
Chapter Contents

■ Considerations for an Elephant Eater 110

■ Systems Integration and Engineering Techniques 112

■ Abstraction Is the Heart of Architecture 118

■ Do We Need a Grand Unified Tool? 128

■ The Connoisseur’s Guide to Eating Elephants 129

■ Endnotes 131

109

Abstraction Works Only
in a Perfect World

“There is no abstract art. You must always start with some-
thing. Afterward you can remove all traces of reality.”
—Pablo Picasso

6
08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 109



In the first part of the book, we saw how IT systems have grown increas-
ingly larger and more complex over time. This growing complexity is chal-
lenging the capability of businesses to innovate as more of the IT budget is
channeled into regulatory compliance, replatforming, and maintenance of
the status quo. As this book has shown, changing these systems is not prima-
rily a technical difficulty, but one of coordinating and disambiguating
human communication. In overcoming such difficulties, we have introduced
the concept of an Elephant Eater and the Brownfield development approach.

This second part of the book explains the technical and practical aspects
of Brownfield for someone who might want to implement such an
approach. This chapter examines the necessary technical context, require-
ments, and characteristics of the Elephant Eater. The chapter then goes on
to analyze existing IT elephant-eating approaches and highlights the prob-
lems these approaches present with their extensive use of decomposition
and abstraction.

Considerations for an Elephant Eater

The following sections outline considerations for the Elephant Eater. The
problems with large scale developments are many, and the first half of the
book illustrated some of the problems that such developments pose. The
high failure rate for such projects is the reason why the creation of an
Elephant Eater was necessary. Like any problem, the starting point for a solu-
tion is the understanding of the requirements, so if an Elephant Eater is
going to be created, it needs to cater to the considerations in this section.

Lack of Transparency

On very large-scale developments, the problem being solved usually is
unclear. At a high level, the design and development task might seem to be
understood—for example, “build a family home,” “design a hospital,” or
“implement a customer relationship management system.” However, such
terms are insufficient to describe what is actually required.

For any complex problem, some degree of analysis and investigation is
essential to properly frame the detailed requirements of the solution and
understand its context. In conventional building architectures, the site sur-
vey is a fundamental part of the requirements-gathering process. 

A thorough analysis of a complex site takes a great deal of time and effort.
Even using traditional Greenfield methods, the analysis effort is often as

Eating the IT Elephant

Moving from Greenfield Development to Brownfield110

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 110



large as the build effort. Despite this effort, however, IT architects and busi-
ness analysts rarely do as thorough a job of surveying a site as building archi-
tects do. As discussed in previous chapters, a thorough analysis that
encompasses functional and nonfunctional requirements and multiple
constraints requires vast documentation. As such, the real requirements in
any situation are always less than transparent.

Unfortunately, in IT, relatively little time is spent on the equivalent of a
site survey. 

Multiple Conflicting Goals

Another problem is conflicting requirements. In any complex situation, a
single optimal solution is rarely a given for such a problem. The problem
itself might even be poorly described.

In the example of the house building discussion in Chapter 1, “Eating
Elephants Is Difficult,” the mother-in-law and the landowner could have very
different perspectives on what is desirable. Will their combined requirements
be entirely coherent and compatible? Whose job will it be to resolve these
conflicts?

We have seen the same problem on multiple $100 million programs. Any
big program owned by more than one powerful stakeholder is likely to fail
because of confusing and conflicted directions. As we saw in Chapter 1, life is
much easier when one powerful person is consistently in charge. Of course,
assigning a single stakeholder is not easy, but failing to identify this stake-
holder at the start of the project only ignores the problem.

Spotting requirements that are clearly expressed but in conflict is reason-
ably easy, and it is usually possible to resolve these through careful negotia-
tion. No one would seriously demand two mutually incompatible set of
requirements, right?

Let’s return to the analogy of home building as an example. When design-
ing a house, increasing the size of the windows will increase the feeling of
light and space within the building and improve the view. But bigger win-
dows will contribute to energy loss. Improved insulation in the walls or ceil-
ings might compensate for this, but this could result in increased building
costs or a reduced living area. Alternatively, the architect could request spe-
cial triple glazing. That would make the windows more thermally efficient
but could make the glass less translucent. As more concerns arise, the inter-
plays between them become more complex. As a result, the final solution

6: Abstraction Works Only in a Perfect World 111

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 111



becomes a trade-off between different aspects or characteristics of the solu-
tion. Possibly, the requirements are actually mutually incompatible—but
this can be known only in the context of a solution.

