supported Cipher Suites
•Supported Compression Algorithms

•Client Certificate
•Client Public Key
•Encrypted Premaster Secret
•Handshake Finished

•Application Data

I

II

III

IV

Encrypted and Compressed

Figure 9.16 SSL security handshake protocol

The server and the client each generate a master secret by combining the random num-
ber the server sent, the random number the client sent, and the premaster secret. Several
secret keys are created from the master secret. For example, one is used for encrypting
transmitted data, and another is used for calculating the digest value of the date for
integrity.

SSL ensures authentication (by verifying the certificates), confidentiality (by
encrypting the data with a secret key), and integrity (by digesting the data). However,
nonrepudiation isn’t ensured with SSL because the MAC value of the transmitted data is
calculated with a common secret key.

Negotiation Protocol Example
The security handshake protocol as in SSL can be represented with WS-Trust and WS-
SecureConversation.WS-Trust defines a framework for challenge-response protocols, and

12 0672326418 CH09 6/4/04 9:43 AM Page 487

488 Chapter 9 Securing Web Services

WS-SecureConversation defines a format for the security context token and a key
derivation from a shared secret.

The idea discussed here seems similar to one in SSL. However, you don’t stick to
point-to-point security as in SSL.This protocol can be applied to a situation where you
have a SOAP intermediary node.You can use the protocol even if two participants
belong to different security domains.Thus handshake protocols in Web services security
offer great advantages, especially when services and requestors are deployed on different
security infrastructures and domains.

Figure 9.17 gives an overview of the protocol discussed here.The challenge-response
protocol is defined with an initial RequestSecurityToken message and subsequent
RequestSecurityTokenResponse messages. Note that a response message is also sent
from an initial sender (Alice) to the service provider (Bob) at step 3.The protocol is per-
formed as follows:

1. Alice sends a RequestSecurityToken to Bob to initiate the negotiation.

2. Bob prepares three numbers, p, g, and r1, and returns them to Alice.
Simultaneously, he generates a secret Rb that is never exposed.

3. Alice prepares a random number r2 and a secret Ra, and calculates X. Then she
sends X, r1, and r2 to Bob, signing them with her PKI private key. Note that
[X]Alice indicates that X is signed with Alice’s key.

4. Bob calculates Y, and sends Y, r1, and r2, signing them with his PKI private key.At
the same time, a security context token containing an ID for a shared secret is
sent.

The shared secrets are calculated with K=XY mod p and K=YX mod p respectively, and the
calculated numbers are the same.Therefore, with the shared secret key K,Alice and Bob
can interact with each other securely. (Note that the protocol here is prepared only for
this demonstration; it isn’t meant for use in a real application.)

2. RequestSecurityTokenResponse

p, g, r1

4. RequestSecurityTokenResponse

SecurityContextToken, [X, r1, r2] Bob

Conversation with Session Key K

1. RequestSecurityToken

3. RequestSecurityTokenResponse

[Y, r1, r2]Alice

Alice Bob

Prepare r2, Rb
 X=gRa mod p

Y=gRb mod p

K=YX mod p K=XY mod p

Prepare r1, p, g and Rb

Figure 9.17 Security handshake protocol

12 0672326418 CH09 6/4/04 9:43 AM Page 488

489WS-SecureConversation

Let’s review the four messages in this scenario. Listing 9.18 shows the first message.This
is a request represented in WS-Trust, and SecurityContextToken is specified in the
TokenType element.

Listing 9.18 Message 1

<S:Envelope xmlns:S=”http://schemas.xmlsoap.org/soap/envelope/”>
<S:Body xmlns:wsu=”http://schemas.xmlsoap.org/ws/2003/06/utility”>

<wst:RequestSecurityToken xmlns:wst=

“http://schemas.xmlsoap.org/ws/2002/12/secext”>
<wst:TokenType>wsse:SecurityContextToken</wst:TokenType>

<wst:RequestType>wsse:ReqIssue</wst:RequestType>

</wst:RequestSecurityToken>

</S:Body>

</soapenv:Envelope>

The second message, shown in Listing 9.19, is a first response from Bob. Because this
response is considered a challenge from Bob, the SignChallenge element is included.We
define an element ExValue that can contain exchanged values between Alice and Bob. In
this case, p, g, and r1 are included in val:P, val:G, and val:R1, respectively.

