=3

An Introduction to Internationalization

I N THIS CHAPTER, YOU WILL LEARN THE fundamental implementation of inter-

nationalization. The examples are based on a Windows Forms application using
Visual Studio 2005 and the .NET Framework 2.0, but very little in this chapter is spe-
cific to Windows Forms or to the version of Visual Studio or the .NET Framework.
The information in this chapter is equally relevant to ASPNET applications and to
Visual Studio 2003 and the .NET Framework 1.1. For information on Windows
Forms, see Chapter 4, “Windows Forms Specifics;” for information on ASP.NET, see
Chapter 5, “ASP.NET Specifics.”

Internationalization Terminology

Throughout this book, I use various internationalization terms to describe different
parts of the internationalization process. In this section, I identify these terms and
describe their meaning. Figure 3.1 shows the hierarchy of internationalization ter-
minology as adopted by Microsoft. It shows the term internationalization as an
umbrella for the various stages in the process: world-readiness, localization, and cus-
tomization. Let’s take a look at each term in turn.

29

30 .NET INTERNATIONALIZATION

e

Internationalization
N——
World-Readiness Localization [Customization]
[Globalization] Localizability Customizability

Figure 3.1 Microsoft’s Internationalization Terminology

The terms internationalization, globalization, and localization are
often abbreviated to “I18N,” “GIIN,” and “L10N,” respectively.
The abbreviations take the first and last letters and the number
of letters between them, so internationalization starts with an “I,”
has 18 more letters, and then ends in an “N.” The naming con-
vention originates from DEC, when they used to abbreviate long
e-mail names using this convention. The naming convention
spread beyond e-mail names and on to internationalization.
Although you could apply the same convention to customization
to get C11N, no one would recognize the abbreviation because it
is not in common use.

World-Readiness

World-readiness is an umbrella term for all the functionality that developers must
provide to complete their part of the internationalization process. This includes glob-
alization, localizability, and customizability.

Globalization

Globalization is the process of engineering an application so that it does not have cul-
tural preconceptions. For example, an application that converts a DateTime to a

AN INTRODUCTION TO INTERNATIONALIZATION |

string using this code has a cultural preconception that the date format should be
MM/dd/yyyy:

DateTime dateTime = new DateTime (2002, 2, 13);
string dateTimeString = dateTime.ToString ("MM/dd/yyyy");

These preconceptions must be eliminated from the code. Many of these precon-
ceptions are obvious, such as the date/time format, but many are not so obvious.
Globalization issues include date/time formats, number formats, currency formats,
string comparisons, string sort orders, calendars, and even environmental condi-
tions. Do you assume, for example, that the Program Files folder is always “
\Program Files”? (It isn’t.) Or that the first day of the week is Sunday, or that
everyone uses a 12-hour clock? The subject of globalization is fully covered in Chap-
ter 6, “Globalization,” but the bottom line is that if you always use the .NET frame-
work globalization classes and you always use them properly, you will greatly
diminish the number of globalization problems in your applications.

Localizability

Localizability is the process of adapting an application so that its resources can be
replaced at runtime. Resources, in this context, are primarily the strings used in your
application, but also include the bitmaps, icons, text files, audio files, video files, and
any other content that your users will encounter. In this code, there is a hard-coded,
literal use of a text string:

MessageBox.Show ("Insufficient funds for the transfer");

To make the application “localizable,” we must rewrite this code to make this
resource load at runtime. You will see how to achieve this later in this chapter.

Customizability

Customizability is the process of adapting an application so that its functionality can
be replaced at runtime. For example, taxation laws vary considerably from location
to location; California sales tax, for example, is not the same rate and does not fol-
low the same rules as, say, Value Added Tax in the U.K. (or in the Netherlands, for
that matter). A “customizable” application is one that is capable of having critical
parts of its functionality replaced. Often this means using a plug-in architecture, but

31

32

.NET INTERNATIONALIZATION

it might be sufficient to store a set of parameters in a data store. You will encounter
customizability less than localizability—or, indeed, never. Customizability is also
referred to as marketization, especially on Microsoft Web sites.

All these steps (globalization, localizability, customizability) together make up
the work that developers must complete as they refer to adapting the application’s
source code to make it ready for localization and customization.

Localization

Localization is the process of creating resources for a specific culture. Primarily, this
involves translating the text of an application from its original language into another
language, such as French. Often the translation process is performed by a translator,
but it might also be performed by a machine (known as machine translation, or
“MT”) or by a bilingual member of staff. In addition, the localization process might
or might not include the redesign of forms and pages so that translated text doesn’t
get clipped or truncated and so that the form or page still looks correct in the target
culture. It also involves translating other resources into culturally correct resources
for the specific culture. A classic example of a culturally unaware resource is the first
Windows version of CompuServe’s e-mail program. The Inbox was represented by
an icon for a U.S. metal mailbox with a flag indicating that mail had arrived. This
icon is specific to the U.S. and had little or no meaning outside the U.S. In this case,
the entire icon needed to be changed, but in other cases, localization might simply
require changing a color. For example, a red “Stop” sign doesn’t convey a warning
in China or Japan, where red can indicate prosperity and happiness.

Customization

Customization is the process of creating a specific implementation of functionality.
Whereas customizability gives an application the potential to be customized,
customization is the implementation of a specific case. If your application supports
customization through a plug-in architecture, this step will likely be performed by
developers. The developers might be your own developers, but in highly customiz-
able applications that offer an open plug-in architecture, these developers could be
anyone.

AN INTRODUCTION TO INTERNATIONALIZATION |

Internationalization Terminology Confusion

The terminology described so far and the terminology used throughout this book
use the interpretations used by Microsoft. This makes sense because this book
focuses on a Microsoft technology as implemented by Microsoft. You should be
aware, however, that the rest of the industry does not adhere to these definitions. Pri-
marily, the meanings of “internationalization” and “globalization” are transposed.
Figure 3.2 shows the broad hierarchy of internationalization terminology according
to the rest of the industry.

Globalization
[Internationalization] [Localization]

Figure 3.2 Internationalization Terminology as Used by the Rest of the Industry

The term “globalization” is used to describe the entire process. whereas the term
“internationalization” is used to describe sometimes world-readiness and sometimes
globalization. Unfortunately for us, the rest of the industry has the upper hand in
this issue. In the mid-1990s, Microsoft transposed the meanings of internationalization
and globalization, and it stuck. All Microsoft documentation (including namespaces
in the .NET Framework) uses the Microsoft interpretations of these terms. So if you
read documentation from non-Microsoft sources, be aware that it might use the same
words but have different meanings.