These conflicting requirements also come up repeatedly when designing
large computer systems. We hear comments similar to these: “We need the
system to be hugely scaleable to cope with any unexpected demand. It must
be available 24 hours a day, 7 days a week—even during upgrades or mainte-
nance—but must be cheaper to build, run, and maintain than the last sys-
tem.” Obviously, such requirements are always in conflict. 

Dynamic Aspects

The difficulty in coping with these requirements is compounded by the
fact that they don’t stand still. As you begin to interfere and interact with the
problem, you change it. For example, talking to a user about what the system
currently does could change that user’s perception about what it needs to do.
Interacting with the system during acceptance testing might overturn those
initial perceptions again. Introducing the supposed solution into the envi-
ronment could cause additional difficulties.

In IT systems, these side effects often result from a lack of understanding
that installing a new IT system changes its surroundings. Subsequent
changes also might need to be made to existing business procedures and best
practices that are not directly part of the solution. These changes might alter
people’s jobs, their interaction with customers, or the skills they require. 

In addition to these impacts, the time involved in such projects usually
means that the business environment in which the solution is to be placed
has evolved. Some of the original requirements might need to change or
might no longer be applicable

Therefore, one of the key requirements for any Elephant Eater is tight and
dynamic linkage between the business and IT.

Systems Integration and Engineering Techniques

But the problem we’re talking about isn’t new, is it? People have been try-
ing to deliver complex systems for more than 40 years. There must already be
some pretty reasonable Elephant Eaters out there.

Now that we have a good understanding of the problem, it’s a good idea to
take a closer look at some of the solutions that are already out there and see

Eating the IT Elephant

Moving from Greenfield Development to Brownfield112

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 112



why, given the meager 30 percent success rate noted in the Preface, we need a
new Elephant Eater.

Generally, these big problems need to be approached via formal tech-
niques. These techniques work from two different directions. They either
work their way down from the top, gaining increasing levels of detail, or they
start from the bottom, examining needs in detail and working their way
upward, building toward a complete solution.

Walk the Easy Path or…
If you’re infinitely lucky, the bottom-up approach might work.

Considering a very simple example, you could select a package that seems
close to what you need. You could then walk through the business processes
you want to execute. As you go, you can write down all the changes you need
to make to the package, and, presto! After you’ve made the changes, you’ve
got a solution! You’ve designed the whole system from the ground up
because the package dictates your choices for how you do pretty much every-
thing else.

If you don’t allow the package to dictate your choices, chances are, you
will find yourself in a very sticky mess: Each major change you make will
require extra development, testing, and long-term maintenance costs. If
you’ve chosen the bottom-up approach, you must stick to it religiously and
accept the changes it will impose on the process and the business.

Ultimately, a package with a good fit, whether imposed or a lucky choice,
is the very best in bottom-up solutions. Start halfway up the hill—the pack-
age already approximates what you want. Then modify the solution itera-
tively with the end user and find a happy endpoint near the top of the hill.

However, chances are, for a really complex project, using the bottom-up
approach with a single package will not work. You must break down the
problem into smaller pieces and then integrate them to create a single solu-
tion. You can divide up the problem in two fundamental ways.

…Break the Boulders and Make Them Smooth
You can decompose the problem into smaller, more easily managed Views

through two methods: splitting and abstraction. Splitting simply divides
complex big chunks into smaller, more manageable pieces. Abstraction
removes detail from each larger chunk to form more manageable and under-
standable pieces. These two techniques, splitting and abstraction, allow
almost any gargantuan problem to be subdivided into smaller, better con-
tained problems. Think of it as slicing the problem into little squares.

6: Abstraction Works Only in a Perfect World 113

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 113



Abstraction gives you horizontal cuts, while View splitting gives you verti-
cal ones. Everything becomes a manageable “chunk.” This is the basis for most
systems integration and engineering methods. Many of these methods are pro-
prietary, but some, such as The Open Group Architecture Framework
(TOGAF) from the Open Foundation, are freely available. Each approach tries
to create a continuum of knowledge, from high-level representations to more
detailed. These paths vary but can be characterized as moving in some way
from logical to physical, general to specific, or taxonomy to specification.

When good methods or tools are used, there is traceability from the high
level to the low level. This helps a reader understand why something has
been designed the way it has. 

