
DAY 19:
Reading and Writing
RSS Feeds

Today you work with Extensible Markup Language (XML), a formatting
standard that enables data to be completely portable.

You’ll explore XML in the following ways:

n Representing data as XML

n Discovering why XML is a useful way to store data

n Using XML to publish web content

n Reading and writing XML data

The XML format employed throughout the day is Really Simple
Syndication (RSS), a popular way to publish web content and share infor-
mation on site updates adopted by millions of sites.

Using XML
One of Java’s main selling points is that the language produces programs that can run on
different operating systems without modification. The portability of software is a big
convenience in today’s computing environment, where Windows, Linux, Mac OS, and a
half dozen other operating systems are in wide use and many people work with multiple
systems.

XML, which stands for Extensible Markup Language, is a format for storing and orga-
nizing data that is independent of any software program that works with the data.

Data that is compliant with XML is easier to reuse for several reasons.

First, the data is structured in a standard way, making it possible for software programs
to read and write the data as long as they support XML. If you create an XML file that
represents your company’s employee database, there are several dozen XML parsers that
can read the file and make sense of its contents.

This is true no matter what kind of information you collect about each employee. If your
database contains only the employee’s name, ID number, and current salary, XML
parsers can read it. If it contains 25 items, including birthday, blood type, and hair color,
parsers can read that, too.

Second, the data is self-documenting, making it easier for people to understand the pur-
pose of a file just by looking at it in a text editor. Anyone who opens your XML
employee database should be able to figure out the structure and content of each
employee record without any assistance from you.

This is evident in Listing 19.1, which contains an RSS file. Because RSS is an XML
dialect, it is structured under the rules of XML.

LISTING 19.1 The Full Text of workbench.rss

1: <?xml version=”1.0” encoding=”utf-8”?>
2: <rss version=”2.0”>
3: <channel>
4: <title>Workbench</title>
5: <link>http://www.cadenhead.org/workbench/</link>
6: <description>Programming, publishing, politics, and popes</description>
7: <docs>http://www.rssboard.org/rss-specification</docs>
8: <item>
9: <title>Toronto Star: Only 100 Blogs Make Money</title>
10: <link>http://www.cadenhead.org/workbench/news/3132</link>
11: <pubDate>Mon, 26 Feb 2007 11:30:57 -0500</pubDate>
12: <guid isPermaLink=”false”>tag:cadenhead.org,2007:weblog.3132</guid>
13: <enclosure length=”2498623” type=”audio/mpeg”

512 DAY 19: Reading and Writing RSS Feeds

LISTING 19.1 Continued

14: url=”http://mp3.cadenhead.org/3132.mp3” />
15: </item>
16: <item>
17: <title>Eliot Spitzer Files UDRP to Take EliotSpitzer.Com</title>
18: <link>http://www.cadenhead.org/workbench/news/3130</link>
19: <pubDate>Thu, 22 Feb 2007 18:02:53 -0500</pubDate>
20: <guid isPermaLink=”false”>tag:cadenhead.org,2007:weblog.3130</guid>
21: </item>
22: <item>
23: <title>Fuzzy Zoeller Sues Over Libelous Wikipedia Page</title>
24: <link>http://www.cadenhead.org/workbench/news/3129</link>
25: <pubDate>Thu, 22 Feb 2007 13:48:45 -0500</pubDate>
26: <guid isPermaLink=”false”>tag:cadenhead.org,2007:weblog.3129</guid>
27: </item>
28: </channel>
29: </rss>

Enter this text using a word processor or text editor and save it as plain text under the
name workbench.rss. (You can also download a copy of it from the book’s website at
http://www.java21days.com on the Day 19 page.)

Can you tell what the data represents? Although the ?xml tag at the top might be indeci-
pherable, the rest is clearly a website database of some kind.

The ?xml tag in the first line of the file has a version attribute with a value of 1.0 and
an encoding attribute of “utf-8”. This establishes that the file follows the rules of XML
1.0 and is encoded with the UTF-8 character set.

Data in XML is surrounded by tag elements that describe the data. Opening tags begin
with a “<” character followed by the name of the tag and a “>” character. Closing tags
begin with the “</” characters followed by a name and a “>” character. In Listing 19.1,
for example, <item> on line 8 is an opening tag, and </item> on line 15 is a closing tag.
Everything within those tags is considered to be the value of that element.

Elements can be nested within other elements, creating a hierarchy of XML data that
establishes relationships within that data. In Listing 19.1, everything in lines 9–14 is
related; each element defines something about the same website item.

