
IN THIS CHAPTER

• Working with Strings

• Working with Regular
Expressions

CHAPTER 3

Strings and Regular
Expressions

Regardless of what type of data you’re working with or
what kind of application you’re creating, you will undoubt-
edly need to work with strings. No matter how the data is
stored, the end user always deals in human-readable text.
As such, knowing how to work with strings is part of the
essential knowledge that any .NET developer needs to make
rich and compelling applications.

In addition to showing you how to work with strings in
the .NET Framework, this chapter will also introduce you
to regular expressions. Regular expressions are format codes
that not only allow you to verify that a particular string
matches a given format, but you can also use regular expres-
sions to extract meaningful information from what other-
wise might be considered free-form text, such as extracting
the first name from user input, or the area code from a
phone number input, or the server name from a URL.

Working with Strings
Being able to work with strings is an essential skill in creat-
ing high-quality applications. Even if you are working with
numeric or image data, end users need textual feedback.
This section of the chapter will introduce you to .NET
strings, how to format them, manipulate them and
compare them, as well as other useful operations.

Introduction to the .NET String
Before the .NET Framework and the Common Language
Runtime (CLR), developers used to have to spend consider-
able amount of effort working with strings. A reusable

library of string routines was a part of virtually every C and C++ programmer’s toolbox. It
was also difficult to write code that exchanged string data between different programming
languages. For example, Pascal stores strings as an in-memory character array, where the
first element of the array indicated the length of the string. C stores strings as an in-
memory array of characters with a variable length. The end of the string was indicated by
the ASCII null character (represented in C as \0).

In the .NET Framework, strings are stored as immutable values. This means that when you
create a string in C# (or any other .NET language), that string is stored in memory in a
fixed size to make certain aspects of the CLR run faster (you will learn more about this in
Chapter 16, “Optimizing Your NET 2.0 Code”). As a result, when you do things such as
concatenate strings or modify individual characters in a string, the CLR is actually creat-
ing multiple copies of your string.

Strings in C# are declared in the same way as other value types such as integer or float, as
shown in the following examples:

string x = “Hello World”;

string y;

string z = x;

Formatting Strings
One of the most common tasks when working with strings is formatting them. When
displaying information to users, you often display things like dates, times, numeric
values, decimal values, monetary values, or even things like hexadecimal numbers. C#
strings all have the ability to display these types of information and much more. Another
powerful feature is that when you use the standard formatting tools, the output of the
formatting will be localization-aware. For example, if you display the current date in short
form to a user in England, the current date in short form will appear different to a user in
the United States.

To create a formatted string, all you have to do is invoke the Format method of the
string class and pass it a format string, as shown in the following code:

string formatted = string.Format(“The value is {0}”, value);

The {0} placeholder indicates where a value should be inserted. In addition to specifying
where a value should be inserted, you can also specify the format for the value.

Other data types also support being converted into strings via custom format specifiers,
such as the DateTime data type, which can produce a custom-formatted output using

DateTime.ToString(“format specifiers”);

Table 3.1 illustrates some of the most commonly used format strings for formatting dates,
times, numeric values, and more.

CHAPTER 3 Strings and Regular Expressions24

TABLE 3.1 Custom DateTime Format Specifiers

Specifier Description

d Displays the current day of the month.

dd Displays the current day of the month, where values < 10 have a leading zero.

ddd Displays the three-letter abbreviation of the name of the day of the week.

dddd(+) Displays the full name of the day of the week represented by the given DateTime

value.

f(+) Displays the x most significant digits of the seconds value. The more f’s in the

format specifier, the more significant digits. This is total seconds, not the number

of seconds passed since the last minute.

F(+) Same as f(+), except trailing zeros are not displayed.

g Displays the era for a given DateTime (for example, “A.D.”)

h Displays the hour, in range 1–12.

hh Displays the hour, in range 1–12, where values < 10 have a leading zero.

H Displays the hour in range 0–23.

HH Displays the hour in range 0–23, where values < 10 have a leading zero.

m Displays the minute, range 0–59.

mm Displays the minute, range 0–59, where values < 10 have a leading zero.

M Displays the month as a value ranging from 1–12.