Listing 9.19 Message 2

<S:Envelope xmlns:S=”http://schemas.xmlsoap.org/soap/envelope/”>
<S:Body>

<wst:RequestSecurityTokenResponse xmlns:wst=

“http://schemas.xmlsoap.org/ws/2002/12/secext”>
<wst:SignChallenge>

<wst:Challenge>

<val:ExValue xmlns:val=”http://dumml.org/exvalue”>
<val:P>PoBmL7mRw/GI...3JSQygyzhDpRlY=</val:P>

<val:G>dNCglMprbcYT...GjxOCrLNczvAm=</val:G>

<val:R1>abcFCD...klkDDlfSGREdsfaDkF=</val:R1>

</val:ExValue>

</wst:Challenge>

</wst:SignChallenge>

</wst:RequestSecurityTokenResponse>

</S:Body>

</S:Envelope>

Next,Alice returns X, r1, and r2, signing them with her PKI private key (see Listing
9.20).These values are included within the ExValue element.The Signature element is
also added in the header to sign on the previous value.The signature targets the SOAP
body element indicated by Id=”BODY”.

12 0672326418 CH09 6/4/04 9:43 AM Page 489

490 Chapter 9 Securing Web Services

Listing 9.20 Message 3

<S:Envelope xmlns:S=http://schemas.xmlsoap.org/soap/envelope/

xmlns:wsu=”http://schemas.xmlsoap.org/ws/2003/06/utility”>
<S:Header>

<wsse:Security xmlns:wsse=”http://schemas.xmlsoap.org/ws/2003/06/secext”
soapenv:mustUnderstand=”1”>

<wsse:BinarySecurityToken

wsu:Id=

“wssecurity_binary_security_token_id_2148556043341261473_1054010042109”>
A1UEBxMKWWFtYXRvLXNoaTEMMAoGA1UEChMDSUJi9NI0I=.....

</wsse:BinarySecurityToken>

<ds:Signature xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”>
<Sig:SignedInfo xmlns:Sig=”http://www.w3.org/2000/09/xmldsig#”>

<Sig:CanonicalizationMethod Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”>
</Sig:CanonicalizationMethod>

<Sig:SignatureMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#rsa-sha1”></Sig:SignatureMethod>
<Sig:Reference URI=”#BODY”>

<Sig:Transforms>

<Sig:Transform Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></Sig:Transform>
</Sig:Transforms>

<Sig:DigestMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#sha1”></Sig:DigestMethod>
<Sig:DigestValue>FZEkQjaigph/bqYNlGJYpMQ6/ds=</Sig:DigestValue>

</Sig:Reference>

</Sig:SignedInfo>

<ds:SignatureValue>BvwwClOX5FdF/E7tE5iSBo9htu12521ktEMkBw=.........

</ds:SignatureValue>

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI=”#wssecurity_binary_security_token_id_21485
➥56043341261473_1054010042109”></wsse:Reference>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

</wsse:Security>

</S:Header>

<S:Body wsu:Id=”BODY”>
<wst:RequestSecurityTokenResponse xmlns:wst=

“http://schemas.xmlsoap.org/ws/2002/12/secext”>
<wst:SignChallengeResponse>

<val:ExValue xmlns:val=”http://dumml.org/exvalue”>
<val:X>alksfdcYT...dzv112rism=</val:X>

<val:R1>abcFCD...klkDDlfSGREdsfaDkF=</val:R1>

12 0672326418 CH09 6/4/04 9:43 AM Page 490

491WS-SecureConversation

<val:R2>dNCglMprbcYT...GjxOCrLNczvAm=</val:R2>

</val:ExValue>

</wst:SignChallengeResponse>

</wst:RequestSecurityTokenResponse>

</S:Body>

</soapenv:Envelope>

Finally, Bob sends Y, r1, and r2 to Alice, signing them (see Listing 9.21).The message also
includes SecurityContextToken, which contains the ID of the shared secret (K=XY mod
p and K=YX mod p). From now on, the secret is shared and can be retrieved through
the ID.

Listing 9.21 Message 4

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:wsu=”http://schemas.xmlsoap.org/ws/2003/06/utility”>

<soapenv:Header>

<wsse:Security xmlns:wsse=”http://schemas.xmlsoap.org/ws/2003/06/secext”
soapenv:mustUnderstand=”1”>

<wsse:BinarySecurityToken>

1tYUdGOvZUtV93k9oarQ/wDy6ac0gc0z+ixDGx1VRbhN........

</wsse:BinarySecurityToken>

<ds:Signature xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”>
<Sig:SignedInfo xmlns:Sig=”http://www.w3.org/2000/09/xmldsig#”>

<Sig:CanonicalizationMethod Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”>
</Sig:CanonicalizationMethod>

<Sig:SignatureMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#rsa-sha1”></Sig:SignatureMethod>
<Sig:Reference URI=”#BODY”>

<Sig:Transforms>

<Sig:Transform Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></Sig:Transform>
</Sig:Transforms>

<Sig:DigestMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#sha1”></Sig:DigestMethod>
<Sig:DigestValue>FZEkQjaigph/bqYNlGJYpMQ6/ds=</Sig:DigestValue>

</Sig:Reference>

</Sig:SignedInfo>

<ds:SignatureValue>7tE5iSBo9htu12521ktEMkBw=.........