Such movement is unsurprisingly characterized as a progression, starting
from the high-level principles and overall vision of what needs to be
achieved, and moving down through the perspectives of business, process,
roles, and models of information. Figure 6.1 highlights the basic stages of the
TOGAF method.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield114

Requirements

A
Initiation

and
Framework

B
Baseline

Description

C
Target

Architecture

D
Solutions

E
Migration
Options

F
Implementation

G
Architecture
Maintenance

Figure 6.1 Even with its cyclic diagram, TOGAF is part of the progressive school of architecture.

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 114



Some approaches go even further. They segment each level of abstraction
into a number of separate perspectives. Of these “frameworks,” the enterprise
architecture framework produced by John Zachman of IBM in the 1980s is
probably the most famous. Called the Zachman Framework, it considers the
additional dimension of Data, Function, Network, People, Time, and
Motivation. Figure 6.2 illustrates how the Zachman Framework segments
the architecture into these perspectives.

6: Abstraction Works Only in a Perfect World 115

What?
Data

How?
Function

Where?
Network

Who?
People

When?
Time

Why?
Motivation

Planner

Owner

Designer

Builder

Sub-
contractor

Enterprise

Scope

Enterprise
Models

System
Models

Technology
Models

Detailed
Represent-

ations

Actual
Systems

Figure 6.2 The Zachman Framework of Enterprise Architecture segments the architecture into a
variety of perspectives.

These approaches enable you to decompose the full width and breadth of
the problem (including the existing constraints) into separate Views so that a
suitably skilled guru can independently govern and maintain them.

At the very top of this top-down approach is a simple sheet of paper that
purports to show or describe the scope of the whole problem for that particu-
lar perspective. A single sheet of paper might even purport to summarize the
10,000-foot view for all the perspectives. 

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 115



Below that top sheet are many more sheets that describe each element on
the sheet above. This technique is so well recognized that it’s applied to
almost everything in complex problems, whether we’re talking about the
shape of the system, the business processes that it executes, or the description
of the plan that will build it.

In this hierarchy of paper, the top tier is labeled Level 0; the next tier
down, Level 1; and so on. At each layer, the number of sheets of paper
increases, but each of these sheets is a manageable View. The problem has
been successfully decomposed. In the example in Figure 6.3, our single-page
business context that describes the boundaries of the problem we’re solving is
gradually decomposed into 60,000 pages of code, deployment information,
and operational instructions that describe the whole solution. At each step of
the way, the intermediate representations all correspond to a View.

After the problem has been decomposed into single sheets, or Views, rules
must be written and applied to specify how they work together.

Surely that solves our problem. The elephant has been eaten. Complexity
is reduced, so each area becomes manageable. Each person is dealing with
only a bit of the problem.

This is, of course, precisely what the world’s largest systems integrators
do. They define their Views in terms of work products or deliverables. They
come from different perspectives and at different levels of abstraction. The
systems integrators have design and development methods that describe who
should do what to which View (or work product) and in what order.

So if the problem is essentially solved, why does it go wrong so often?

Eating the IT Elephant

Moving from Greenfield Development to Brownfield116

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 116



Figure 6.3 Decomposition of a complex problem space

6: Abstraction Works Only in a Perfect World 117

e
e

e

1,500,000 Lines of Code

250 x Components
500 x Interfaces
3,000 x Operations

35 x Subsystems

200 x Use Cases
1,500 x Main Steps
9,000 x Alternative Steps

1 x Systems Context

50 x Business Events

1 x Business Context

50 Business
Processes
1,000 States

B
u

sin
ess

(1 p
ag

e)
S

ystem
(60,000 p

ag
es)

1,800 Classes
20,000 Operations

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 117



Abstraction Is the Heart of Architecture
In all these cases, we move from the general to the specific, with the next

layer of detail expanding upon the previous level of abstraction. This move-
ment from general to specific gives architecture its power to simplify, com-
municate, and make ghastly complexity more aesthetically pleasing.

Abstraction is the heart of architecture. This powerful and persuasive
concept has been at the center of most of the advances in complex systems
architecting for the last 15 years. It underpins the history of software
engineering—objects, components, and even IT services have their roots in
abstraction. Because abstraction is one of our most powerful tools, we should
consider its capabilities and limitations.

As systems have become more complex, additional layers of abstraction
have been inserted into the software to keep everything understandable and
maintainable. Year by year, programmers have gotten further away from the
bits, registers, and native machine code, through the introduction of lan-
guages, layered software architectures, object-oriented languages, visual pro-
gramming, modeling, packages, and even models of models (metamodeling).