Elements also can include attributes, which are made up of data that supplements the rest
of the data associated with the element. Attributes are defined within an opening tag ele-
ment. The name of an attribute is followed by an equal sign and text within quotation
marks.

Using XML 513

19

http://www.java21days.com

In line 12 of Listing 19.1, the guid element includes an isPermaLink attribute with a
value of “false”. This indicates that the element’s value,
“tag:cadenhead.org,2007:weblog.3132”, is not a permalink, the URL at which the
item can be loaded in a browser.

XML also supports elements defined by a single tag rather than a pair of tags. The tag
begins with a “<” character followed by the name of the tag and ends with the “/>” char-
acters. The RSS file includes an enclosure element in lines 13–14 that describes an
MP3 audio file associated with the item.

XML encourages the creation of data that’s understandable and usable even if the user
doesn’t have the program that created it and cannot find any documentation that
describes it.

The purpose of the RSS file in Listing 19.1 can be understood, for the most part, simply
by looking at it. Each item represents a web page that has been updated recently.

Publishing new site content over RSS and a similar format, Atom,
has become one of the best ways to build readership on the Web.
Thousands of people subscribe to RSS files, which are called
feeds, using reader software such as Google Reader, Bloglines,
and My Yahoo.

Rogers Cadenhead, the lead author of this book, is the current
chairman of the RSS Advisory Board, the group that publishes the
RSS 2.0 specification. For more information on the format, visit
the board’s site at http://www.rssboard.org or subscribe to its
RSS feed at http://www.rssboard.org/rss-feed.

Data that follows XML’s formatting rules is said to be well-formed. Any software that
can work with XML reads and writes well-formed XML data.

By insisting on well-formed markup, XML simplifies the task of
writing programs that work with the data. RSS makes website
updates available in a form that’s easily processed by software.
The RSS feed for Workbench at http://www.cadenhead.org/work-
bench/rss, published by one of this book’s authors, has two dis-
tinct audiences: humans reading the blog through their preferred
RSS reader and computers that do something with this data, such
as Technorati, which offers a searchable database of site updates,
links between different blogs, and categorization. To see how
Technorati uses that RSS feed, visit http://technorati.com/
blogs/cadenhead.org/workbench.

514 DAY 19: Reading and Writing RSS Feeds

TIP

NOTE

http://www.rssboard.org
http://www.rssboard.org/rss-feed
http://www.cadenhead.org/workbench/rss
http://www.cadenhead.org/workbench/rss
http://technorati.com/blogs/cadenhead.org/workbench
http://technorati.com/blogs/cadenhead.org/workbench

Designing an XML Dialect
Although XML is described as a language and is compared with Hypertext Markup
Language (HTML), it’s actually much larger in scope than that. XML is a markup lan-
guage that defines how to define a markup language.

That’s an odd distinction to make, and it sounds like the kind of thing you’d encounter in
a philosophy textbook. This concept is important to understand, though, because it
explains how XML can be used to define data as varied as health-care claims, genealogi-
cal records, newspaper articles, and molecules.

The “X” in XML stands for Extensible, and it refers to organizing data for your own pur-
poses. Data that’s organized using the rules of XML can represent anything you want:

n A programmer at a telemarketing company can use XML to store data on each out-
going call, saving the time of the call, the number, the operator who made the call,
and the result.

n A lobbyist can use XML to keep track of the annoying telemarketing calls she
receives, noting the time of the call, the company, and the product being peddled.

n A programmer at a government agency can use XML to track complaints about
telemarketers, saving the name of the marketing firm and the number of com-
plaints.

Each of these examples uses XML to define a new language that suits a specific purpose.
Although you could call them XML languages, they’re more commonly described as
XML dialects or XML document types.

An XML dialect can be designed using a Document Type Definition (DTD) that indi-
cates the potential elements and attributes that it covers.

A special !DOCTYPE declaration can be placed in XML data, right after the initial ?xml
tag, to identify its DTD. Here’s an example:

<!DOCTYPE Library SYSTEM “librml.dtd”>

The !DOCTYPE declaration is used to identify the DTD that applies to the data. When a
DTD is present, many XML tools can read XML created for that DTD and determine
whether the data follows all the rules correctly. If it doesn’t, it is rejected with a refer-
ence to the line that caused the error. This process is called validating the XML.

One thing you’ll run into as you work with XML is data that has been structured as
XML but wasn’t defined using a DTD. Most versions of RSS files do not require a DTD.
This data can be parsed (presuming it’s well-formed), so you can read it into a program

Designing an XML Dialect 515

19

and do something with it, but you can’t check its validity to make sure that it’s organized
correctly according to the rules of its dialect.