</ds:SignatureValue>

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI=”#wssecurity_binary_security_token_id_21485
➥56043341261473_1054010042109”></wsse:Reference>

Listing 9.20 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 491

492 Chapter 9 Securing Web Services

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

</wsse:Security>

</soapenv:Header>

<S:Body xmlns:S=”http://schemas.xmlsoap.org/soap/envelope/” wsu:Id=”BODY”>
<wst:RequestSecurityTokenResponse xmlns:wst=

“http://schemas.xmlsoap.org/ws/2002/12/secext”>
<wst:RequestedSecurityToken>

<wsse:SecurityContextToken xmlns:wsse=

“http://schemas.xmlsoap.org/ws/2003/06/secext”>
<wsu:Identifier>uuid...</wsu:Identifier>

</wsse:SecurityContextToken>

<val:ExValue xmlns:val=”http://dumml.org/exvalue”>
<val:Y>alksfdcYT...dzv112rism=</val:Y>

<val:R1>abcFCD...klkDDlfSGREdsfaDkF=</val:R1>

<val:R2>dNCglMprbcYT...GjxOCrLNczvAm=</val:R2>

</val:ExValue> </wst:RequestedSecurityToken>

</wst:RequestedSecurityToken>

</wst:RequestSecurityTokenResponse>

</S:Body>

</soapenv:Envelope>

The protocol shown here is based on the Diffie-Hellman protocol.Although we defined
a proprietary element ExValue for our explanation, you can use the DHKeyValue ele-
ment defined in the XML Encryption specification in a real case.

If you look at WS-Trust and WS-SecureConversation, concrete negotiation protocols
aren’t included. Our example should give you a better idea of how negotiation protocols
can be represented.We expect that profiles will emerge that define concrete protocols
like the one we’ve presented here.

WS-Federation
One of the important challenges in Web services security is to federate different security
domains—that is, a party in a security domain accesses another party in another domain.
This process is very useful to provide users with SSO over multiple security domains.
Extending the STS concept,WS-Federation defines how STS brokers security tokens
such as identities, authentication, and security attributes.

Let’s change our scenario a little as in Figure 9.18, where Buyer and SkatesTown
belong to different security domains. In this scenario, Buyer has an ID managed by STS-
A; Buyer gets a temporary ID from STS-B and accesses SkatesTown showing the tempo-
rary ID.

Listing 9.21 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 492

493WS-Federation

Figure 9.18 Getting a temporary ticket with federation

In message 2, a WS-Trust RequestSecurityToken is sent. Listing 9.22 shows a sample of
the request.A Kerberos5 services ticket is required, containing an X.509 certificate issued
by STS-A.The way STS-B validates the received certificate is defined by a policy or an
out-of-band mechanism (Trust Relationship in the figure).After the validation, STS-B
returns a temporary Kerberos ticket.Then Buyer can access SkatesTown services, includ-
ing the ticket in its request messages.The request messages are no different from ones
that contain Kerberos tickets issued from the same STS.

Listing 9.22 Requesting a Kerberos Ticket to Another STS

<S:Envelope xmlns:S=”...” xmlns=”.../secext” xmlns:wsu=”.../utility>
<S:Header>

<wsse:Security xmlns:wsse=”http://schemas.xmlsoap.org/ws/2003/06/secext”
SOAP-ENV:mustUnderstand=”1”>

<wsse:BinarySecurityToken xmlns:wsu=

“http://schemas.xmlsoap.org/ws/2003/06//utility”
EncodingType=”wsse:Base64Binary” ValueType=”wsse:X509v3”
wsu:Id=”myToken”>
MIIDQTCCAqqgAwIBAgICAQQwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCSlAxETAP

BgNVBAgTCEthbmFnYXdhMQwwCgYDVQQKEwNJQk0xDDAKBgNVBAsTA1RSTDEQMA4GA1UE

........