Today, programs can be routinely written, tested, and deployed without
manually writing a single line of code or even understanding the basics of
how a computer works. A cornucopia of techniques and technologies can
insulate today’s programmers from the specifics and complexities of their
surrounding environments. Writing a program is so simple that we can even
get a computer to do it. We get used to the idea of being insulated from the
complexity of the real world.

Mirror, Mirror on the Wall, Which Is the Fairest Software of All?

Software engineering approaches the complexity and unpredictability of
the real world by abstracting the detail to something more convenient and
incrementally improving the abstraction over time. 

Working out the levels of abstraction that solve the problem (and will
continue to solve the problem) is the key concern of the software architect.
IBM’s chief scientist Grady Booch and other leaders of the software industry
are convinced that the best software should be capable of dealing with great
complexity but also should be inherently simple and aesthetically pleasing.1

Thus, over time, we should expect that increasing levels of abstraction will
enable our software to deal with more aspects of the real world. This is most
obviously noticeable in games and virtual worlds, where the sophistication of
the representation of the virtual reality has increased as individual elements
of the problem are abstracted. Figure 6.4 shows how games architectures
have matured over the last 20 years.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield118

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 118



6: Abstraction Works Only in a Perfect World 119

Lo
gi

n 
S

er
ve

r

U
se

r 
S

er
ve

r

R
eg

io
n

D
at

a 
S

er
ve

r

S
im

ul
at

or

S
pa

ce
 

S
er

ve
r

P
hy

si
cs

E
ng

in
e

C
ol

lis
io

n
D

et
ec

tio
n

S
ou

nd
S

ys
te

m
Te

xt
ur

e
S

ys
te

m
A

va
ta

r
A

pp
ea

ra
nc

e
M

es
sa

ge
S

ys
te

m
M

ov
ie

Im
ag

e
S

ys
te

m

3D
 G

ra
ph

ic
s

S
ou

nd

G
am

e

G
ra

ph
ic

s

S
im

ul
at

io
n

19
90

s 
G

am
e

20
00

s 
M

u
lt

iu
se

r
O

n
lin

e 
G

am
e 

(s
im

p
lif

ie
d

)

Fi
gu

re
 6

.4
Ga

m
es

 a
rc

hi
te

ct
ur

es
 h

av
e 

m
at

ur
ed

 im
m

en
se

ly 
ov

er
 th

e 
la

st
 2

0 
ye

ar
s.

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 119



The current sophisticated, shared online games of the early twenty-first
century exhibit greater descriptive power compared to the basic 2D games of
the 1970s. Hiding the complexity of the physics engine from the graphical
rendering system, and hiding both of these from the user server and the sys-
tem that stores the in-world objects, enables increasing levels of sophisticated
behavior. 

Abstraction has its drawbacks, however. Each level of abstraction deliber-
ately hides a certain amount of complexity. That’s fine if you start with a
complete description of the problem and work your way upward, but you
must remember that this isn’t the way today’s systems integration and archi-
tecting methods work.

These methods start from the general and the abstract, and gradually
refine the level of detail from there. Eventually, they drill down to reality.
This sounds good. Superficially, it sounds almost like a scientific technique.
For example, physicists conduct experiments in the real world, which has a
lot of complexity, imperfection, and “noise” complicating their experiments.
However, those experiments are designed to define or confirm useful and
accurate abstractions of reality in the form of mathematical theories that will
enable them to make successful predictions. Of course, the key difference
between software engineering and physics is that the physicists are iteratively
creating abstractions for something that already exists and refining the
abstraction as more facts emerge. The architects, on the other hand, are
abstracting first and then creating the detail to slot in behind the abstraction.
Figure 6.5 should make the comparison clearer.

The IT approach should strike you as fundamentally wrong. If you need
some convincing, instead of focusing on the rather abstract worlds of physics
or IT, let’s first take a look at something more down to earth: plumbing.

Plumbing the Depths

The IT and plumbing industries have much in common. Participants in
both spend a great deal of time sucking their teeth, saying, “Well, I wouldn’t
have done it like that,” or, “That’ll cost a few dollars to put right.” As in
many other professions, they make sure that they shroud themselves in inde-
cipherable private languages, acronyms, and anecdotes.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield120

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 120



Figure 6.5 Who’s right? Physicists or IT architects?

Imagine for a moment a heating engineer who has been asked to install a
radiator in a new extension. He has looked at the plans and knows how he’s
going to get access to the pipes. From the specifications he’s read, he knows
what fixtures he needs. After doing some pretty easy calculations based on
room size, window area, and wall type, he even got hold of the right size radi-
ator to fit on the wall that will deliver the right amount of heat for the room.
It’s an hour’s work, at most. 