Cultures

Cultures are the fundamental building block of internationalization in the .NET
Framework. Every issue that you will encounter in this subject has a culture at its
heart. As such, this is clearly where we must begin. A culture is a language and,
optionally, a region. In the NET Framework, it is represented by the System.Glob-
alization.CultureInfo class. Typically, a culture is created from a culture string,

33

34

.NET INTERNATIONALIZATION

although we look at other possibilities in Chapter 6. The culture string is specified
in the RFC 1766 format:

languagecode?2 [-country/regioncode2 [-script]]

languagecode?2 is an ISO 639-1 or 639-2 code, country/regioncode?2 is an
ISO 3166 code, and script is the writing system used to represent text in the
country/region (e.g., Latin, Cyrillic). For example, the following code creates a
CultureInfo object for the English language:

CultureInfo cultureInfo = new CultureInfo("en");

(CulturelInfoisin the System.Globalization namespace, so you must add a
“using System.Globalization;” directive to the source.) This object simply rep-
resents neutral English, not English in the U.S. or English in the U.K,, so it does not
represent a specific region. To identify a specific country or region, you extend the
string:

CultureInfo cultureInfo = new CultureInfo("en-GB");

This object represents English in the U.K. (written as “English (United King-
dom) ” so that the region is in brackets after the language) and all that this includes.
For example, the object includes information about the date patterns used in the U.K.:

string shortDatePattern =
cultureInfo.DateTimeFormat.ShortDatePattern;

The value assigned to shortDatePatternis “dd/MM/yyyy”. Similarly, this next
assignment assigns the U.K. pound sign (£) to currencySymbol:

string currencySymbol = cultureInfo.NumberFormat.CurrencySymbol;
Here are a few more examples of culture strings:

“en-uUs” (English in the U.S.)
“en-aU” (English in Australia)
“£r” (French, no specific country)
“fr-FR” (French in France)
“fr-ca” (French in Canada)

“es” (Spanish, no specific country)

AN INTRODUCTION TO INTERNATIONALIZATION m 35

“es-ES” (Spanish in Spain)

“es-Mx” (Spanish in Mexico)

“sr-sp-Latn” (Serbian in Serbia and Montenegro using the Latin
script)

“sr-sp-Cyrl” (Serbian in Serbia and Montenegro using the Cyrillic
script)

Typically, the language code is 2 characters (but not always) and the
country/region code is 2 characters.

CultureInfo objects are classified as either invariant, neutral, or specific, and
operate in the simple hierarchy shown in Figure 3.3.

Invariant Culture
(i.e.™)

Neutral Culture
(e.g. “en”)

Specific Culture
(e.g. “en-GB”)

Figure 3.3 Culturelnfo Hierarchy

The invariant culture, represented by an empty string, is intended to represent the
absence of any given culture (in reality, the invariant culture has much in common
with the English culture, but this is not the same as it being the English culture, and
you should not write code that depends upon this). This quality of not being a par-
ticular culture makes the invariant culture ideal for streaming data in a culturally-
agnostic format. A neutral culture is a representation of a language but is not specific
to a particular region—for example, the “en” culture represents English in general,
not English in a specific region. In particular, neutral cultures do not include region-
specific globalization information because they are not specific to a region. A specific
culture represents a language in a specific region—for example, the “en-Us” culture
represents English in the United States and includes region-specific information
such as date/time and number formats.

36

.NET INTERNATIONALIZATION

CultureInfo objects have a Parent property so that the “en-Us” specific culture
knows that its parent is the “en” neutral culture—which, in turn, knows that its
parent is the invariant culture. This hierarchy is essential for the fallback process
described later in this chapter.

Localizable Strings

To illustrate how the essential internationalization process works, here we localize
a single string. Let’s return to the hard-coded string you saw earlier:

MessageBox.Show ("Insufficient funds for the transfer");

Clearly, this line of code is in English—and it can only ever be in English. We need
to go through two phases to internationalize this code: First, we need to make this
code localizable. Second, we need to localize it. To make the code localizable, we
need to remove the string from the source code and place it in some other container
that can be changed at runtime. The .NET Framework and Visual Studio have a
ready-made solution to this problem: resx files. In Chapter 12, “Custom Resource
Managers,” we look at maintaining resources in locations other than resx files; for
now, however, we use this simple, fast solution that Visual Studio naturally lends
itself to. resx files are XML files that contain resources such as strings and bitmaps.
To create a resx file in Visual Studio 2005, right-click the project in Solution Explorer;
select Add, New Item...; and select Resource File (see Figure 3.4).

The name of the resx file is important because it is used in the code to identify
the resources. It can be any name that does not conflict with a name that Visual Stu-
dio has or will automatically create. For example, Forml . resx is not acceptable in
a Windows Forms application that has a form called Form1l. It is always wise to
adopt a file-naming convention. I follow this convention:

The resx file always has the same name as the source file to which it relates, and
is suffixed with “Resources.” For example, TaxCalc.cs has an associated resx file
called TaxCalcResources.resx. The suffix is important for two reasons. First,
Visual Studio 2003 and 2005 automatically add resx files for Windows Forms (e.g.,
Forml.cs already has a Forml . resx), and this resx is considered to be under the con-
trol of Visual Studio. Second, Visual Studio 2005 can automatically create a strongly-
typed class corresponding to a resx file, and this class is given a name that

AN INTRODUCTION TO INTERNATIONALIZATION m 37

corresponds to the resx file. For example, if the TaxCalc. cs resources were placed
in TaxCalc.resx, Visual Studio 2005 would create a corresponding strongly-typed
resources class called TaxCalc, which would conflict with the existing TaxCalc class.

Add New Ttem' - WindowsApplication @
Templates: |§|
¥isual Studio installed templates |"|
c_g Class :J Interface c__w_} Code File
[E]windows Form [User Control ¥ Custom Contral
[F]Inherited Farm 1] Inherited User Control ‘j_?IWab Custom Control
;ﬁ] Compaonent Class [_J SQL Database lL}JDataSet
2] %ML File lﬂ #ML Schema ;_[J WILT File =
9] HTML Page AjStyle Sheet] Text File
@4 Bitmap File _MCUrSUI File 5] Report
‘_{]Crysta\ Report j Icon File @] ‘Windows Service
:g] Installer Class %}JScrlpt File %]VBScrlpt File
g}JWindnws Script Host CQ Assembly Information File __] Application Configuration File
= &) Settings File [S]MoI Parent
.;TﬂDebuggar Visualizer e%\ Class Diagram
v
A file For storing resources
Mame: Resourcel resx

Figure 3.4 Adding a Resource File to a Project

Visual Studio 2005 Windows Forms applications have a default
resource file called Resources. resx. This resource file is for
your own use; Visual Studio 2005 will not add or remove
resources from it. The resource file itself is no different than a
resource file that you create yourself, but it is present in every
Visual Studio 2005 Windows Forms application. To maintain
resources in it, either expand the Properties entry in the project
in Solution Explorer and double-click Resources.resx, or double-
click Properties and select the Resources tab. It is possible to
delete or rename this file, but if you do so, the Resources prop-
erty page will assume that the project no longer has a default
resource file and will provide a warning to this effect.

After the resource file has been created, Visual Studio presents the Resource Edi-
tor (see Figure 3.5).