</wsse:BinarySecurityToken>

<Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<SignedInfo>

<CanonicalizationMethod Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></CanonicalizationMethod>
<SignatureMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#rsa-sha1”></SignatureMethod>

Buyer Skates
TownSOAP Message

Security
Token

Service-A

Security
Token

Service-B

1 2 3

Trust Relationship

12 0672326418 CH09 6/4/04 9:43 AM Page 493

494 Chapter 9 Securing Web Services

<Reference URI=”#body_id”>
<Transforms>

<Transform Algorithm=

“http://www.w3.org/2001/10/xml-exc-c14n#”></Transform>
</Transforms>

<DigestMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#sha1”></DigestMethod>
<DigestValue>U2BIJSk6OL0W0mGXXiGVn5XPV54=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

Ojjw8nkT3jJoNN/AxsdOwTqWnhfZewubBWp0Sa0vJTTjQBrnKR18brODc8byuwVf2v

iFdvMY4mT7Iumk/ZRLRNF1tEBCFRki2++W2LIXBIXVtmwo1riS98kmFZo6dBvhFOnX

wKE1ag6C8x/UgAMVU+YzYd11KqNXtpwvi9Ydoq4=

</SignatureValue>

<KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI=”#myToken”></wsse:Reference>
</wsse:SecurityTokenReference>

</KeyInfo>

</Signature>

</Security>

</S:Header>

<S:Body wsu:Id=”req”>
<RequestSecurityToken>

<TokenType>wsse:Kerberos5ST</TokenType>

<RequestType>wsse:ReqIssue</RequestType>

<Base>

<Reference URI=”#myToken”/>
</Base>

<wsp:AppliesTo

xmlns:wsp=’http://schemas.xmlsoap.org/ws/2002/12/policy’ >

<wsa:EndpointReference>

<wsa:Address>http://skatestown.com/service</wsa:Address>

</wsa:EndpointReference>

</wsp:AppliesTo>

</RequestSecurityToken>

</S:Body>

</S:Envelope>

In addition to the federated identity model,WS-Federation defines policy assertions,
extensions of WSDL, and a UDDI profile. Let’s review the policy assertions. In our
example, Buyer has to know that STS-B can issue a temporary ID. Listing 9.23 shows a
policy assertion for our example. RelatedServices specifies services that should be

Listing 9.22 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 494

495Enterprise Security

related to a policy subject. Because the policy is attached to a SkatesTown service, Buyer
can send the RequestSecurityToken message in Listing 9.22 to an STS-B port specified
in the Address element.

Listing 9.23 Policy Assertion Sample for Federation

<wsp:Policy>

<wsse:RelatedService wsse:ServiceType=”wsse:ServiceSTS”>
<wsa:EndpointReference>

<wsa:Address>http://www.sts_b.com/tempIdentity</wsa:Address>
</wsa:EndpointReference>

</wsse:RelatedService>
</wsp:Policy>

Although the related service concept is generic,WS-Federation defines four service
types: ServiceIP (identify provider), ServiceSTS (STS), ServiceAS (attribute service), and
ServicePS (pseudonym service). In our example, Buyer requires a BinarySecurityToken
that contains a Kerberos ticket; the ServiceSTS for it is specified in Listing 9.23.

Enterprise Security
SkatesTown’s CTO, Dean Caroll, now has a good understanding of the Web services
security model and has some ideas for each specification.WS-Security provides a mes-
sage format to include signature, encryption and security tokens.With WS-Trust,WS-
SecureConversation, and WS-Federation, you can obtain security tokens from Security
Token Services (STS) in various ways.

However, it’s still difficult for Dean to envision how to combine the specifications in
real situations. He especially wants to see how he can extend the SkatesTown computing
environment with Web services security.Addressing Dean’s requirements,Al Rosen of
Silver Bullet Consulting discusses the overall security architecture of SkatesTown’s
system.

In this section, we’ll review the J2EE security model, addressing its authentication and
authorization mechanisms.Then, we’ll discuss how the Web services security model can
be incorporated with J2EE, showing a hypothetical overall architecture.

J2EE Security
Figure 9.19 depicts the J2EE security architecture, which is based on role-based access
control (RBAC).The HTTP server or Web container authenticates a requestor, referring
to a user registry (an operating system [OS] user registry or a Lightweight Directory
Access Protocol [LDAP] server).Within the Web container, access to Web resources is
authorized based on a URL permission list.Within the EJB container, access to EJB
objects is authorized based on a method permission list. Permission lists are mappings
between roles and target objects:Web resources and EJB objects.

12 0672326418 CH09 6/4/04 9:43 AM Page 495

496 Chapter 9 Securing Web Services

Figure 9.19 J2EE security architecture

RBAC is flexible because role assignment rules and permission lists can be independent-
ly defined.There is a trick here:A credential containing a user ID travels along the
method invocation path, which can span multiple containers, and roles are assigned to
the requestor at each container for authorization.This concept is especially useful when
the system configuration is extremely complex.

J2EE requires compliant platforms to support the following three authentication
methods:

n HTTP Basic Authentication
n SSL Client Authentication
n Form-Based Authentication

In our discussion, we’ll focus on HTTP Basic Authentication (BASIC-AUTH).