To get an idea of what kind of XML dialects have been created,
Cover Pages offers a list at http://xml.coverpages.org/
xmlApplications.html.

Processing XML with Java
Java supports XML through the Java API for XML Processing, a set of packages for
reading, writing, and manipulating XML data.

The javax.xml.parsers package is the entry point to the other packages. These classes
can be used to parse and validate XML data using two techniques: the Simple API for
XML (SAX) and the Document Object Model (DOM). However, they can be difficult to
implement, which has inspired other groups to offer their own class libraries to work
with XML.

You’ll spend the remainder of the day working with one of these alternatives: the XML
Object Model (XOM) library, an open source Java class library that makes it extremely
easy to read, write, and transform XML data.

To find out more about the Java API for XML Processing, visit the
company’s Java website at http://java.sun.com/xml.

Processing XML with XOM
One of the most important skills you can develop as a Java programmer is the ability to
find suitable packages and classes that can be employed in your own projects. For obvi-
ous reasons, making use of a well-designed class library is much easier than developing
one on your own.

Although Sun’s Java class library contains thousands of well-designed classes that cover
a comprehensive range of development needs, the company isn’t the only supplier of
packages that may prove useful to your efforts.

516 DAY 19: Reading and Writing RSS Feeds

TIP

NOTE

http://xml.coverpages.org/xmlApplications.html
http://xml.coverpages.org/xmlApplications.html
http://java.sun.com/xml

Dozens of Java packages are offered by other companies, groups, and individuals under a
variety of commercial and open source licenses. Some of the most notable come from
Apache Jakarta, a Java development project of the Apache Software Foundation that has
produced the web application framework Struts, the Log4J logging class library, and
many other popular libraries.

Another terrific open source Java class library is the XOM library, a tree-based package
for XML processing that strives to be simple to learn, simple to use, and uncompromis-
ing in its adherence to well-formed XML.

The library was developed by the programmer and author Elliotte Rusty Harold based on
his experience with Sun’s XML processing packages and other efforts to handle XML in
Java.

The project was originally envisioned as a fork of JDOM, a popular tree-based model for
representing an XML document. Harold has contributed code to that open source project
and participated in its development.

Instead of forking the JDOM code, Harold decided to start from scratch and adopt some
of its core design principles in XOM.

The library embodies the following principles:

n XML documents are modeled as a tree with Java classes representing nodes on the
tree such as elements, comments, processing instructions, and document type defi-
nitions. A programmer can add and remove nodes to manipulate the document in
memory, a simple approach that can be implemented gracefully in Java.

n All XML data produced by XOM is well-formed and has a well-formed name-
space.

n Each element of an XML document is represented as a class with constructor
methods.

n Object serialization is not supported. Instead, programmers are encouraged to use
XML as the format for serialized data, enabling it to be readily exchanged with any
software that reads XML regardless of the programming language in which it was
developed.

n The library relies on another XML parser to read XML documents and fill trees
instead of doing this low-level work directly. XOM uses a SAX parser that must be
downloaded and installed separately. Right now, the preferred parser is Apache
Xerces 2.7.1.

Processing XML with XOM 517

19

XOM is available for download from the web address http://www.cafeconleche.org/
XOM. The most current version at this writing is 1.1, which includes Xerces 2.7.1 in its
distribution.

XOM is released according to the terms of the open source GNU
Lesser General Public License (LGPL). The license grants permis-
sion to distribute the library without modification with Java pro-
grams that use it.

You also can make changes to the XOM class library as long as
you offer them under the LGPL. The full license is published online
at http://www.cafeconleche.org/XOM/license.xhtml.

After you have downloaded XOM and added its packages to your system’s Classpath,
you’re ready to begin using XOM.

The full installation instructions are available from the XOM and Xerces websites. The
classes are distributed as JAR archive files—xom-1.1.jar, xercesImpl.jar, and xml-
apis.jar. These files should be added to your system’s Classpath environment variable
so that your Java programs can use XOM classes.

Creating an XML Document
The first application you will create, RssWriter, creates an XML document that contains
the start of an RSS feed. The document is shown in Listing 19.2.

LISTING 19.2 The Full Text of feed.rss

1: <?xml version=”1.0”?>
2: <rss version=”2.0”>
3: <channel>
4: <title>Workbench</title>
5: <link>http://www.cadenhead.org/workbench/</link>
6: </channel>
7: </rss>

The base nu.xom package contains classes for a complete XML document (Document)
and the nodes a document can contain (Attribute, Comment, DocType, Element,
ProcessingInstruction, and Text).