MM Displays the month as a value ranging from 1–12 where values < 10 have a leading

zero.

MMM Displays the three-character abbreviated name of the month.

MMMM Displays the full name of the month.

s Displays the number of seconds in range 0–59.

ss(+) Displays the number of seconds in range 0–59, where values < 10 have a

leading 0.

t Displays the first character of the AM/PM indicator for the given time.

tt(+) Displays the full AM/PM indicator for the given time.

y/yy/yyyy Displays the year for the given time.

z/zz/zzz(+) Displays the timezone offset for the given time.

Take a look at the following lines of code, which demonstrate using string format speci-
fiers to create custom-formatted date and time strings:

DateTime dt = DateTime.Now;

Console.WriteLine(string.Format(“Default format: {0}”, dt.ToString()));

Console.WriteLine(dt.ToString(“dddd dd MMMM, yyyy g”));

Console.WriteLine(string.Format(“Custom Format 1: {0:MM/dd/yy hh:mm:sstt}”, dt));

Console.WriteLine(string.Format(“Custom Format 2: {0:hh:mm:sstt G\\MT zz}”, dt));

Here is the output from the preceding code:

Default format: 9/24/2005 12:59:49 PM

Saturday 24 September, 2005 A.D.

Working with Strings 25

3

Custom Format 1: 09/24/05 12:59:49PM

Custom Format 2: 12:59:49PM GMT -06

You can also provide custom format specifiers for numeric values as well. Table 3.2
describes the custom format specifiers available for numeric values.

TABLE 3.2 Numeric Custom Format Specifiers

Specifier Description

0 The zero placeholder.

The digit placeholder. If the given value has a digit in the position indicated

by the # specifier, that digit is displayed in the formatted output.

. Decimal point.

, Thousands separator.

% Percentage specifier. The value being formatted will be multiplied by 100

before being included in the formatted output.

E0/E+0/e/e+0/e-0/E Scientific notation.

‘XX’ or “XX” Literal strings. These are included literally in the formatted output without

translation in their relative positions.

; Section separator for conditional formatting of negative, zero, and positive

values.

If multiple format sections are defined, conditional behavior can be implemented for
even more fine-grained control of the numeric formatting:

• Two sections—If you have two formatting sections, the first section applies to all
positive (including 0) values. The second section applies to negative values. This is
extremely handy when you want to enclose negative values in parentheses as is
done in many accounting software packages.

• Three sections—If you have three formatting sections, the first section applies to all
positive (not including 0) values. The second section applies to negative values, and
the third section applies to zero.

The following few lines of code illustrate how to use custom numeric format specifiers.

double dVal = 59.99;

double dNeg = -569.99;

double zeroVal = 0.0;

double pct = 0.23;

string formatString = “{0:$#,###0.00;($#,###0.00);nuttin}”;

Console.WriteLine(string.Format(formatString, dVal));

Console.WriteLine(string.Format(formatString, dNeg));

Console.WriteLine(string.Format(formatString, zeroVal));

Console.WriteLine(pct.ToString(“00%”));

CHAPTER 3 Strings and Regular Expressions26

The output generated by the preceding code is shown in the following code:

$59.99

($569.99)

nuttin

23%

Manipulating and Comparing Strings
In addition to displaying strings that contain all kinds of formatted data, other common
string-related tasks are string manipulation and comparison. An important thing to keep
in mind is that the string is actually a class in the underlying Base Class Library of the
.NET Framework. Because it is a class, you can actually invoke methods on a string, just as
you can invoke methods on any other class.

You can invoke these methods both on string literals or on string variables, as shown in
the following code:

int x = string.Length();

int y = “Hello World”.Length();

Table 3.3 is a short list of some of the most commonly used methods that you can use on
a string for obtaining information about the string or manipulating it.

TABLE 3.3 Commonly Used String Instance Methods

Method Description

CompareTo Compares this string instance with another string instance.

Contains Returns a Boolean indicating whether the current string instance contains the

given substring.

CopyTo Copies a substring from within the string instance to a specified location within

an array of characters.

EndsWith Returns a Boolean value indicating whether the string ends with a given

substring.

Equals Indicates whether the string is equal to another string. You can use the ‘==’

operator as well.