Authorization in J2EE
Using BASIC-AUTH, let’s review how user IDs and roles are defined in J2EE. Listing
9.24 is an excerpt from application.xml, which is a deployment descriptor for the
overall J2EE application.

Listing 9.24 J2EE Deployment Descriptor

<application>

...

<security-role>

<role-name>GoodCustomer</role-name>

Servlet

HTTP
 Message

Web Container

URL Permissions

Authenticate

EJB Container

Method Permissions

Credential EJB

EJB

H
T

T
P

 S
erver

Authorize

User Registry User/Role Mapping

12 0672326418 CH09 6/4/04 9:43 AM Page 496

497Enterprise Security

</security-role>

</application>

The GoodCustomer role is used in the J2EE application. J2EE doesn’t prescribe any par-
ticular means for user definition and user-role mapping. Listing 9.25 is a platform-
dependent format extracted from Sun’s J2EE Reference Implementation.

Listing 9.25 A Sample of User-Role Mapping

<j2ee-ri-specific-information>

<server-name></server-name>

<rolemapping>

<role name=”GoodCustomer”>
<principals>

<principal>

<name>ABCRetailer</name>

</principal>

</principals>

</role>

</rolemapping>

......

</j2ee-ri-specific-information>

With this format, you can enumerate user IDs within the role element.A principal
indicates a user or a user group. In this example, user ABCRetailer can have a role
GoodCustomer.

Let’s look at a method permission definition for EJB objects. Listing 9.26 is an
excerpt from ejb.xml, which is a deployment descriptor for EJBs.

Listing 9.26 A Sample of Method Permission

<ejb-jar>

<display-name>OrderEjb</display-name>

<enterprise-beans>

</enterprise-beans>

<assembly-descriptor>

<security-role>

<role-name>GoodCustomer</role-name>

</security-role>

<method-permission>

<role-name>GoodCustomer</role-name>

<method>

<ejb-name>POProcess</ejb-name>

<method-intf>Remote</method-intf>

<method-name>order</method-name>

Listing 9.24 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 497

498 Chapter 9 Securing Web Services

<method-params>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>

<method-param>int</method-param>

</method-params>

</method>

</method-permission>

</assembly-descriptor>

</ejb-jar>

The security-role element includes a collection of roles that are referenced some-
where in this file. method-permission indicates who can access the target method with
role. role-name specifies the role name for this method permission—in this case,
GoodCustomer.

J2EE and Web Services Security
How can you extend J2EE servers in order to support Web services security specifica-
tions? Figure 9.20 illustrates a possible extension of the J2EE architecture. Incoming
SOAP messages with WS-Security are processed, potentially invoking the user registry
and key/certificate registry.The registries access resources on the intranet, such as an
LDAP server, and optionally invoke resources on the Internet, such as STSs and a CA.
Within the extended J2EE, the security policy must be checked against incoming WS-
Security messages.A security context may be established when WS-SecureConversation
is used.We’ll discuss in detail how each specification is processed in this architecture.

Let’s look at WS-Security first.When a SOAP message uses WS-Security, you have to
process digital signatures, encryption, and security tokens.When the signature is verified,
a certificate (or key) should be required; therefore the key/certificate registry is invoked.
In the simplest case, certificates are stored in files (such as keystore files). Certificates can
also be managed by LDAP servers typically located on the intranet or external servers
such STSs and CAs. For decryption, you need a private (or shared) key; therefore the key
should be stored in an internal resource such as a file or an LDAP server.

The specification doesn’t define a processing rule for a security token in WS-Security;
only its format is defined. Security tokens are typically used for proof of identity. For
example, when UsernameToken is used with a password, you may want to authenticate
the ID/password.The authentication is equivalent to that in BASIC-AUTH.Therefore,
you can reuse the module for BASIC-AUTH for this purpose. If UsernameToken con-
tains only an identity represented in the Distinguished Name (DN), the LDAP server is
accessed. Note that this solution is applicable only when you can trust the requestor
node—that is, the requestor node is a gateway server of the business.An X.509 certifi-
cate can also be used as a proof of identity. In that case, proof of position g should be
ensured by means of a digital signature with the certificate.

Listing 9.26 Continued

12 0672326418 CH09 6/4/04 9:43 AM Page 498

499Enterprise Security

Figure 9.20 Possible integration of Web services security with J2EE

Once the requestor ID is authenticated, a credential is generated to travel along the
downstream method invocation.This indicates that authorization in the downstream is
exactly the same as for HTTP BASIC-AUTH. In this way, authentication with security
tokens can be integrated with J2EE servers without affecting J2EE’s core implementa-
tion.