The RssStarter application uses several of these classes. First, an Element object is cre-
ated by specifying the element’s name as an argument:

Element rss = new Element(“rss”);

518 DAY 19: Reading and Writing RSS Feeds

CAUTION

http://www.cafeconleche.org/XOM
http://www.cafeconleche.org/XOM/license.xhtml
http://www.cafeconleche.org/XOM

This statement creates an object for the root element of the document, rss. Element’s
one-argument constructor can be used because the document does not employ a feature
of XML called namespaces; if it did, a second argument would be necessary: the name-
space uniform resource identifier (URI) of the element. The other classes in the XOM
library support namespaces in a similar manner.

In the XML document in Listing 19.2, the rss element includes an attribute named ver-
sion with the value “2.0”. An attribute can be created by specifying its name and value
in consecutive arguments:

Attribute version = new Attribute(“version”, “2.0”);

Attributes are added to an element by calling its addAttribute() method with the
attribute as the only argument:

rss.addAttribute(version);

The text contained within an element is represented by the Text class, which is con-
structed by specifying the text as a String argument:

Text titleText = new Text(“Workbench”);

When composing an XML document, all of its elements end up inside a root element
that is used to create a Document object—a Document constructor is called with the root
element as an argument. In the RssStarter application, this element is called rss. Any
Element object can be the root of a document:

Document doc = new Document(rss);

In XOM’s tree structure, the classes representing an XML document and its constituent
parts are organized into a hierarchy below the generic superclass nu.xom.Node. This
class has three subclasses in the same package: Attribute, LeafNode, and ParentNode.

To add a child to a parent node, call the parent’s appendChild() method with the node to
add as the only argument. The following code creates three elements—a parent called
domain and two of its children, name and dns:

Element channel = new Element(“channel”);
Element link = new Element(“link”);
Text linkText = new Text(“http://www.cadenhead.org/workbench/”);
link.appendChild(linkText);
channel.appendChild(link);

Processing XML with XOM 519

19

The appendChild() method appends a new child below all other children of that parent.
The preceding statements produce this XML fragment:

<channel>
<link>http://www.cadenhead.org/workbench/</link>

</channel>

The appendChild() method also can be called with a String argument instead of a
node. A Text object representing the string is created and added to the element:

link.appendChild(“http://www.cadenhead.org/workbench/”);

After a tree has been created and filled with nodes, it can be displayed by calling the
Document method toXML(), which returns the complete and well-formed XML document
as a String.

Listing 19.3 shows the complete application.

LISTING 19.3 The Full text of RssStarter.java

1: import nu.xom.*;
2:
3: public class RssStarter {
4: public static void main(String[] arguments) {
5: // create an <rss> element to serve as the document’s root
6: Element rss = new Element(“rss”);
7:
8: // add a version attribute to the element
9: Attribute version = new Attribute(“version”, “2.0”);
10: rss.addAttribute(version);
11: // create a <channel> element and make it a child of <rss>
12: Element channel = new Element(“channel”);
13: rss.appendChild(channel);
14: // create the channel’s <title>
15: Element title = new Element(“title”);
16: Text titleText = new Text(“Workbench”);
17: title.appendChild(titleText);
18: channel.appendChild(title);
19: // create the channel’s <link>
20: Element link = new Element(“link”);
21: Text linkText = new Text(“http://www.cadenhead.org/workbench/”);
22: link.appendChild(linkText);
23: channel.appendChild(link);
24:
25: // create a new document with <rss> as the root element
26: Document doc = new Document(rss);
27:
28: // Display the XML document

520 DAY 19: Reading and Writing RSS Feeds

http://www.cadenhead.org/workbench/

LISTING 19.3 Continued

29: System.out.println(doc.toXML());
30: }
31: }

The RssStarter application displays the XML document it creates on standard output.
The following command runs the application and redirects its output to a file called
feed.rss:

java RssStarter > feed.rss

XOM automatically precedes a document with an XML declaration.

The XML produced by this application contains no indentation; elements are stacked on
the same line.

XOM only preserves significant whitespace when representing XML data—the spaces
between elements in the RSS feed contained in Listing 19.2 are strictly for presentation
purposes and are not produced automatically when XOM creates an XML document. A
subsequent example demonstrates how to control indentation.