38 .NET INTERNATIONALIZATION

File Edit Wiew Project Build Debug Data Tools ‘Window Community Help

HA-EH- S -da B3 @ &~ b Debug + Any CPU v | [
Form1Resources.resx | Forml.cs [Design] |

[sbe Strings =] AddResource =

4
®
f‘_::‘ S

0gje0L 3¢

Name - Yalue | Comment
(23 Stringl

saadoid 5| 42u0)de3 uopnjog

Ready

Figure 3.5 Visual Studio 2005 Resource Editor

The Resource Editor enables you to enter string, image, icon, audio, file, and other

resources.

The Visual Studio 2003 Resource Editor enables you to enter
string resources and, with a little effort, can be used to enter
images. See the section entitled “Adding Images and Files in
Visual Studio 2003” for details.

For Name enter a name by which this string resource will be identified (e.g.,
“InsufficientFunds”). You can find resource key name guidelines in the .NET
Framework 2.0 help by looking for “Resource Names” in the index, but essentially,
names should use Pascal case and should be descriptive but not verbose. For Value,
enter the string itself (i.e, “Insufficient funds for the transfer”). Comment
is used to hold additional information that the translator or other developers can
use. Be aware, however, that the comment is maintained solely within the resx file.
For reasons that will become clear shortly, the comment is not included in your com-
piled assemblies and is not shipped with your application. Enter a comment. The
content of the comment depends upon who the comment is intended for. Mostly
likely, it is a message to the translator/localizer and would contain instructions
about the string’s use, such as “InsufficientFunds is used in a MessageBox".

AN INTRODUCTION TO INTERNATIONALIZATION |

Visual Studio requires that resources must be saved for their
changes to be included in the generated assembly.

How It Works

Let’s stop for a moment to consider what will happen to this resource. Select the
FormlResources.resx file in Solution Explorer and take a look at it in the Proper-
ties Window. The Build Action property says that it is an Embedded Resource.
This means that Visual Studio will identify the correct compiler for this resource
type, compile it, and embed the result in the generated assembly. The correct com-
piler for resx files is a built-in version of resgen. exe. This compiler has many pur-
poses, but one of them is to compile XML resx files into “resources” files. A
“resources” file is a binary version of an XML resx file. You can perform this step
manually if you want to see the command-line tool in action. Enter “resgen
FormlResources.resx” at the command prompt in the application’s folder (make
sure that you have saved the resx file in Visual Studio first):

Read in 1 resources from "FormlResources.resx"
Writing resource file... Done.

The result is a file called “FormlResources.resources” that contains the com-
piled resources. You can open this file in Visual Studio (select File, Open, File... and
enter the filename). Visual Studio uses its Binary Editor to show the file; you can see
that the comment is nowhere in the file.

Visual Studio embeds the compiled output in the generated assembly using a
build task that is a wrapper for the Assembly Linker (al.exe; see Chapter 14, “The
Translator,” for more details). You can see this using IL DASM (NET’s IL Disassem-
bler). Open the generated assembly (i.e., WindowsApplicationl.exe) and double-
click the MANIFEST entry. Scroll down until you come to the following line:

.mresource public WindowsApplicationl.FormlResources.resources

“ mresource” identifies that it is an embedded resource. As mentioned before,
the name is important. Notice that it is prefixed with the application’s namespace,
“WindowsApplicationl,” and it is suffixed with “. resources” (because that was

39

40

.NET INTERNATIONALIZATION

the resulting name after the resx file was compiled). Although there is little value in
doing so, you could perform the same steps as Visual Studio manually by main-
taining the resx files outside Visual Studio, compiling them into binary resources
manually using resgen. exe, and embedding the resources in the generated assem-
bly using the Assembly Linker (al.exe) tool.

At this stage, we have a WindowsApplicationl.exe assembly that has an embed-
ded resource called “wWwindowsApplicationl.FormlResources.resources,” which
contains a single string called “InsufficientFunds,” which has a value of “Insuf-
ficient funds for the transfer.” Weneed a way to retrieve this string from the
embedded resource. For this, we need a Resource Manager.

Resource File Formats

Before we look into resource managers, let’s take a brief look at the possibilities for
resource file formats. Four resource file formats are used for resources. The . resx file
format that you have already encountered is an XML format. The . resources for-
mat that you have also already encountered is a binary format representing a com-
piled .resx file. The .txt file format is simply a text file with key/value pairs. So
FormlResources. txt would simply be:

InsufficientFunds=Insufficient funds for the transfer

The . restext file format (introduced in the NET Framework 2.0) is the same as
the . txt file format; the only difference is the extension. The new extension enables
developers to make a clearer distinction between a text file that might contain any
freeform text and a text file that is used explicitly for resources. Table 3.1 compares
the file formats.

When choosing a file format, weigh the relative benefits of each. . resx files are
recognized by Visual Studio and are human readable. They also have explicit classes
for their manipulation (ResourceManager, ResXResourceReader, ResXRe-
sourcelWriter). .resources files are not human readable and must originate from
a .resx, .txt, or .restext file. . txt files are human readable but are not recog-
nized as resource files by Visual Studio, and are not so easily manipulated
programmatically as resources.

AN INTRODUCTION TO INTERNATIONALIZATION |

Table3.1 Resource File Formats

File Supports Supports Supports Supports Has Direct Extension

Extension String Other Comments File Support in Recognized
Resources Resources References the .NET by ResGen

Framework

.resx Yes Yes Yes Yes Yes Yes

.resources Yes Yes No No Yes Yes

xt Yes No No No No Yes

.restext Yes No No No No In 2.0 only

Resource Managers

Resource managers retrieve resources. The .NET Framework versions 1.1 and 2.0
include two resource-manager classes, System.Resources.ResourceManager and
its descendant, System.ComponentModel . ComponentResourceManager. The for-
mer is used in all .NET applications, whereas the latter is typically used only in Visual
Studio 2005 Windows Forms applications. We return to the latter in Chapter 4.
We create new and exciting resource managers in Chapter 12.

We start by taking a high-level view of how System.Resources.ResourceMan-
ager retrieves resources. When an attempt to load a resource entry is made (using
ResourceManager .GetString Or ResourceManager .GetObject), the Resource
Manager looks through its internal cache of resources to see if the request can be sup-
plied from the cache. If not, a Resourceset is loaded from a resource embedded in
an assembly. A ResourceSet is a collection of resource entries and is equivalent to an
in-memory copy of a single resx file (you can think of a Resourceset as a DataTable
for resource entries). The ResourceSet is added to the ResourceManager’s internal
cache. Finally, the Resourceset is searched for the resource entry that matches the
requested key. The ResourceManager class is covered in depth in Chapter 12.