The security policy described with WS-SecurityPolicy must be verified during WS-
Security processing.You may have a policy that requires a signature on the message body.
The signature verification only verifies whether the signature is valid; it doesn’t check to
see if the required part is signed.The policy-checking module in the figure needs to
check such required parts, processing XPath or using the message part selection function
in WS-PolicyAssertion.

In some cases, security handshaking is required to establish a security context. In that
case,WS-SecureConversation performs the negotiation. Once a security context is estab-
lished, a security context token is created, and its shared secret is cached for future use.
When a SOAP message with the security context token is received,WS-Security

WS-Security

WS-SecurityConversation

WS-Federation

SOAP Engine
on

Web Container

Authenticate

EJB Container

Method Permissions

Credential

EJB

Authorize

Policy

Policy Checking

User Registry

File

Security Context
Establishment

Key/Certificate
Registry

Security Token

Decryption

Signature Verification

WS-Security Processing

WS-SecurityPolicy

WS-Trust

XKMS

SOAP Message

Handshaking

OS User Registry

LDAP Server

Security Token Service Security Token Service

Certificate
Authority

Intranet

Internet

12 0672326418 CH09 6/4/04 9:43 AM Page 499

500 Chapter 9 Securing Web Services

processing is invoked.To process the security context token, Key/Certificate registry is
invoked, and then the cached shared secret is retrieved.

There are several implementations for the key/certificate registry.When you need to
retrieve an external key or certificate, you may want to use WS-Trust and XKMS.
XKMS is specialized for PKI; therefore the specification is concrete. CAs such as
VeriSign provide key management services with XKMS.

WS-Trust is more generic in the sense that it can be used beyond PKI. On the other
hand, its specification is abstract; therefore you need further specifications (profiles). Once
a collection of profiles is provided,WS-Trust becomes very useful, because you can get
various security tokens with a single API.

WS-Federation defines how to integrate multiple STSs.As we reviewed in the section
on WS-Federation, a temporary identity can be issued to access Web services in another
security domain, for example.Thus you can achieve the ultimate goal: secure communi-
cation over multiple security domains.

Here we have envisioned how a J2EE server would be extended to support Web serv-
ices security specifications.This kind of architecture discussion should help you under-
stand Web services security more precisely, because you can imagine concrete behaviors
within the J2EE architecture. Furthermore, integrating all of the specifications into a sin-
gle architecture gives you an opportunity to consider the relationships among the speci-
fications.

Security Services
XKMS suggests that key management can be outsourced to an independent third party;
it could even be a Web service. In the future, a more comprehensive collection of securi-
ty services may emerge. Examples include a key management service, an identity service,
a signature service, an encryption service, a timer service, a rating service, and so on.
Here we’ll discuss a notary service as an example.

With BASIC-AUTH/SSL and/or WS-Security, you can generally fulfill the four basic
security requirements: confidentiality, authentication, integrity, and nonrepudiation.
However, there is a further requirement: nonrepudiation of message receipt.At the client side,
for example, if SkatesTown receives a purchase order document from Skateboard
Warehouse, it should return an invoice document.Then, it begins processing the order—
that is, shipping products in the order. However, Skateboard Warehouse might not
receive the invoice because of network trouble, or it might claim that the invoice wasn’t
delivered. Or, if the invoice delivery takes more than 10 days, Skateboard Warehouse can,
by policy, consider the order unplaced or misplaced.

We want to ensure that the message has been received at the destination, and to
determine when it was received. In the context of SOAP, it might be a good idea to
include a notary service as a SOAP intermediary between the trading parties, as shown
in Figure 9.21.The notary service provider is trusted by both SkatesTown and its cus-
tomers.When there is a disagreement over message delivery between two parties, the
notary service can arbitrate the problem on the basis of its log database.

12 0672326418 CH09 6/4/04 9:43 AM Page 500

501Security Services

Figure 9.21 Notary service as a SOAP intermediary

From a business perspective, this structure is beneficial for all three parties.Trading parties
can perform business transactions safely by contracting with the notary service.The
notary service can earn money according to the transaction volume.The only problem is
whether the notary service is a real trusted party.A number of notary services have
emerged already, such as VeriSign. Most of them aim solely at trusted storage of data such
as medical records. However, once they’re trusted widely, they could play the role of a
notary in a business structure like the one in our example.

The notary service is just one example of security services. Recently, componentiza-
tion of business processes has become a trend because businesses must improve their effi-
ciency and sharpen their competency. Considering this trend, it’s possible that security
services will be outsourced.After STS and XKMS become popular, we will probably see
more interesting security services like our example notary service.