Modifying an XML Document
The next project, the DomainEditor application, makes several changes to the XML doc-
ument that was just produced by the RssStarter application, feed.rss. The text
enclosed by the link element is changed to “http://www.cadenhead.org/”, and a new
item element is added:

<item>
<title>Fuzzy Zoeller Sues Over Libelous Wikipedia Page</title>

</item>

Using the nu.xom package, XML documents can be loaded into a tree from several
sources: a File, InputStream, Reader, or a URL (which is specified as a String instead
of a java.net.URL object).

The Builder class represents a SAX parser that can load an XML document into a
Document object. Constructor methods can be used to specify a particular parser or let
XOM use the first available parser from this list: Xerces 2, Crimson, Piccolo, GNU
Aelfred, Oracle, XP, Saxon Aelfred, or Dom4J Aelfred. If none of these is found, the
parser specified by the system property org.xml.sax.driver is used. Constructors also
determine whether the parser is validating or nonvalidating.

Processing XML with XOM 521

19

http://www.cadenhead.org/

The Builder() and Builder(true) constructors both use the default parser—most likely
a version of Xerces. The presence of the Boolean argument true in the second construc-
tor configures the parser to be validating. It would be nonvalidating otherwise. A validat-
ing parser throws a nu.xom.ValidityException if the XML document doesn’t validate
according to the rules of its document type definition.

The Builder object’s build() method loads an XML document from a source and
returns a Document object:

Builder builder = new Builder();
File xmlFile = new File(“feed.rss”);
Document doc = builder.build(xmlFile);

These statements load an XML document from the file feed.rss barring one of two
problems: A nu.xom.ParseException is thrown if the file does not contain well-formed
XML, and a java.io.IOException is thrown if the input operation fails.

Elements are retrieved from the tree by calling a method of their parent node.

A Document object’s getRootElement() method returns the root element of the docu-
ment:

Element root = doc.getRootElement();

In the XML document feed.rss, the root element is domains.

Elements with names can be retrieved by calling their parent node’s
getFirstChildElement() method with the name as a String argument:

Element channel = root.getFirstChildElement(“channel”);

This statement retrieves the channel element contained in the rss element (or null if
that element could not be found). Like other examples, this is simplified by the lack of a
namespace in the document; there are also methods where a name and namespace are
arguments.

When several elements within a parent have the same name, the parent node’s
getChildElements() method can be used instead:

Elements children = channel.getChildElements()

The getChildElements() method returns an Elements object containing each of the ele-
ments. This object is a read-only list and does not change automatically if the parent
node’s contents change after getChildElements() is called.

Elements has a size() method containing an integer count of the elements it holds. This
can be used in a loop to cycle through each element in turn beginning with the one at

522 DAY 19: Reading and Writing RSS Feeds

position 0. There’s a get() method to retrieve each element; call it with the integer posi-
tion of the element to be retrieved:

for (int i = 0; i < children.size(); i++) { Element link = children.get(i);
}

This for loop cycles through each child element of the channel element.

Elements without names can be retrieved by calling their parent node’s getChild()
method with one argument: an integer indicating the element’s position within the parent
node:

Text linkText = (Text) link.getChild(0);

This statement creates the Text object for the text “http://www.cadenhead.org/work-
bench/” found within the link element. Text elements always will be at position 0
within their enclosing parent.

To work with this text as a string, call the Text object’s getValue() method, as in this
statement:

if (linkText.getValue().equals(“http://www.cadenhead.org/workbench/”))
// ...

}

The DomainEditor application only modifies a link element enclosing the text
“http://www.cadenhead.org/workbench/”. The application makes the following changes:
The text of the link element is deleted, the new text “http://www.cadenhead.org/” is
added in its place, and then a new item element is added.

A parent node has two removeChild() methods to delete a child node from the docu-
ment. Calling the method with an integer deletes the child at that position:

Element channel = domain.getFirstChildElement(“channel”);
Element link = dns.getFirstChildElement(“link”);
link.removeChild(0);

These statements would delete the Text object contained within the channel’s first link
element.

Calling the removeChild() method with a node as an argument deletes that particular
node. Extending the previous example, the link element could be deleted with this
statement:

channel.removeChild(link);

Processing XML with XOM 523

19

http://www.cadenhead.org/workbench/
http://www.cadenhead.org/workbench/
http://www.cadenhead.org/workbench/
http://www.cadenhead.org/

Listing 19.4 shows the source code of the DomainEditor application.