The System.Resources.ResourceManager class retrieves resources either from
a resource embedded in an assembly or from stand-alone binary resource files. To
retrieve resources from a resource embedded in an assembly, we create a Resource-
Manager using the class constructor. To retrieve resources from stand-alone binary

41

42

.NET INTERNATIONALIZATION

resource files, we use the static CreateFileBasedResourceManager method. For
the purposes of this example, we focus on the former. To retrieve the string, we need
to create a ResourceManager object and call its Get String method. Add a couple of
using directives to Forml . cs:

using System.Resources;
using System.Reflection;

Add a private field to the Forml class to hold the ResourceManager:

private ResourceManager resourceManager;

Instantiate the ResourceManager at the beginning of the Form1 constructor:

public Forml ()
{
resourceManager = new ResourceManager (
"WindowsApplicationl.FormlResources",
Assembly.GetExecutingAssembly ()) ;

InitializeComponent () ;

The first parameter to the ResourceManager constructor is the fully qualified name
of the resource that we want to retrieve. Recall from the assembly’s manifest that the
resource was called “WindowsaApplicationl.FormlResources.resources.” The

‘"

ResourceManager class adds the “.resources” suffix so that it should not be
included in the name passed to the constructor. The second parameter to the
ResourceManager constructor is the assembly in which this resource can be found.
In this example and most others like it, we are saying that the resource can be
found in the assembly that is currently executing: i.e., WindowsApplicationl.exe.

The ResourceManager class supports three public constructor overloads:

public ResourceManager (string, Assembly) ;
public ResourceManager (string, Assembly, Type);
public ResourceManager (Type) ;

We have just covered the first. The second is a variation on the first and specifies
the type to be used to create new Resourceset objects. The third specifies the Type
for which resources should be retrieved. This is also a variation on the first

AN INTRODUCTION TO INTERNATIONALIZATION m 43

constructor because it uses the Type’s Name for the resource name and the type’s
assembly as the assembly where the resource can be found.

All that remains is for us to retrieve the string using the ResourceManager.
Change the original hard-coded line from this:

MessageBox.Show ("Insufficient funds for the transfer");

to this:

MessageBox.Show (resourceManager .GetString ("InsufficientFunds")) ;

The ResourceManager.GetString method gets a string from the resource:
"InsufficientFunds" is the key of the resource, and Get String returns the value
that corresponds to this key.

At this point, we have a localizable application; it is capable of being localized,
but it has not yet been localized. There is just the original English text. From the
user’s point of view, our application is no different from when the text was hard
coded.

Localized Strings

To reap the rewards of our work, we need to offer a second or third language. In this
example, we add French to the list of supported languages. This is where the cul-
ture strings that we discussed earlier come in. The culture string for neutral French
is “fr.” Create a new Resource File using the same name as before, but use a
suffix of “.fr.resx” instead of just “.resx” so that the complete filename is
FormlResources. fr.resx. Into this resource file, add a new string, using the same
name as before, “Insuf ficientFunds”; into the Value field this time, though, type
the French equivalent of "Insufficient funds for the transfer"(ie., "Fonds
insuffisants pour le transfert").

Compile the application and inspect the output folder. You will find a new folder
called “£r” beneath the output folder. If the output folder is \WindowsApplica-
tionl\bin\Debug, you will find WindowsApplicationl\bin\Debug\fr. In this
folder you will find a new assembly with the same name as the application, but with
the extension “.resources.dll” (i.e., WindowsApplicationl.resources.dll).

44

.NET INTERNATIONALIZATION

The FormlResources. fr.resx file has been compiled and embedded in this new
assembly. This new assembly is a resources assembly, and it contains resources only.
This assembly is referred to as a satellite assembly. If you inspect the manifest of this
satellite assembly using IL DASM (<FrameworkSDK>\bin\ildasm.exe), you will
find the following line:

.mresource public WindowsApplicationl.FormlResources.fr.resources

In this way, you can support any number of languages simply by having sub-
folders with the same name as the culture. When you deploy your application, you
can include as many or as few of the subfolders as you want. For example, if your
application gets downloaded from a Web site or server, you can supply a French ver-
sion that includes only the French subfolder. Similarly, you can offer an Asian
version that includes Chinese, Japanese, and Korean subfolders. In addition, if you
update one or more resources, you need to deploy only the updated resource assem-
blies, not the whole application.

CurrentCulture and CurrentUICulture

Of course, our work is not quite done yet. The problem with the solution so far is that
the French resources exist but are not being used. For reasons that will become clear
in a moment, the only time the French version of the application will be seen is when
it is run on a French version of Windows. Apart from usability considerations, this
makes testing your application unnecessarily difficult.

Two properties determine the default internationalization behavior of an appli-
cation are: CurrentCulture and CurrentUICulture. Both properties can be
accessed either from the current thread or from the cultureInfo class, but they can
be assigned only from the current thread. Assuming that the following directives
have been added to Forml . cs:

using System.Globalization;
using System.Threading;

The first two lines provide the same output as the second two lines:

AN INTRODUCTION TO INTERNATIONALIZATION

MessageBox
MessageBox
MessageBox
MessageBox

.Show (Thread.CurrentThread.CurrentCulture.DisplayName) ;

.Show (Thread.CurrentThread.CurrentUICulture.DisplayName) ;
CultureInfo.CurrentCulture.DisplayName) ;
.Show (CultureInfo.CurrentUICulture.DisplayName) ;

CurrentCulture represents the default culture for all classes in System.Global-

ization and thus affects issues such as culture-specific formatting (such as date/time

and number/currency formats), parsing, and sorting. CurrentUICulture represents
the default culture used by ResourceManager methods and thus affects the retrieval
of user interface resources such as strings and bitmaps. CurrentCulture defaults to
the Win32 function GetUserDefaultLCID. This value is set in the Regional and Lan-
guage Options Control Panel applet, shown in Figure 3.6. Consequently, in a Windows
Forms application, the user has direct control over this setting. In an ASPNET appli-
cation, the value is set in the same way, but because it is set on the server, its setting

applies to all users and a more flexible solution is required (see Chapter 5).

Regional andLanguage Options]

Regional Options |Languages Advanced |

Standards and formats

This option affects how some programs format numbers, cunencies,
dates, and time.

Select an item to match its preferences. or click Customize to choose
yaur own formats:

Englizh [United States] |i]
Samples

MNumber: 123,456,789.00

Currency: $123,456,789.00

Time: 5:53:16 PM
Short date: | 5,30,/2006
Long date: Tuesday, May 30, 2006

Location

To help services pravide you with local infarmation, such as news and
weather, select your present location:

Urited States lﬂ

I 0k, l[Cancel][Apply

]

Figure 3.6 Regional and Language Options

Bear in mind that the CurrentCulture is culture-specific, not culture-neutral.

That is, the value includes a region as well as a language. If you consider that this

45

46

.NET INTERNATIONALIZATION

value determines issues such as date/time formats and the number and currency
formats, you can understand that it is meaningless to assign a “French” culture to
CurrentCulture because French in Canada has completely different globalization
values to French in France. In general, your application should strive to acquire a
specific culture for the CurrentCulture, but there is an option to manufacture a spe-
cific culture, which can be considered a last resort. The CultureInfo.Create-
SpecificCulture method accepts a culture and returns a specific culture from it. So
if you pass it “£r” for French, you get a culture for French in France. Similarly, for
Spanish you get Spanish (Spain), and for German you get German (Germany). You
can forgive the people of England for being a little surprised that the specific culture
for English is not England; it is the United States.