Three Steps to Ensure Security
You can follow a concrete process to protect your computing environment. This process consists of the fol-

lowing three steps:

1. Evaluate risk Identify resources that you need to protect, and evaluate the value of each resource.

Then, predict how much money you would lose if the resource was attacked.

2. Decide on a policy Decide on an appropriate policy, referring to the risk evaluation as your context. If

the amount of money that could potentially be lost is low and protection from the risk requires a huge

budget, you may choose to accept the risk.

3. Choose a protection method Once you decide to protect a resource, you need to specify a protection

method. The protection is a process that may include system administrators, system developers, and

application users. Technologies should be integrated in the process.

POClient

InternetPurchase Order

Invoice

Notary Service

Internet

POService

Logging

Message, Sender,
Receiver, Delivery

Time are
recorded.

12 0672326418 CH09 6/4/04 9:43 AM Page 501

502 Chapter 9 Securing Web Services

As you can see, technologies like Web services security are just a piece of the complete protection method.

Before introducing technologies, you must consider the balance between your investment and your predict-

ed results.

Summary
In this chapter, we’ve reviewed the Web services security model and looked more closely
at its specifications.We’ve also discussed how Web services security specifications can be
implemented, extending the J2EE architecture.As a future trend, we have reviewed a
notary service as an example of security services.

Web services security addresses the federation of different security domains, which
will be required for application integration both in intranets and on the Internet. In
order to satisfy this requirement, an abstract security model is defined; as a result, we can
use and integrate existing security infrastructures through the abstract model.

Let’s briefly review the specifications.WS-Security is the basis in that it defines how
to include security tokens, signatures, and encryption.WS-Trust defines a means to
access Security Token Services (STSs), and thus defines how to obtain security tokens.
WS-SecureConversation and WS-Federation define other ways to obtain security tokens.
The former addresses the security context and key derivation from the security context.
The latter defines federation, assuming that there are multiple STSs. In contrast to the
other specifications,WS-SecurityPolicy defines security requirements that are necessary
to access particular Web services.

Resources
n AES—NIST FIPS 197,“Advanced Encryption Standard (AES)” (NIST, November

2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

n ASN.1—ITU-T Recommendation X.680,“Information Technology—Abstract
Syntax Notation One (ASN.1): Specification of Basic Notation” (ITU-T, July
2002), http://www.itu.int/rec/recommendation.asp?type=
folders&lang=e&parent=T-REC-X.680

n Base64—RFC 2045,“Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies” (IETF, November 1996),
http://www.ietf.org/rfc/rfc2045.txt

n BASIC-AUTH—RFC 2617,“HTTP Authentication: Basic and Digest Access
Authentication” (IETF, June 1999), http://www.ietf.org/rfc/rfc2617.txt

n C14N—“Canonical XML Version 1.0” (W3C, March 2001),
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

12 0672326418 CH09 6/4/04 9:43 AM Page 502

503Resources

n DES/3DES—NIST FIPS 46-3,“Data Encryption Standard (DES)” (NIST,
October 1999), http://csrc.nist.gov/publications/fips/fips46-3/
fips46-3.pdf

n Diffie-Hellman—RFC 2631,“Diffie-Hellman Key Agreement Method” (IETF,
1999), http://www.ietf.org/rfc/rfc2631.txt

n EXC-C14N—“Exclusive XML Canonicalization,Version 1.0” (W3C, July 2002),
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

n HMAC—RFC 2104,“HMAC: Keyed-Hashing for Message Authentication”
(IETF, Feb 1997), http://www.ietf.org/rfc/rfc2104.txt

n J2EE—“Java 2 Platform, Enterprise Edition (J2EE)” (Sun Microsystems,
November 2003), http://java.sun.com/j2ee/

n JAAS—“Java Authentication and Authorization Service (JAAS)” (Sun
Microsystems), http://java.sun.com/products/jaas/

n JCE—“Java Cryptography Extension (JCE)” (Sun Microsystems),
http://java.sun.com/products/jce/

n JSSE—“Java Secure Socket Extension (JSSE)” (Sun Microsystems),
http://java.sun.com/products/jsse/

n Kerberos—RFC 1510,“The Kerberos Network Authentication Service (V5)”
(IETF, September 1993), http://www.ietf.org/rfc/rfc1510.txt

n LDAP—RFC 3377,“Lightweight Directory Access Protocol (v3):Technical
Specification” (IETF, September 2002), ftp://ftp.rfc-editor.org/in-
notes/rfc3377.txt

n OASIS (Organization for the Advancement of Structured Information
Standards)—http://www.oasis-open.org/

n PGP—RFC 1991,“PGP Message Exchange Formats” (IETF,August 1996),
http://www.ietf.org/rfc/rfc1991.txt