LISTING 19.4 The Full Text of DomainEditor.java

1: import java.io.*;
2: import nu.xom.*;
3:
4: public class DomainEditor {
5: public static void main(String[] arguments) throws IOException {
6: try {
7: // create a tree from the XML document feed.rss
8: Builder builder = new Builder();
9: File xmlFile = new File(“feed.rss”);
10: Document doc = builder.build(xmlFile);
11:
12: // get the root element <rss>
13: Element root = doc.getRootElement();
14:
15: // get its <channel> element
16: Element channel = root.getFirstChildElement(“channel”);
17:
18: // get its <link> elements
19: Elements children = channel.getChildElements();
20: for (int i = 0; i < children.size(); i++) {
21:
22: // get a <link> element
23: Element link = children.get(i);
24:
25: // get its text
26: Text linkText = (Text) link.getChild(0);
27:
28: // update any link matching a URL
29: if (linkText.getValue().equals(
30: “http://www.cadenhead.org/workbench/”)) {
31:
32: // update the link’s text
33: link.removeChild(0);
34: link.appendChild(“http://www.cadenhead.org/”);
35: }
36: }
37:
38: // create new elements and attributes to add
39: Element item = new Element(“item”);
40: Element itemTitle = new Element(“title”);
41:
42: // add them to the <channel> element
43: itemTitle.appendChild(
44: “Fuzzy Zoeller Sues Over Libelous Wikipedia Page”
45:);
46: item.appendChild(itemTitle);

524 DAY 19: Reading and Writing RSS Feeds

LISTING 19.4 Continued

47: channel.appendChild(item);
48:
49: // display the XML document
50: System.out.println(doc.toXML());
51: } catch (ParsingException pe) {
52: System.out.println(“Error parsing document: “ + pe.getMessage());
53: pe.printStackTrace();
54: System.exit(-1);
55: }
56: }
57: }

The DomainEditor application displays the modified XML document to standard output,
so it can be run with the following command to produce a file named feeds2.rss:

java DomainEditor > feed2.rss

Formatting an XML Document
As described earlier, XOM does not retain insignificant whitespace when representing
XML documents. This is in keeping with one of XOM’s design goals—to disregard any-
thing that has no syntactic significance in XML. (Another example of this is how text is
treated identically whether created using character entities, CDATA sections, or regular
characters.)

Today’s next project is the DomainWriter application, which adds a comment to the
beginning of the XML document feeds2.rss and serializes it with indented lines, pro-
ducing the version shown in Listing 19.5.

LISTING 19.5 The Full Text of feeds2.rss

1: <?xml version=”1.0”?>
2: <rss version=”2.0”>
3: <channel>
4: <title>Workbench</title>
5: <link>http://www.cadenhead.org/</link>
6: <item>
7: <title>Fuzzy Zoeller Sues Over Libelous Wikipedia Page</title>
8: </item>
9: </channel>
10: </rss>

Processing XML with XOM 525

19

The Serializer class in nu.xom offers control over how an XML document is formatted
when it is displayed or stored serially. Indentation, character encoding, line breaks, and
other formatting are established by objects of this class.

A Serializer object can be created by specifying an output stream and character encod-
ing as arguments to the constructor:

File inFile = new File(arguments[0]);
FileOutputStream fos = new FileOutputStream(“new_” +

inFile.getName());
Serializer output = new Serializer(fos, “ISO-8859-1”);

These statements serialize a file using the ISO-8859-1 character encoding. The file is
given a name based on a command-line argument.

Serializer supports 20 encodings, including ISO-10646-UCS-2, ISO-8859-1 through
ISO-8859-10, ISO-8859-13 through ISO-8859-16, UTF-8, and UTF-16. There’s also a
Serializer() constructor that takes only an output stream as an argument; this uses the
UTF-8 encoding by default.

Indentation is set by calling the serializer’s setIndentation() method with an integer
argument specifying the number of spaces:

output.setIndentation(2);

An entire XML document is written to the serializer destination by calling the serializer’s
write() method with the document as an argument:

output.write(doc);

The DomainWriter application inserts a comment atop the XML document instead of
appending it at the end of a parent node’s children. This requires another method of the
parent node, insertChild(), which is called with two arguments—the element to add
and the integer position of the insertion:

Builder builder = new Builder();
Document doc = builder.build(arguments[0]);
Comment timestamp = new Comment(“File created “ +

new java.util.Date());
doc.insertChild(timestamp, 0);

The comment is placed at position 0 atop the document, moving the domains tag down
one line but remaining below the XML declaration.

Listing 19.6 contains the source code of the application.