The currentUICulture, however, defaults to the Win32 function GetUserDe-
faultUILanguage. This value is usually determined by the user interface language
version of the operating system and cannot be changed. So if you install the French
version of Windows, GetUserDefaul tUILanguage returns French; therefore, cur-
rentUICulture defaults to French. However, if you install Windows Multiple User
Interface Pack (Windows MUI; see Chapter 2, “Unicode, Windows, and the .NET
Framework”), the user can change the language version of the user interface through
a new option that appears in the Regional and Language Options. The Currentu-
ICulture can be culture-neutral, culture-specific, or the invariant culture.

Armed with this knowledge, you can see why on a typical machine running in
the U.K,, the following code results in “English (United States),” followed by
“English (United Kingdom) ”:

MessageBox.Show (Thread.CurrentThread.CurrentCulture.DisplayName) ;
MessageBox.Show (Thread.CurrentThread.CurrentUICulture.DisplayName) ;

To see the French resources in our example application, we need to provide a
means by which the user can select a language. This facility is simplistic in the
extreme; see Chapters 4 and 5 for more advanced solutions. Add a RadioButton to
the form, set its Text to “French,” and add a CheckChanged event with this code:

Thread.CurrentThread.CurrentUICulture = new CultureInfo("fr");

This line creates a new CultureInfo object for neutral French and assigns it to
the currentUICulture of the current thread. This affects all ResourceManager

AN INTRODUCTION TO INTERNATIONALIZATION |

methods on this thread, which default to the CurrentUICulture from here on. You
can also set the CurrentCulture in a similar fashion:

Thread.CurrentThread.CurrentCulture = new CultureInfo("fr-FR");

Notice that, in this example, the culture is a specific culture (“£r-FR”), not a neu-
tral culture (“£fr”). Add another RadioButton, set its Text to English, and add a
CheckChanged event with this code:

Thread.CurrentThread.CurrentUICulture = CultureInfo.InvariantCulture;

This line doesn’t actually use the English resources as the RadioButton’s Text
implies it does. Instead, it sets the CurrentUICulture to the invariant culture.
Although the effect will be the same and the user will see English resources, the set-
ting simply causes the ResourceManager to use the resources that are embedded in
the main assembly instead of a satellite assembly. Now you can run the application,
select one of the RadioButtons, and see the MessageBox use the correct resource
string according to your selection.

We have made our application localizable, and we have localized it. To add new
languages, we need only add new versions of FormlResources.resx (e.g.,
FormlResources.es.resx for Spanish), add a RadioButton to set the CurrentU-
ICulture to the new language, and compile our application to create the new satel-
lite assembly (e.g., es\WindowsApplicationl.resources.dll).

CurrentCulture, CurrentUICulture, and Threads

I mentioned in the previous section that the CurrentCulture and CurrentUI
Culture properties are set on a thread. The full implication of this might not be
immediately apparent. This means each thread must have its CurrentCulture and
CurrentUICulture properties explicitly and manually set. If you create your own
threads, you must set these properties in code. The important point to grasp here is
that new threads do not automatically “inherit” these values from the thread from
which they were created; a new thread is completely new and needs to be reminded
of these values. To create a new thread, you could write this:

Thread thread = new Thread(new ThreadStart (Work)) ;
thread.CurrentCulture = Thread.CurrentThread.CurrentCulture;
thread.CurrentUICulture = Thread.CurrentThread.CurrentUICulture;
thread.Start () ;

47

48

.NET INTERNATIONALIZATION

This solves the problem, but it is cumbersome and relies on every developer
remembering to set these properties (developers will eventually forget). A better
solution is to create a thread factory:

public class ThreadFactory
{
public static Thread CreateThread(ThreadStart start)
{
Thread thread = new Thread(start);
thread.CurrentCulture = Thread.CurrentThread.CurrentCulture;
thread.CurrentUICulture = Thread.CurrentThread.CurrentUICulture;
return thread;

Of course, now you are relying on your developers to remember to use the
ThreadFactory instead of creating threads manually. See Chapter 13, “Testing Inter-
nationalization Using FxCop,” for the “Thread not provided by ThreadFactory”
rule, which ensures that new threads are not created using the System.Thread-
ing.Thread constructor.

The Resource Fallback Process

The ResourceManager class has built-in support for resource fallback. This means
that when you attempt to access a resource that doesn’t exist for the given culture,
the ResourceManager attempts to “fall back” to a less specific culture. The less
specific culture is the Parent of the culture, so recall from Figure 3.3 that a specific
culture falls back to a neutral culture, which falls back to the invariant culture. You
can think of this as inheritance for resources. This behavior ensures that you do not
duplicate resources and that as your application’s resources get more specific, you
need to detail only the differences from the “parent,” just as you would with class
inheritance.

Consider how this works with string resources. Let’s add another string resource
to FormlResources.resx in our main assembly (also called the fallback assembly).
The Name is “ColorQuestion” and the Value is “What is vyour favorite
color?”. Add asimilar string resource to FormlResources. fr.resx with the Value
“Ouelle est votre couleur préférée?”. Now consider that not all versions of
English are the same. The spelling of English in the United States often differs from

AN INTRODUCTION TO INTERNATIONALIZATION |

the spelling of the same words in the United Kingdom, Canada, and Australia: Color
is the one that everyone seems to remember. So “What is your favorite color?” will
not go down well in the United Kingdom because two of the words are spelled
“incorrectly.” Add a similar string resource to FormlResources.en-GB.resx
(where “en-GB” is “English (United Kingdom)”) with the Value “What is your
favourite colour?”. Figure 3.7 shows the relationship between the resources.

Main (Fallback) Assembly
WindowsApplication1.exe
“What is your favorite color?”

French Satellite Assembly
fAWindowsApplication1.resources.dll
“Quelle est votre couleur préféré?”

English (United Kingdom) Satellite Assembly
en-GB\WindowsApplication1.resources.dll
“What is your favourite colour?”

Figure 3.7 String Resources in Fallback and Satellite Assemblies

So let’s consider what will happen when the CurrentUICulture is set to various
cultures and ResourceManager.GetString is called to get the “ColorQuestion”
string. If CurrentUICulture is French, ResourceManager.GetString looks for
the string in the fr\wWindowsApplication.resources.dll satellite assembly. It
finds the string immediately and returns it, and that is the end of the process. If cur-
rentUICulture is French in France (“fr-FR”), ResourceManager.GetString
looks for fr-FR\WindowsApplicationl.resources.dll and fails to find it. It then
falls back to the Parent of fr-FR culture, which is neutral French, and finds the
string there. The benefit of this approach is that if the CurrentUICulture is French
in Canada (“fr-ca”), the same steps would happen, with the same result. In this
way, we can deploy the neutral French satellite assembly and have the French lan-
guage covered, regardless of where it is used.