The job is done and he leaves a happy man. A few days later, the home-
owner is complaining that the room is still cold. Only when the plumber
arrives back on-site and investigates the boiler does he find out that the
output of the boiler is now insufficient for the needs of the house. He rec-
ommends that the homeowner order a new 33-kilowatt boiler and
arranges to come back in a week.

6: Abstraction Works Only in a Perfect World 121

I can see a 
pattern 
emerging …

Hey, let’s 
make reality
fit this pattern!

Physicist

IT Architect

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 121



A week later, he’s back to begin fitting the new boiler. Right at the start
of the task, it becomes obvious that the old boiler was oil-fired and the new
one is gas. This is slightly inconvenient because the property is not connected
to the gas main, even though it runs past the property.

Another few weeks pass while the homeowner arranges for the house to be
connected to the gas supply. On the plumber’s third visit, everything is
going swimmingly. Then he notices that there are no free breaker slots on the
electricity circuit board to attach the new boiler. A week later, he replaces the
circuit board. The boiler is installed, but another problem arises: Although
the heat output of the boiler is sufficient, a more powerful pump is required
to distribute the heat throughout the house.

And that’s when the problems really start.

Don’t Abstract Until You See the Whole Elephant
Judging from the architect’s top-level view, the solution seemed pretty

obvious. Only when the job was almost done was it obvious that it hadn’t
worked. Those other aspects of the problem—the supply, the pump, and the
circuit board—were invisible from the Level 0 perspective the plumber
received, so he ignored them in doing his analysis.

After all, nothing was fundamentally wrong with the plumber’s solution;
he just didn’t have a good specification of the problem. The process of
abstracting the problem to the single architectural drawing of the new room
meant that he had no visibility of the real problem, which was somewhat big-
ger and more complex. He simply couldn’t see the hidden requirements—the
environmental constraints—from his top-level, incorrectly abstracted view of
the problem.

Unfortunately, abstractions, per se, always lack details of the underlying
complexity. The radiator was a good theoretical solution to the problem, but
it was being treated as a simple abstract component that, when connected to
the central heating system, would issue the right amount of heat. Behind
that simple abstraction lays the real hidden complexity of the boiler, gas
main, and circuit board that leaked through and derailed this abstracted
solution.2 Will such complexity always leak up through the pipe and derail
simple abstract solutions?

Well, imagine for a moment that the abstraction was absolute and that it
was impossible to trace backward from the radiator to the source of the heat.
Consider, for example, that the heat to each radiator was supplied from one of
a huge number of central utilities via shared pipes. If the complexity of that
arrangement was completely hidden, you would not know who to complain to

Eating the IT Elephant

Moving from Greenfield Development to Brownfield122

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 122



if the radiator didn’t work. Of course, on the positive side, the utility company
supplying your heat wouldn’t be able to bill you for adding a new radiator!

Is this such an absurd example? Consider today’s IT infrastructures, with
layers of software, each supposedly easier to maintain by hiding the complex-
ities below. Who do you call when there is a problem? Is it in the applica-
tion? The middleware? Maybe it is a problem with the database?

If you become completely insulated from the underlying complexity—or
if you simply don’t understand it, then it becomes very difficult to know
what is happening when something goes wrong. Such an approach also
encourages naïve rather than robust implementations. Abstractions that fully
hide complexity ultimately cause problems because it is impossible to know
what is going wrong.

Poorly formed abstractions can also create a lack of flexibility in any com-
plex software architecture. If the wrong elements are chosen to be exposed to
the layers above, people will have to find ways around the architecture, com-
promising its integrity. Establishing the right abstractions is more of an art
than a science, but starting from a point of generalization is not a good place
to start—it is possibly the worst.

Successful Abstraction Does Not Come from a Lack
of Knowledge 
In summary, abstraction is probably the single most powerful tool for the

architect. It works well when used with care and when there is a deep under-
standing of the problem.

However, today’s methods work from the general to the specific, so they
essentially encourage and impose a lack of knowledge. Not surprisingly, there-
fore, the initial abstractions and decompositions that are made at the start of a
big systems integration or development project often turn out to be wrong.
Today’s methods tend to ignore complexity while purporting to hide it.

The Ripple Effect

Poor abstractions lead to underestimations and misunderstandings galore.
Everything looks so simple from 10,000 feet. On large projects, a saying goes
that “All expensive mistakes are made on the first day.” From our experience,
it’s an observation that is very, very true. 