526 DAY 19: Reading and Writing RSS Feeds

LISTING 19.6 The Full Text of DomainWriter.java

1: import java.io.*;
2: import nu.xom.*;
3:
4: public class DomainWriter {
5: public static void main(String[] arguments) throws IOException {
6: try {
7: // Create a tree from an XML document
8: // specified as a command-line argument
9: Builder builder = new Builder();
10: Document doc = builder.build(arguments[0]);
11:
12: // Create a comment with the current time and date
13: Comment timestamp = new Comment(“File created “
14: + new java.util.Date());
15:
16: // Add the comment above everything else in the
17: // document
18: doc.insertChild(timestamp, 0);
19:
20: // Create a file output stream to a new file
21: File inFile = new File(arguments[0]);
22: FileOutputStream fos = new FileOutputStream(“new_” +
inFile.getName());
23:
24: // Using a serializer with indention set to 2 spaces,
25: // write the XML document to the file
26: Serializer output = new Serializer(fos, “ISO-8859-1”);
27: output.setIndent(2);
28: output.write(doc);
29: } catch (ParsingException pe) {
30: System.out.println(“Error parsing document: “ + pe.getMessage());
31: pe.printStackTrace();
32: System.exit(-1);
33: }
34: }
35: }

The DomainWriter application takes an XML filename as a command-line argument
when run:

java DomainWriter feeds2.rss

This command produces a file called new_feeds2.rss that contains an indented copy of
the XML document with a time stamp inserted as a comment.

Processing XML with XOM 527

19

Evaluating XOM
These three sample applications cover the core features of the main XOM package and
are representative of its straightforward approach to XML processing.

There also are smaller nu.xom.canonical, nu.xom.converters, nu.xom.xinclude, and
nu.xom.xslt packages to support XInclude, XSLT, canonical XML serialization, and
conversions between the XOM model for XML and the one used by DOM and SAX.

Listing 19.7 contains an application that works with XML from a dynamic source: RSS
feeds of recently updated web content from the producer of the feed. The RssFilter
application searches the feed for specified text in headlines, producing a new XML docu-
ment that contains only the matching items and shorter indentation. It also modifies the
feed’s title and adds an RSS 0.91 document type declaration if one is needed in an RSS
0.91 format feed.

LISTING 19.7 The Full Text of RssFilter.java

1: import nu.xom.*;
2:
3: public class RssFilter {
4: public static void main(String[] arguments) {
5:
6: if (arguments.length < 2) {
7: System.out.println(“Usage: java RssFilter rssFile searchTerm”);
8: System.exit(-1);
9: }
10:
11: // Save the RSS location and search term
12: String rssFile = arguments[0];
13: String searchTerm = arguments[1];
14:
15: try {
16: // Fill a tree with an RSS file’s XML data
17: // The file can be local or something on the
18: // Web accessible via a URL.
19: Builder bob = new Builder();
20: Document doc = bob.build(rssFile);
21:
22: // Get the file’s root element (<rss>)
23: Element rss = doc.getRootElement();
24:
25: // Get the element’s version attribute
26: Attribute rssVersion = rss.getAttribute(“version”);
27: String version = rssVersion.getValue();
28:
29: // Add the DTD for RSS 0.91 feeds, if needed
30: if ((version.equals(“0.91”)) & (doc.getDocType() == null)) {

528 DAY 19: Reading and Writing RSS Feeds

LISTING 19.7 Continued

31: DocType rssDtd = new DocType(“rss”,
32: “http://my.netscape.com/publish/formats/rss-0.91.dtd”);
33: doc.insertChild(rssDtd, 0);
34: }
35:
36: // Get the first (and only) <channel> element
37: Element channel = rss.getFirstChildElement(“channel”);
38:
39: // Get its <title> element
40: Element title = channel.getFirstChildElement(“title”);
41: Text titleText = (Text)title.getChild(0);
42:
43: // Change the title to reflect the search term
44: titleText.setValue(titleText.getValue() + “: Search for “ +
45: searchTerm + “ articles”);
46:
47: // Get all of the <item> elements and loop through them
48: Elements items = channel.getChildElements(“item”);
49: for (int i = 0; i < items.size(); i++) {
50: // Get an <item> element
51: Element item = items.get(i);
52:
53: // Look for a <title> element inside it
54: Element itemTitle = item.getFirstChildElement(“title”);
55:
56: // If found, look for its contents
57: if (itemTitle != null) {
58: Text itemTitleText = (Text) itemTitle.getChild(0);
59:
60: // If the search text is not found in the item,
61: // delete it from the tree
62: if (itemTitleText.toString().indexOf(searchTerm) == -1)
63: channel.removeChild(item);
64: }
65: }
66:
67: // Display the results with a serializer
68: Serializer output = new Serializer(System.out);
69: output.setIndent(2);
70: output.write(doc);
71: } catch (Exception exc) {
72: System.out.println(“Error: “ + exc.getMessage());
73: exc.printStackTrace();
74: }
75: }
76: }

Evaluating XOM 529

19

One feed that can be used to test the application is the one from the Toronto Star news-
paper. The following command searches it for items with titles that mention the word
“snow”:

java RssFilter http://www.thestar.com/rss/000-082-672?searchMode=Lineup snow

Comments in the application’s source code describe its functionality.