Now consider what happens to English. If the CurrentUICulture is English in
the United Kingdom (“en-GB”), ResourceManager . GetString looks for the string
in en-GB\WindowsApplicationl.resources.dll. It findsit, and the people in the
United Kingdom get a string that gives them a warm and loved feeling. If the

49

50

.NET INTERNATIONALIZATION

CurrentUICulture is English in the United States (“en-US”), ResourceManager.
GetString looks for enUs\WindowsApplicationl.resources.dll and doesn’t
find it. It falls back to neutral English (“en”) and looks for en\WindowsApplica-
tionl.resources.dll—but it doesn’t find that, either. It falls back to the parent of
“English”, which is the invariant culture. It looks for the resource in the main assem-
bly and finds it there. Similarly, if the CurrentUICulture is German, for example,
ResourceManager .GetString falls back all the way to the main assembly and
returns the original English (United States) string. Only if the string is not pres-
ent in the main fallback assembly is an exception thrown; this makes sense because to
ask for a string that doesn’t exist is clearly a programmer error.

It should be noted that because of the way in which the NET
Framework probes for assemblies, if you have installed your
satellite assemblies in the Global Assembly Cache (GAC), they
will be found there first before the application’s folders are
probed.

The fallback process enables you to create only those resources that are different
from their parent. In the case of strings, it is highly likely that almost every string in
every language will be different from the original English, but that regional varia-
tions are much fewer and farther between. After all, the majority of U.S. English is
the same as U.K. English. The fallback process behaves the same way for other
resources such as bitmaps, but the number of differences is likely to be fewer. A wise
approach to using bitmaps in your application is to strive to create bitmaps that are
as culturally neutral as possible. If you can create a bitmap that does not include
words, does not use colors to convey meaning, and does not rely upon culturally-
specific references (such as the U.S. mailbox), the bitmap will have a broader appeal.
If you follow this approach, the main assembly will naturally have every bitmap
required by the application. However, unlike string resources that almost always
need to be translated to other languages, it is unlikely that the satellite assemblies
will contain many differences.

AN INTRODUCTION TO INTERNATIONALIZATION |

NeutralResourcesLanguageAttribute and
UltimateResourceFallbackLocation

As wonderful and helpful as the fallback process might sound, the previous expla-
nation might provoke the question, “If the CurrentUICulture is en-Us, won't
every call to ResourceManager .GetString take longer than necessary because it
is looking first for the en-Us resource (and failing to find it) and second for the en
resource (and failing to find it) before finally trying the main assembly?” The answer
is, yes, it will take longer. For this reason, we have System.Resources.Neutral-
ResourcesLanguageAttribute. The NeutralResourcesLanguage attribute
enables you to declare the culture of the main assembly. The purpose of this is to save
unnecessary searching for resource assemblies. You use it like this:

[assembly: NeutralResourcesLanguageAttribute ("en-US")]

This line can go anywhere (for example, at the top of Forml.cs), but it is best
placed with other similar assembly attributes in AssemblyInfo.cs. With this attrib-
ute in place when CurrentUICulture is en-US, ResourceManager.GetString
looks in the main assembly immediately without performing unnecessary lookups
in the en-Us or en folders. In Visual Studio 2005, you can set this same attribute in
the Assembly Information dialog (click the Assembly Information... button in the
Application tab of the project’s properties).

The .NET Framework 2.0 introduces an overloaded NeutralResources
LanguageAttribute constructor that accepts an additional parameter, which is an
UltimateResourceFallbackLocation. This enumeration has two members,
shown in Table 3.2.

Table3.2 UltimateResourceFallbackLocation Enumeration

Member Description
MainAssembly (default) Resources are located in the main assembly
Satellite Resources are located in a satellite assembly

You can use this enumeration to specify that the fallback resources are not in the
main assembly but are instead in a satellite assembly:

[assembly: NeutralResourcesLanguageAttribute("en-US",
UltimateResourceFallbackLocation.Satellite)]

51

52

.NET INTERNATIONALIZATION

In this scenario, your main assembly contains no resources, and all resources are
placed in satellite assemblies. In our example, there would be no FormlResources.
resx file; instead, there would be a FormlResources.en-US. resx file from which
the en-US\WindowsApplicationl.resources.dll assembly gets generated.
Before adopting this approach, you might consider that Visual Studio does not have
any facility for not generating a default resource. For example, Visual Studio always
generates Forml . resx for Forml, and this resource is placed in the main assembly.
You would then have to create a second similar resource for en-Us, making the
resource in the main assembly redundant. (Unfortunately, Visual Studio 2005’s
Assembly Information dialog does not allow you to set the UltimateResource-
FallbackLocation, so you must set this value manually in AssemblyInfo.cs). Of
course, the command-line tools don’t have this preconception, so you can create
your own build script to build the main assembly without the redundant resources.
In this scenario, you would let Visual Studio 2005 create redundant resources, and
the final build process would simply ignore them. The only minor downside is that
you should keep the redundant resources in synch with the fallback resources so that
there is no difference between the Visual Studio—developed application and the final
build application.

Image and File Resources

The Visual Studio 2005 Resource Editor maintains string, bitmap, icon, audio, file,
and other resources in a resx file. You've seen how to add a string to a resource file.
To add an image, select “Images” from the Categories combo box (entries in the
combo box are bold when there are one or more entries of that type). The main part
of the Resource Editor showing the strings is replaced with an area that shows all the
image resources. It is blank at this stage. To add an image from an existing file, drop
down the Add Resource button and select Add Existing File...; use the “Add exist-
ing file to resources” file open dialog to locate the image you want to add. Let’s say
that you want to show the national flag of the selected culture as the form’s back-
ground so that the user has very clear feedback of the currently selected culture. Add
the U.S. national flag to FormlResources.resx and ensure that the image is called
“NationalFlag” (see Figure 3.8).

AN INTRODUCTION TO INTERNATIONALIZATION |

File Edit ‘“iew Project Buld Debug Data Tools ‘Window Community Help

A-E-Eda B 9 - - & - b Debug - Any CPU - | [;
5 Form1Resources.ress®| Forml.cs [Design] | - X)E"
| Images ~] Add Resource - - g

£00|901 o

sanadold B [4240/dea uopnjo

Ready

Figure 3.8 Adding an Image Using the Visual Studio 2005 Resource Editor

Repeat the process and add the French national flag to FormlResources. fr.
resx; ensure that it is called “NationalFlag”. Thus, all resources have an image
entry with the same name. If you give the images country-specific names, such
as USNationalFlag and FrenchNationalFlag, the resource names will not be
polymorphic. To use the bitmap as the form’s background, set Forml.Back-
groundImageLayout to Stretchand add the following line to the end of the Form1

constructor:

BackgroundImage = (Bitmap) resourceManager.GetObject ("NationalFlag") ;

ResourceManager .GetObject retrieves an object resource in the same way that
ResourceManager.GetString retrieves a string resource. We know that the
resource is a bitmap, so we cast it to a Bitmap and assign it directly to the form’s
BackgroundImage. Of course, when the current thread’s CurrentUICulture
changes, there is no CurrentUICultureChanged event that we can hook into to get
notification that it has changed, so we need to add this same line immediately after
any line that changes the CurrentUICulture—thatis, we have to add it to the end
of both radio buttons’ CheckChanged events. Now the form will always show the
national flag of the selected CurrentUICulture.