IndexOf Returns the index of a substring within the string instance.

IndexOfAny Returns the first index occurrence of any character in the substring within the

string instance.

PadLeft Pads the string with the specified number of spaces or another Unicode charac-

ter, effectively right-justifying the string.

PadRight Appends a specified number of spaces or other Unicode character to the end of

the string, creating a left-justification.

Remove Deletes a given number of characters from the string.

Replace Replaces all occurrences of a given character or string within the string instance

with the specified replacement.

Split Splits the current string into an array of strings, using the specified character as

the splitting point.

Working with Strings 27

3

StartsWith Returns a Boolean value indicating whether the string instance starts with the

specified string.

SubString Returns a specified portion of the string, given a starting point and length.

ToCharArray Converts the string into an array of characters.

ToLower Converts the string into all lowercase characters.

ToUpper Converts the string into all uppercase characters.

Trim Removes all occurrences of a given set of characters from the beginning and

end of the string.

TrimStart Performs the Trim function, but only on the beginning of the string.

TrimEnd Performs the Trim function, but only on the end of the string.

Take a look at the following code, which illustrates some of the things you can do with
strings to further query and manipulate them:

string sourceString = “Mary Had a Little Lamb”;

string sourceString2 = “ Mary Had a Little Lamb “;

Console.WriteLine(sourceString.ToLower());

Console.WriteLine(string.Format(“The string ‘{0}’ is {1} chars long.”,

sourceString,sourceString.Length));

Console.WriteLine(string.Format(“Fourth word in sentence is : {0}”,

sourceString.Split(‘ ‘)[3]));

Console.WriteLine(sourceString2.Trim());

Console.WriteLine(“Two strings equal? “ + (sourceString == sourceString2.Trim()));

The output of the preceding code looks as follows:

mary had a little lamb

The string ‘Mary Had a Little Lamb’ is 22 chars long.

Fourth word in sentence is : Little

Mary Had a Little Lamb

Two strings equal? True

Introduction to the StringBuilder
As mentioned earlier, strings are immutable. This means that when you concatenate two
strings to form a third string, there will be a short period of time where the CLR will actu-
ally have all three strings in memory. So, for example, when you concatenate as shown in
the following code:

string a = “Hello”;

string b = “World”;

string c = a + “ “ + c;

CHAPTER 3 Strings and Regular Expressions28

TABLE 3.3 Continued

Method Description

You actually end up with four strings in memory, including the space. To alleviate this
performance issue with string concatenation as well as to provide you with a tool to make
concatenation easier, the .NET Framework comes with a class called the StringBuilder.

By using a StringBuilder to dynamically create strings of variable length, you get around
the immutable string fact of CLR strings and the code can often become more readable as
a result. Take a look at the StringBuilder in action in the following code:

StringBuilder sb = new StringBuilder();

sb.Append(“Greetings!\n”);

formatString = “{0:$#,###0.00;($#,###0.00);Zero}”;

dVal = 129.99;

sb.AppendFormat(formatString, dVal);

sb.Append(“\nThis is a big concatenated string.”);

Console.WriteLine(sb.ToString());

The output of the preceding code looks like the following:

Greetings!

$129.99

This is a big concatenated string.

Note that the \n from the preceding code inserts a newline character into the string.

Working with Regular Expressions
Regular expressions allow the fast, efficient processing of text. The text being processed
can be something as small as an email address or as large as a multiline input box. The
use of regular expressions not only allows you to validate text against a defined pattern,
but it also allows you to extract data from text that matches a given pattern.

You can think of a regular expression as an extremely powerful wildcard. Most of us are
familiar enough with wildcards to know that when we see an expression like “SAMS *”,
everything that begins with the word SAMS is a match for that expression. Regular expres-
sions give you additional power, control, and functionality above and beyond simple
wildcards.

This section provides you with a brief introduction to the classes in the .NET Framework
that support the use of regular expressions. For more information on regular expressions
themselves, you might want to check out Regular Expression Pocket Reference (O’Reilly
Media, ISBN: 059600415X) or Mastering Regular Expressions, 2nd Edition (O’Reilly Media,
ISBN: 0596002890). These books will give you the information you need in order to
create your own regular expressions as well as a list of commonly used expressions.
Regular expressions themselves are beyond the scope of this chapter.