Working with a lack of information makes abstraction easy but inaccurate. 
All projects are most optimistic right at the start. These early stages lack

detailed information; as a result, assumptions are made and the big abstrac-
tions are decided. 

6: Abstraction Works Only in a Perfect World 123

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 123



Assumptions are not dangerous in themselves—as long as they are
tracked. Unfortunately, all too often they are made but not tracked, and their
impact is not understood. In some ways, they are treated as “risks that will
never happen.” Assumptions must always be tracked and reviewed, and their
potential impact, if they’re untrue, must be understood. Chances are, some of
them will turn out to be false assumptions—and, chances are, those will be
the ones with expensive consequences. 

We need to move away from this optimistic, pretty-diagram school of
architecture, in which making the right decisions is an art form of second
guessing based on years of accumulated instinct and heuristics.3 We need a
more scientific approach with fewer assumptions and oversimplifications. A
colleague, Bob Lojek, memorably said, “Once you understand the full prob-
lem, there is no problem.”

Fundamentally, we need to put more effort into understanding the prob-
lem than prematurely defining the solution. As senior architects for IBM, we
are often asked to intervene in client projects when things have gone awry.
For example:

An Agile development method was being used to deliver a leading-
edge, web-based, customer self-service solution for a world-leading
credit card processor. The team had all the relevant skills, and the
lead architect was a software engineering guru who knew the mod-
ern technology platform they were using and had delivered many
projects in the past.

Given the new nature of the technology, the team had conformed
strictly to the best-practice patterns for development and had
created a technical prototype to ensure that the technology did
what they wanted it to do. The design they had created was hugely
elegant and was exactly in line with the customer requirement.

A problem arose, though. The project had run like a dream for
6 months, but it stalled in the final 3 months of the development.
The reporting system for the project recorded correctly that
80 percent of the code had been written and was working, but the
progress meter had stopped there and was not moving forward.
IBM was asked to take a look and see what the problem was.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield124

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 124



As usual, the answer was relatively straightforward. The levels of
abstraction, or layering, of the system had been done according to
theoretical best practice, but it was overly sophisticated for the job
that needed to be done. The architecture failed the Occam’s Razor
test: The lead architect had induced unnecessary complexity, and his
key architectural decisions around abstraction (and, to some extent,
decomposition) of the problem had been made in isolation of the
actual customer problem.

Second, and more important, the architect had ignored the inherent
complexity of the solution. Although the user requirements were
relatively straightforward and the Level 0 architecture perspectives
were easy to understand, he had largely ignored the constraints
imposed by the other systems that surrounded the self-service
solution.

Yes, the design successfully performed a beautiful and elegant
abstraction of the core concepts it needed to deal with—it’s just
that it didn’t look anything like the systems to which it needed to
be linked. As a result, the core activity for the previous 3 months
had been a frantic attempt to map the new solution onto the limita-
tions of the transactions and data models of the old. The mind-
bending complexity of trying to pull together two mutually
incompatible views of these new and old systems had paralyzed the
delivery team. They didn’t want to think the unthinkable. They had
defined an elegant and best-practice solution to the wrong problem.
In doing so, they had ignored hundreds of constraints that needed
to be imposed on the new system.

When the project restarted with a core understanding of these con-
straints, it became straightforward to define the right levels of
abstraction and separation of concerns. This provided an elegant and
simple solution with flexibility in all the right places—without
complicating the solution’s relationship with its neighbors.

—R.H.

6: Abstraction Works Only in a Perfect World 125

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 125



As a final horror story, consider a major customer case system for an
important government agency:

We were asked to intervene after the project (in the hands of
another systems integrator) had made little progress after 2 years of
investment.

At this point, the customer had chosen a package to provide its
overarching customer care solution. After significant analysis, this
package had been accepted as a superb fit to the business and user
requirements. Pretty much everything that was needed to replace
the hugely complex legacy systems would come out of a box. 

However, it was thought that replacing a complete legacy system
would be too risky. As a result, the decision was made to use half of
the package for the end-user element of the strategic solution; the
legacy systems the package was meant to replace would serve as its
temporary back end (providing some of the complex logic and many
of the interfaces that were necessary for an end-to-end solution).

The decision was to eat half the elephant. On paper, from 10,000
feet, it looked straightforward. The high-level analysis had not
pointed out any glitches, and the layering of the architecture and
the separation of concerns appeared clean and simple.