To add a text file as opposed to an image, you follow a similar process. If the file
already exists, click the Add Resource button in the Resource Editor, select Add
Existing File..., and enter the text file to add. If the file does not already exist, click
the Add Resource button, select Add New Text File, and enter a name for the

53

54

.NET INTERNATIONALIZATION

resource. To edit the text file, double-click its resource icon. To retrieve the contents
of the text file, use the ResourceManager . Get String method, just as you would for
getting a resource string.

Adding Images and Files in Visual Studio 2003

Adding images to a resx file in Visual Studio 2003 requires more effort than for Visual
Studio 2005. The Visual Studio 2003 Resource Editor does not offer any facilities for
reading image files. Two solutions to this problem exist:

1. Use file references in the Visual Studio 2003 Resource Editor

2. Embed the image in the resx file using ResEditor.exe

The first solution lies in manually mimicking the functionality of the Visual Studio
2005 Resource Editor. The Visual Studio 2005 Resource Editor creates “file references”
to the image files that it adds to resx files. That is, the image file is referenced by the resx
file (instead of the image being embedded in the resx file). The reference is achieved
using the ResxFileRef class, which is present in both the NET Framework 1.1 and 2.0.
To add the NationalFlag image to a resx file using the Visual
Studio 2003 Resource Editor, add a new resource entry called “NationalFlag” and
set its type to “System.Resources.ResXFileRef, System.Windows.Forms, Ver-
sion= 1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”.
This indicates that the value of the resource entry is a file reference, not the
actual value. Now set the value to “C:\Books\I18N\Tests\VS2003\Windows
Applicationl\NationalFlag.bmp; System.Drawing.Bitmap, System.Drawing,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”.
The value includes the filename and the type of the resource (i.e., System.Drawing.
Bitmap). The entry in the resx file looks like this:

<data name="NationalFlag" type="System.Resources.ResXFileRef,
System.Windows.Forms, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089">
<value>
C:\Books\I18N\Tests\VS2003\WindowsApplicationl\NationalFlag.bmp;
System.Drawing.Bitmap, System.Drawing, Version=1.0.5000.0,
Culture=neutral, PublicKeyToken=b03f5f7fl11d50a3a
</value>
</data>

AN INTRODUCTION TO INTERNATIONALIZATION |

In this example, the file includes an absolute path. This isn’t strictly necessary, but
you might find it helpful. Without an absolute path, both Visual Studio 2003 and Res-
Gen assume the current folder. For Visual Studio 2003, this is the devenv . exe folder,
which is typically \Program Files\Microsoft Visual Studio .NET 2003\Com-
mon7\ IDE. Consequently, without an absolute path, you must place the referenced files
in this folder, which is a poor choice for files that are specific to a single application.

The second solution is to embed the image in the resx file using one of the examples
in the NET Framework SDK, ResEditor.exe, which allows all objects in resx and
resources files to be maintained. The source for ResEditor is in <SDK>\v1l.1\
Samples\Tutorials\resourcesandlocalization\reseditor (Where <SDK> is the
location of the SDK, probably \Program Files\Microsoft Visual Studio .NET
2003\SDK). Build ResEditor using the build.bat file found there. Run Res
Editor.exe; select File, Open; and open FormlResources.resx. In the TextBox to
the left of the Add button, enter “NationalFlag”and click Add. Now click the ellipses
in the PropertyGrid and enter the name of the file. The bitmap is added to the resx

file (see Figure 3.9).

File Resource
il
=
NationalFlag ES] System.Diawing Bitmap _J
MationalFlag

Add

System. Drawing.Bitmap LJ] i

Rename
|

Figure 3.9 Adding an Image Using the .NET Framework 1.1 SDK ResEditor.exe

55

56

.NET INTERNATIONALIZATION

Strongly-Typed Resources in the .NET Framework 2.0
Recall the code that retrieves the resource string:

MessageBox.Show (resourceManager .GetString ("InsufficientFunds")) ;

This line is fragile. It relies upon a string, "InsufficientFunds", to identify the
resource string. If this string includes a typo, the code will still compile successfully,
but it will throw an exception at runtime. The problem is that this string cannot be
verified at compile time, so it is a fragile solution. A better solution is one that the
compiler can verify. To solve this problem Visual Studio 2005 introduces Strongly-
Typed Resources. A strongly-typed resource is to resources what a strongly-typed
dataset is to DatasSets; it is a generated class that includes the resource key names
as properties. The line of code can be rewritten to use a strongly-typed resource:

MessageBox.Show (FormlResources.InsufficientFunds) ;

FormlResources is a strongly-typed resource class in which each resource entry
is represented by a property (i.e., "InsufficientFunds", in this example). The
Forml.resourceManager field is no longer needed and can be removed completely.
When a resource file is created in Visual Studio 2005, a corresponding file with the
extension “.Designer.cs” is also created, so FormlResources.resx has a corre-
sponding file called FormlResources.Designer.cs. You can see this in Solution
Explorer by expanding the resx node. As you add, edit, or delete entries in the resx
tile, the designer file is updated. If you double-click the file, you will see the gener-
ated class. Here is the FormlResources class with the comments stripped out (and
formatted to fit this page):

[global: :System.Diagnostics.DebuggerNonUserCodeAttribute ()]
[global::System.Runtime.CompilerServices.
CompilerGeneratedAttribute ()]

internal class FormlResources {

private static global::System.Resources.ResourceManager
resourceMan;

private static global::System.Globalization.CultureInfo
resourceCulture;

[global::System.Diagnostics.CodeAnalysis.
SuppressMessageAttribute ("Microsoft.Performance",
"CAl1811:AvoidUncalledPrivateCode")]

AN INTRODUCTION TO INTERNATIONALIZATION

internal FormlResources () {

}

[global: :System.ComponentModel .EditorBrowsableAttribute (
global: :System.ComponentModel .EditorBrowsableState.Advanced)]
internal static global::System.Resources.ResourceManager
ResourceManager {

get {
if (object.ReferenceEquals (resourceMan, null)) {
global::System.Resources.ResourceManager temp =
new global: :System.Resources.ResourceManager (
"WindowsApplicationl.FormlResources",
typeof (FormlResources) .Assembly) ;
resourceMan = temp;
}

return resourceMan;

[global: :System.ComponentModel .EditorBrowsableAttribute (
global: :System.ComponentModel . EditorBrowsableState.Advanced)]
internal static global::System.Globalization.CultureInfo