n PKCS—“Public-Key Cryptography Standards” (RSA Laboratories),
http://www.rsasecurity.com/rsalabs/pkcs/index.html

n PKI/X.509—RFC 2510,“Internet X.509 Public Key Infrastructure Certificate
Management Protocols” (IETF, March 1999),
http://www.ietf.org/rfc/rfc2510.txt

n RFC 2437—“PKCS #1: RSA Cryptography Specifications Version 2.0” (IETF,
October 1998), http://www.ietf.org/rfc/rfc2437.txt

n Roadmap document—“Security in a Web Services World:A Proposed Architecture
and Roadmap” (IBM and Microsoft,April 2002), http://www-106.ibm.com/
developerworks/webservices/library/ws-secmap/

12 0672326418 CH09 6/4/04 9:43 AM Page 503

504 Chapter 9 Securing Web Services

n SAML—“Assertions and Protocol for the OASIS Security Assertion Markup
Language (SAML) V1.1” (OASIS, September 2003), http://www.
oasis-open.org/committees/download.php/3406/oasis-sstc-saml-

core-1.1.pdf

n SHA-1—FIPS 180-1,“Secure Hash Standard” (U.S. Dept. of Commerce/National
Institute of Standards and Technology,April 1995), http://csrc.nist.gov/
publications/fips/fips180-1/fip180-1.txt

n SSL—“The SSL Protocol Version 3.0” (Netscape Communications, November
1996), http://home.netscape.com/eng/ssl3/draft302.txt

n TLS—RFC 2246,“The TLS Protocol Version 1.0” (IETF, January 1999),
http://www.ietf.org/rfc/rfc2246.txt

n VeriSign Inc.—http://www.verisign.com/

n WS-Federation—“Web Services Federation Language (WS-Federation)” (IBM and
Microsoft, July 2003), http://www-106.ibm.com/developerworks/library/
ws-fed/

n WS-SecureConversation—“Web Services Secure Conversation (WS-
SecureConversation)” (IBM and Microsoft, December 2002), http://
www-106.ibm.com/developerworks/library/ws-secon/

n WS-Security—“Web Services Security: SOAP Message Security “ (OASIS,August
2003), http://www.oasis-open.org/committees/download.php/3281/
WSS-SOAPMessageSecurity-17-082703-merged.pdf

n WS-Security Kerberos Binding—“Web Services Security Kerberos Binding” (IBM
and Microsoft, December 2003),
http://msdn.microsoft.com/webservices/understanding/specs/default.

aspx?pull=/library/en-us/dnglobspec/html/ws-security-kerberos.asp

n WS-Security SAML Profile—“Web Services Security: SAML Token Profile”
(OASIS, December 2003), http://www.oasis-open.org/committees/
download.php/4534/WSS-SAML-08.pdf

n WS-Security UsernameToken Profile—“Web Services Security: UsernameToken
Profile” (OASIS,August 2003), http://www.oasis-open.org/committees/
download.php/3154/WSS-Username-04-081103-merged.pdf

n WS-Security X.509 Profile—“Web Services Security: X.509 Certificate Token
Profile” (OASIS,August 2003), http://www.oasis-open.org/committees/
download.php/3214/WSS-X509%20draft%2010.pdf

n WS-SecurityPolicy—“Web Services Security Policy (WS-SecurityPolicy)” (IBM
and Microsoft, December 2002), http://
www-106.ibm.com/developerworks/webservices/library/ws-secpol/

n WS-Trust—“Web Services Trust Language (WS-Trust)” (IBM and Microsoft,
December 2002), http://
www-106.ibm.com/developerworks/webservices/library/ws-trust/

12 0672326418 CH09 6/4/04 9:43 AM Page 504

505Resources

n X.500 Distinguished Name—ITU-T Recommendation X.500,“Information
Technology—Open Systems Interconnection—The Directory: Overview of
Concepts, Models and Services” (ITU-T, February 2001),
http://www.itu.int/rec/recommendation.

asp?type=folders&lang=e&parent=T-REC-X.500

n XKMS—“XML Key Management Specification (XKMS)” (W3C, March 2001),
http://www.w3.org/TR/2001/NOTE-xkms-20010330/

n XKMS2—“XML Key Management Specification (XKMS) Version 2.0” (W3C,
April 2003), http://www.w3.org/TR/2003/WD-xkms2-20030418/

n XML Encryption—“XML Encryption Syntax and Processing” (W3C, December
2002), http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

n XML Signature—“XML-Signature Syntax and Processing” (W3C, February 2002),
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

12 0672326418 CH09 6/4/04 9:43 AM Page 505