Validating Input
One extremely common use of regular expressions is to validate user input against some
predefined format. For example, rules are often enforced to ensure that passwords have

Working with Regular Expressions 29

3

certain characteristics that make them harder to break. These rules are typically defined as
regular expressions. Regular expressions are also often used to validate simple input such
as email addresses and phone numbers.

The key class provided by the .NET Framework for working with regular expressions is the
RegEx class. This class provides a static method called IsMatch that returns a Boolean indi-
cating whether the specified input string matches a given regular expression.

In the following code, a common regular expression used to test for valid email addresses
is used:

string emailPattern =

@”^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.)|[ccc]

(([\w-]+\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$”;

Console.Write(“Enter an e-mail address:”);

string emailInput = Console.ReadLine();

bool match = Regex.IsMatch(emailInput, emailPattern);

if (match)

Console.WriteLine(“E-mail address is valid.”);

else

Console.WriteLine(“Supplied input is not a valid e-mail address.”);

Don’t worry if this regular expression doesn’t make much sense to you. The basic idea
behind the email pattern is that it requires some alphanumeric characters, then an @-sign,
and then some combination of characters followed by a “.”, and at least two characters
following that. Try out the preceding code on different inputs and see what results you
get. Even if you don’t understand the regular expressions themselves, knowing that they
exist and that you can use them to validate input is going to be extremely helpful in the
creation of your applications.

Extracting Data from Input
The other common use for regular expressions is in parsing text according to the expres-
sion and using that to extract data (called Group matches) from user input.

Regular expressions include a particular feature called groups. A group allows you to put a
named identifier on a particular section of the regular expression. When you call Match()
to compare input data against the pattern, the results actually separate the matches by
group, allowing you to extract the portion of the input that matched each group.

For example, in the preceding example we could have created a group called username
that would have allowed us to extract all of the data that precedes the @ symbol in an
email address. Then, when performing a match, we could have extracted the username
from the input using the regular expression’s named group.

Take a look at the following code, which illustrates how to extract both the protocol
name and the port number from a URL entered by the user at the console. The great
thing about regular expressions is that they are their own language, so they don’t have a
particular affinity toward C, C++, C#, VB.NET, or any other language. This makes it easy

CHAPTER 3 Strings and Regular Expressions30

to borrow regular expressions from samples and reference guides on the Internet and in
publications. In the following code, the regular expression was borrowed from an MSDN
example:

string urlPattern = @”^(?<proto>\w+)://[^/]+?(?<port>:\d+)?/”;

Console.WriteLine();

Console.Write(“Enter a URL for data parsing: “);

string url = Console.ReadLine();

Regex urlExpression = new Regex(urlPattern, RegexOptions.Compiled);

Match urlMatch = urlExpression.Match(url);

Console.WriteLine(“The Protocol you entered was “ +

urlMatch.Groups[“proto”].Value);

Console.WriteLine(“The Port Number you entered was “ +

urlMatch.Groups[“port”].Value);

When you run the preceding code against a URL without a port number, you will notice
that you don’t get any group values. This is because the input doesn’t actually match the
regular expression at all. When there are no matches, you obviously can’t extract mean-
ingful data from the named groups. When you run the preceding code against a URL with
port numbers that match the regular expression, you will get output that looks like the
following text:

Enter a URL for data parsing: http://server.com:2100/home.aspx

The Protocol you entered was http

The Port Number you entered was :2100

Summary
In this chapter you have seen that the days of having to carry around your own library of
string routines like a portable life preserver are long gone. With C# and the .NET
Framework, strings are a native part of the library of base classes, and as such provide you
with a full host of utility methods for comparison, manipulation, formatting, and much
more. You also saw that the StringBuilder class provides you with an easy-to-use set of
utility methods for dynamically building strings without the performance penalty of
native string concatenation.

Finally, this chapter gave you a brief introduction into the power of regular expressions
and how that power can be harnessed with the Regex class. After reading through this
chapter and testing out the sample code, you should be familiar with some of the things
that you can do with strings and regular expressions to make your applications more
powerful.

Summary 31

3

This page intentionally left blank