Culture {
get {

return resourceCulture;
}
set {

resourceCulture = value;
}

internal static string InsufficientFunds ({
get {
System.Resources.ResourceManager rm = ResourceManager;
return rm.GetString (
"InsufficientFunds", resourceCulture);

internal static System.Drawing.Bitmap NationalFlag {
get {
System.Resources.ResourceManager rm = ResourceManager;
return ((System.Drawing.Bitmap)
(rm.GetObject ("NationalFlag", resourceCulture)));

57

58

.NET INTERNATIONALIZATION

The class encapsulates its own ResourceManager object in a private static field
called resourceMan. resourceMan is wrapped in a static ResourceManager prop-
erty, which initializes resourceMan to this:

new System.Resources.ResourceManager (
"WindowsApplicationl.FormlResources",
typeof (FormlResources) .Assembly) ;

Not surprisingly, this is very similar to the line that we wrote earlier to initialize
our resourceManager private field. For each entry in the resx file, a static property
is created to return the resource’s value. You can see in the InsufficientFunds
property that it calls ResourceManager.GetString and passes the "Insuffi-
cientFunds" key. The resourceCulture private static field is initially null (there-
fore, ResourceManager uses Thread.CurrentThread.CurrentUICulture). You
can set its equivalent static property, Culture, to specify that it should retrieve
resources for a different culture. Although this is rare, you might, for example, want
to display more than one culture at the same time.

In the “Localizable Strings” section of this chapter, I mentioned that the .NET
Framework 2.0 help includes a set of resource key naming guidelines. If you follow
these guidelines, you will encounter an apparent mismatch between this advice and
the designer’s warnings. One of the guidelines recommends that resource keys with
arecognizable hierarchy should use names that represent that hierarchy in which the
different elements of the hierarchy are separated by periods. For example, menu item
resource keys might be named Menu.File.New and Menu.File.Open. This is good
advice, but Visual Studio 2005 reports the warning “The resource name
'Menu.File.New' is not a valid identifier”. This is a consequence of the strongly-
typed resource class that is generated from the resource. It is not possible to have a
property called “Menu.File.New” because the period is an invalid character for an
identifier. Instead, the periods are replaced with underscores, and the property is
called “Menu_File_New”. Despite this, I recommend that you continue to follow the
resource key naming guidelines and ignore the warnings that result from the use of
the period in resource key names.

If you prefer not to use strongly-typed resources but are concerned that the
strings passed to ResourceManager .GetString might or might not be valid, look
at the “Resource string missing from fallback assembly” rule in Chapter 13.

AN INTRODUCTION TO INTERNATIONALIZATION |

ResGen

Visual Studio 2005’s solution of automatically maintaining strongly-typed resources
is very convenient and will be sufficient for many developers. However, if it does-
n’t meet your requirements because, say, you generate or maintain your own
resources using a utility outside Visual Studio 2005, you need the resgen. exe com-
mand-line utility. You’'ve seen that resgen. exe can generate binary resource files
from resx XML resource files. It can also generate strongly-typed resources using the
/str switch. The following command line uses the /str:C# switch to indicate that
the generated file should be written in C#:

resgen FormlResources.resx /str:C#

The output is:

Read in 2 resources from "FormlResources.resx"
Writing resource file... Done.
Creating strongly typed resource class "FormlResources"... Done.

This example creates FormlResources.cs, which isn’t the same as the Visual
Studio—generated file. The syntax of the str switch is:

/str:<language> [, <namespace>[,<class name>[,<file name>]1]11]

To get the same output with the same filename as Visual Studio, use the follow-
ing command line:

resgen FormlResources.resx /str:C#,
WindowsApplicationl, FormlResources, FormlResources.Designer.cs

You can ignore the “RG0000” warning that resgen emits; the resgen-generated code
isidentical to the code generated by Visual Studio 2005. Another resgen command-line
parameter of interest is publicClass. This parameter causes the generated class to be
public instead of internal so that it can be accessed by a different assembly.

StronglyTypedResourceBuilder

Both Visual Studio 2005 and resgen.exe use the System.Resources.Tools.
StronglyTypedResourceBuilder class to generate strongly-typed resources. This
documented .NET Framework 2.0 class is at your disposal in case you need to

59

60 .NET INTERNATIONALIZATION

generate strongly-typed resources when the two existing utilities don’t meet your
requirements. Two such possibilities are encountered in Chapter 12 and are solved
using StronglyTypedResourceBuilder:

* Visual Studio accepts only resx files as input, and resgen accepts only resx,
resources, restext, and txt files as input. If you maintain resources in another
format, such as a database, you cannot generate strongly-typed resources.

* The generated code uses the System.Resources.ResourceManager class to
get resources. If you maintain resources in another format, such as a database,
the generated class will be using the wrong resource manager class to load
the resources.

The StronglyTypedResourceBuilder.Create method has four overloads, two
of which accept a resx filename and two of which accept an IDictionary of resources
to generate code for. The strategy for using a StronglyTypedResourceBuilder
directly is to load your resources into an object that supports the IDictionary inter-
face and pass this to the sStronglyTypedResourceBuilder.Create method. The
Create method returns a CodeDomCompileUnit object, which is the complete Code-
Dom graph for the generated code. You would pass this to the CodeDomProvider.
GenerateCodeFromCompileUnit method to generate the equivalent code and write
it to a Streamwriter. Chapter 12 has a complete example.

In the .NET Framework 1.1, the GenerateCodeFromCompileUnit
method is not available directly from the CodeDomProvider.
Instead, create an ICodeProvider using
CodeDomProvider.CreateGenerator and call the same method
with the same parameters from the resulting ICodeProvider.

Strongly-Typed Resources in the .NET Framework 1.1

Strongly-typed resources are a new feature in the INET Framework 2.0 and Visual
Studio 2005. As such, the NET Framework 1.1 and Visual Studio 2003 do not sup-
port this feature. However, as you can see, this is a worthwhile feature and there is

AN INTRODUCTION TO INTERNATIONALIZATION |

no technical reason why you shouldn’t benefit from strongly-typed resources in
Visual Studio 2003. To that end, I have written an equivalent to the StronglyTyped
ResourceBuilder class for the .NET Framework 1.1, an equivalent utility to
resgen. exe called ResClassGen. exe, and a custom tool that integrates this func-
tionality into the Visual Studio 2003 IDE. These are available in the source code for
this book. The generated code is almost the same as the generated code in the NET
Framework 2.0, so you can port the code to Visual Studio 2005 when necessary.

Where Are We?

In this chapter, we laid down the foundation of the internationalization process in
NET. We discussed the terminology used in this process; introduced the culture-
Info class upon which the whole internationalization process rests; presented the
hierarchy of invariant, neutral, and specific cultures; used resx files to hold string
resources; used the ResourceManager class to retrieve resources; localized
resources; identified the purposes of the CurrentCulture and CurrentUICulture
properties; and illustrated how to use strongly-typed resources to improve the
reliability of applications. These issues represent the cornerstone of .NET interna-
tionalization. You can now move on to Chapters 4 and 5, on Windows Forms and
ASP.NET specifics.

61

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