As the project progressed, however, it became apparent that the
legacy system imposed a very different set of constraints on the
package. Although they were highly similar from an end user and
data perspective, the internal models of the new and old systems
turned out to be hugely different—and these differences numbered
in the thousands instead of the hundreds.

Ultimately, the three-way conflict between the user requirements
(which were based on the promise of a full new system), the new
package, and the legacy system meant that something had to give.
The requirements were deemed to be strategic and the legacy sys-
tem was immovable, so the package had to change. This decision
broke the first rule of bottom-up implementations mentioned
earlier.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield126

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 126



Although the system was delivered on time and budget, and
although it works to this day for thousands of users and millions
of customers, the implementation was hugely complicated by the
backflow of constraints from the legacy systems. As a result, it
then proved uneconomic to move the system to subsequent major
versions of the package. The desired strategic solution became a
dead end.

—K.J. and R.H.

In each of these cases, a better and more detailed understanding of the
overall problem was needed than standard top-down approaches could pro-
vide. Such an understanding would have prevented the problems these proj-
ects encountered.

Each of these three problems stems from a basic and incorrect assumption
by stakeholders that they could build a Greenfield implementation. At the
credit card processor, this assumption held firm until they tried to integrate
it with the existing infrastructure. The government department failed to
realize that its original requirements were based on a survey of a completely
different site (the one in which the legacy system was cleared away), resulting
in large-scale customization of the original package that was supposedly a
perfect fit.

Fundamentally, today’s large-scale IT projects need to work around the
constraints of their existing environment. Today’s IT architects should regard
themselves as Brownfield redevelopers first, and exciting and visionary archi-
tects second.

Companies that try to upgrade their hardware or software to the latest
levels experience the same ripple effect of contamination from the existing
environment. Despite the abstraction and layering of modern software and
the imposed rigor of enterprise architectures, making changes to the low lev-
els of systems still has a major impact on today’s enterprises.

As we mentioned before, no abstraction is perfect and, to some extent, it
will leak around the edges. This means there is no such thing as a nondisrup-
tive change to any nontrivial environment. As a supposedly independent
layer in the environment changes—perhaps a database, middleware, or oper-
ating system version—a ripple of change permeates around the environment.

6: Abstraction Works Only in a Perfect World 127

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 127



As only certain combinations of products are supported, the change can cas-
cade like a chain of dominoes. Ultimately, these ripples can hit applications,
resulting in retesting, application changes, or even reintegration.

Thus, to provide good and true architectures, we need to accept that we
need a better understanding of the problem to engineer the right abstrac-
tions. Additionally, we need all the aspects of the problem definition (busi-
ness, application, and infrastructure) to be interlinked so that we can
understand when and where the ripple effect of discovered constraints or
changes will impact the solution we are defining.

Do We Need a Grand Unified Tool?

The problem definition is too big for one tool or person to maintain, so
there appears to be a dilemma. The full complexity of the problem needs to
be embraced, and an understanding is required of everything that’s around,
including the existing IT and business environments. But all that informa-
tion needs to be pulled together so that the Views aren’t discrete or discon-
nected.

Many people have argued for tool unification as a means to achieve this, to
maintain all these connected Views in a single tool and, thus, enable a single
documented version of the truth to be established and maintained. But that
is missing a vital point about Views.

As explained in Chapter 2, “The Confusion of Tongues,” Views need to be
maintained by people in their own way, in their own language. Imposing a
single tool will never work. Simply too many preferred perspectives, roles,
and prejudices exist within our industry to believe that everyone is going to
sit down one day and record and maintain their Views in one specific tool.4 If
such combinations of Views into single multipurpose tools were possible,
desirable, and usable, then it is arguable that Microsoft® Office user inter-
faces Word®, PowerPoint®, and Excel® would have merged long ago.

Moreover, these integrated approaches that have been at the heart of tradi-
tional tooling are usually pretty poor at dealing with ambiguity or differ-
ences of opinion. On large projects with many people working on the same
information, it is not unusual to have formal repositories that enable people
to check out information, make changes to it, and then check it back in. Such
systems prevent two people from updating the same information at the same
time, which would result in confusion and conflicts. The upshot of this

Eating the IT Elephant

Moving from Greenfield Development to Brownfield128

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 128



approach, however, is that the information that is checked into the repository
is the information that everyone else is then forced to use. The implications
of your changes are not always apparent to you—or perhaps immediately to
your colleagues, either. Maintaining a single source of truth when hundreds
of people are changing individual overlapping elements is less than straight-
forward. A change made by one individual can have serious consequences for
many other areas of the project, and no mechanism exists for highlighting or
resolving ambiguity—whoever checks the information into the repository
last wins!