XOM’s design is strongly informed by one overriding principle: enforced simplicity.

On the website for the class library, Harold states that XOM “should help inexperienced
developers do the right thing and keep them from doing the wrong thing. The learning
curve needs to be really shallow, and that includes not relying on best practices that are
known in the community but are not obvious at first glance.”

The new class library is useful for Java programmers whose Java programs require a
steady diet of XML.

Summary
Today, you learned the basics of another popular format for data representation,
Extensible Markup Language (XML), by exploring one of the most popular uses of
XML—RSS feeds.

In many ways, Extensible Markup Language is the data equivalent of the Java language.
It liberates data from the software used to create it and the operating system the software
ran on, just as Java can liberate software from a particular operating system.

By using a class library such as the open source XML Object Model (XOM) library, you
can easily create and retrieve data from an XML file.

A big advantage to representing data using XML is that you will always be able to get
that data back. If you decide to move the data into a relational database or some other
form, you can easily retrieve the information. The data being produced as RSS feeds can
be mined by software in countless ways, today and in the future.

You also can transform XML into other forms such as HTML through a variety of tech-
nology, both in Java and through tools developed in other languages.

530 DAY 19: Reading and Writing RSS Feeds

http://www.thestar.com/rss/000-082-672?searchMode=Lineup

Q&A
Q What’s the difference between RSS 1.0, RSS 2.0, and Atom?

A RSS 1.0 is a syndication format that employs the Resource Description Framework
(RDF) to describe items in the feed. RSS 2.0 shares a common origin with RSS 1.0
but does not make use of RDF. Atom is another syndication format that was cre-
ated after the preceding two formats and has been adopted as an Internet standard
by the IETF.

All three formats are suitable for offering web content in XML that can be read
with a reader such as Bloglines or My Yahoo or read by software and stored,
manipulated, or transformed.

Q Why is Extensible Markup Language called XML instead of EML?

A None of the founders of the language appears to have documented the reason for
choosing XML as the acronym. The general consensus in the XML community is
that it was chosen because it “sounds cooler” than EML. Before anyone snickers at
that distinction, Sun Microsystems chose the name Java for its programming lan-
guage using the same criteria, turning down more technical-sounding alternatives
such as DNA and WRL.

There is a possibility that the founders of XML were trying to avoid confusion
with a programming language called EML (Extended Machine Language), which
predates Extensible Markup Language.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What does RSS stand for?

a. Really Simple Syndication

b. RDF Site Summary

c. Both

2. What method cannot be used to add text to an XML element using XOM?

a. addAttribute(String, String)

b. appendChild(Text)

c. appendChild(String)

Quiz 531

19

3. When all the opening element tags, closing element tags, and other markup are
applied consistently in a document, what adjective describes the document?

a. Validating

b. Parsable

c. Well-formed

Answers
1. c. One version, RSS 2.0, claims Really Simple Syndication as its name. The other,

RSS 1.0, claims RDF Site Summary.

2. a. Answers b. and c. both work successfully. One adds the contents of a Text ele-
ment as the element’s character data. The other adds the string.

3. c. For data to be considered XML, it must be well-formed.

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class NameDirectory {
String[] names;
int nameCount;

public NameDirectory() {
names = new String[20];
nameCount = 0;

}

public void addName(String newName) {
if (nameCount < 20)

// answer goes here
}

}

532 DAY 19: Reading and Writing RSS Feeds

The NameDirectory class must be able to hold 20 different names. What statement
should replace // answer goes here for the class to function correctly?

a. names[nameCount] = newName;

b. names[nameCount] == newName;

c. names[nameCount++] = newName;

d. names[++nameCount] = newName;

The answer is available on the book’s website at http://www.java21days.com. Visit the
Day 19 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a simple XML format to represent a book collection with three books and a
Java application that searches for books with Joseph Heller as the author, display-
ing any that it finds.

2. Create two applications: one that retrieves records from a database and produces an
XML file that contains the same information and a second application that reads
data from that XML file and displays it.

Where applicable, exercise solutions are offered on the book’s website at http://www.
java21days.com.

Exercises 533

19

http://www.java21days.com
http://www.java21days.com
http://www.java21days.com