In summary, grand unified tools are to software engineering what grand
unified theories are to modern physics—tricky to understand, multidimen-
sional, and elusive, often involving bits of string. No one has created a single
tool to maintain the full complexity of a complex IT project. Likewise, no
one will do so unless the tool enables people to maintain Views in their own
way, in their own language, and to identify and deal with ambiguity cooper-
atively.

The Connoisseur’s Guide to Eating Elephants

This chapter set out to define the kinds of things the Elephant Eater must
do, the kinds of problems it needs to deal with, and the kinds of environ-
ments with which it must cope. We’ve covered a lot of ground, so it’s worth
recapping the key requirements that we have established—a connoisseur’s
guide to eating elephants.

The Elephant Eater machine must recognize that the environment
imposes many more constraints beyond functional and nonfunctional
requirements. We rarely work on Greenfield sites anymore; the elephant-
eating machine must be at home on the most complex Brownfield sites—the
kind of Brownfield sites that have had a lot of IT complexity built up layer
on layer over many years.

The Elephant Eater must also address the lack of transparency that is
inherent within our most complex projects. This will enable us to x-ray our
elephant to see the heart of the problem. To achieve this transparent under-
standing, the Elephant Eater must acknowledge the fundamental human
limitation of the View and enable us to break down the problem into smaller
chunks.

6: Abstraction Works Only in a Perfect World 129

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 129



However, we suspect that a one-size-fits-all approach to maintaining
Views is doomed to failure. A high-level business process View will always
look very different than a detailed data definition. Therefore, an elephant-
eating machine that relies on a single tool for all users is pretty impractical.

In addition, we now know that, despite the best efforts of architects to
keep them insulated and isolated via abstractions and enterprise architec-
tures, many of these Views are interlinked. Therefore, the only way to under-
stand the problem properly is to make the interconnections between Views
explicit and try to make them unambiguous. We should also note, however,
that establishing a consolidated picture of all these Views needs to be a
process of cooperation and communication—one View cannot overwrite
another one, and ambiguity must be dealt with within its processing. We
also know that the View should cover the entire solution (business, applica-
tion, and infrastructure). 

By using the formal View and VITA approach introduced in Part I,
“Introducing Brownfield,” it should be possible to see how the Elephant
Eater proposed can address these requirements. The following facets are an
intrinsic part of Brownfield development.

Our Brownfield abstractions—and, therefore, architectures—will be a
good fit for the problem: Those decisions will be made based on detailed
information fed in via a site survey instead of vague generalization. This
adopts an engineer’s approach to the solution instead of the artisan’s heuris-
tics and intuition.

We will be able to preempt the ripple effect, often understanding which
requirements are in conflict or at least knowing the horrors hiding behind
the constraints. Therefore, the requirements can be cost-effectively refined
instead of the abstractions of the solution or its code. Resolving these prob-
lems early will have significant economic benefit.

The solution will become easier to create due to a deeper understanding of
the problem. A precise and unambiguous specification will enable the use of
delivery accelerators such as these:

■ Global delivery and centers of excellence

■ Code generation via Model Driven Development and Pattern Driven
Engineering because the precise specification can be used to parameterize
the generation processes

■ Iterative delivery as possible strategies for appropriate business and IT
segmentation of the problem become clearer

Eating the IT Elephant

Moving from Greenfield Development to Brownfield130

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 130



Therefore, the Brownfield approach conceptually solves many of the prob-
lems presented in this chapter and previous chapters, avoiding the early,
unreliable, and imprecise abstractions and decompositions of existing
approaches. In the remaining chapters, we examine how Brownfield evolved
and how it can be deployed on large-scale IT projects.

Endnotes

1 Booch, Grady. “The BCS/IET Manchester Turing Lecture.” Manchester,
2007. http://intranet.cs.man.ac.uk/Events_subweb/special/turing07/.

2 Splolsky, Joel. “Joel on Software.” www.joelonsoftware.com/articles/
LeakyAbstractions.html.

3 Maier, Mark W. and Eberhardt Rechtin. The Art of Systems Architecting.
CRC Press, Boca Raton, Florida, 2000.

4 For example, IBM’s Rational Tool Set.

6: Abstraction Works Only in a Perfect World 131

08_0137130120_ch06.qxd  4/5/08  9:57 AM  Page 131




