

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
OSGi and Equinox : creating highly modular Java systems / Jeff McAffer,
Paul VanderLei, Simon Archer.

p. cm.
Includes index.
ISBN 0-321-58571-2 (pbk. : alk. paper)

1. Java (Computer program language) 2. Computer software—Development.
I. VanderLei, Paul. II. Archer, Simon (Simon J.) III. Title.
QA76.73.J38M352593 2010
005.2'762—dc22

2009047201

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-58571-4
ISBN-10: 0-321-58571-2
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing February 2010

xxi

Foreword

My role as the Chief Technology Officer of SpringSource brings me into frequent
contact with companies building enterprise applications: many familiar names from
the Fortune 500, and a whole host of others besides. If there is one thing you
quickly learn, it is that the world of enterprise applications is messy and complex.
Even four to five years ago, customers adopting Spring were asking us for ways
to help them manage the size and complexity of the applications they were build-
ing. Large team sizes and applications with hundreds or thousands of internal
components (Spring beans) were not uncommon. The pressures on enterprises to
deliver increasingly sophisticated applications, in shorter and shorter time frames,
have only been growing since then. In many cases applications are now always
live and are constantly evolving. The move to deliver software “as a service”—
internally or externally—can only accelerate this trend.

In the enterprise Java landscape, the traditional unit of deployment for an
enterprise application is a web application archive (WAR) file. A number of com-
mon themes arise in my discussions with enterprise development teams:

❍ The WAR file as a single large unit of packaging and deployment is slowing
down development processes and making it more difficult to structure large
development teams since everything must come together in a single packaging
step before anything can be deployed.

❍ WAR files are getting too large and unwieldy—a typical enterprise application
may have literally hundreds of third-party dependencies, all packaged inside
the WAR file. This has an adverse effect on upload and deployment times.

❍ Attempting to tackle complexity by deploying multiple WAR files side by side
in the same container leads to problems with heap usage in the JVM since
each WAR file has its own copy of all the dependencies, even though many
of them could in theory be shared.

❍ When deploying WAR files side by side, there is no easy way to share com-
mon services.

xxii Foreword

❍ The WAR file as the smallest unit of change means that changes in large
enterprise applications cannot be easily isolated and contained.

❍ Attempts to introduce “self-policed” (i.e., unenforced) modularity con-
straints into a design typically fail, despite best intentions.

To help manage the large team sizes and complex requirements of modern
enterprise applications, it is clear that we need a more principled way to “divide
and conquer.” Something that lets us encapsulate well-defined parts of the system
as modules with hidden internals and carefully managed externals. Something
that enables those modules to be packaged and deployed individually without
forcing us to revise the whole universe. Something that provides a principled
mechanism for bringing those modules together in a running system, and that can
cope with the changes introduced by continuous evolution.

Facing these requirements back in 2005, it was an easy decision at Spring-
Source (then Interface21) to turn to OSGi, the “dynamic module system for
Java,” as the foundation technology for modular enterprise applications. Even
then, the OSGi Service Platform was already mature and proven in industrial set-
tings, as well as being lightweight through its heritage in embedded systems.

The modularity layer of OSGi provides a mechanism for dividing a system
into independent modules, known as bundles, that are independently packaged
and deployed and have independent lifecycles. This solved a part of the problem
for us—helping to keep the implementation types of a module private, and expos-
ing only types that form part of the public interface of a module. We wanted
enterprise developers to continue developing their applications using Spring, of
course, and through the Spring Dynamic Modules’ open-source project created a
simple model whereby each module had its own set of components (Spring
beans). Some of those components are private to the module, but some should be
made public so that components in other modules can use them. The OSGi ser-
vice layer provides an answer to this problem, promoting an in-memory service-
oriented design. Components from a module can be published in the OSGi service
registry, and from there other modules can find and bind to those services. OSGi
also provides the necessary primitives to track services that may come and go
over time as modules are installed, uninstalled, and upgraded.

The next stage in our journey with OSGi was the introduction of the Spring-
Source dm Server: an enterprise application server that is not only built on top of
OSGi, but critically also supports the deployment of applications developed as a set
of OSGi bundles. Spring Dynamic Modules works with any compliant OSGi Ser-
vice Platform implementation, but for the dm Server we had to choose an OSGi
Service Platform as the base on which to build. We chose to build on Equinox,
the Eclipse implementation of the OSGi Service Platform, and also the reference

Foreword xxiii

implementation for the core OSGi specification. The open-source nature of Equi-
nox fit well with our own open-source philosophy and has been invaluable in
enabling us to work closely with the developers of Equinox and submit patches
and change requests over time. The widespread adoption of Equinox (as the
underpinnings of Eclipse, to name but one example) gave us confidence that it
would be battle-hardened and ready for enterprise usage.

I am seeing a strong and growing serious interest in OSGi among companies
large and small. Building on OSGi will provide a firm foundation for dividing
your application into modules, which in turn will help you structure the team(s)
working on it more effectively. “Organization follows architecture” in the sense
that your ability to divide a complex application into independent pieces also
facilitates the structuring of team responsibilities along the same lines. In other
scenarios, your teams may be fixed, and you need an architecture that enables
those teams to work together most effectively. Again, a principled basis for divid-
ing a system into modules can facilitate that. With OSGi as a basis, your unit of
packaging and deployment can become a single module, removing bottlenecks in
the process and helping to minimize the impact of change. OSGi is also incredibly
well suited to product-line engineering, and to situations where you need to pro-
vide an extension or plug-in mechanism to enable third parties to extend your
software.

The future for OSGi looks bright. Version 4.2 of the specification has just
been released, and the OSGi Core Platform and Enterprise Expert Groups are
very active. A glance at the membership of the OSGi Alliance and the composi-
tion of the expert groups tells you just how seriously enterprise vendors are tak-
ing it. I am confident that the investment of your time in reading and studying
this book will be well rewarded. It is my belief that OSGi is here to stay. A firm
grasp of the strengths—and the weaknesses—of the OSGi Service Platform will
prove invaluable to you on your journey toward creating agile, modular software.

—Adrian Colyer
CTO, SpringSource
October 2009

This page intentionally left blank

xxv

Preface

OSGi is a hot topic these days; all the major Java application server vendors have
adopted OSGi as their base runtime, Eclipse has been using OSGi as the basis of
its modularity story and runtime for at least the past five years, and countless oth-
ers have been using it in embedded and “under the covers” scenarios. All with
good reason.

The success of Eclipse as a tooling platform is a direct result of the strong
modularity enshrined in OSGi. This isolates developers from change, empowers
teams to be more agile, allows organizations to change the way that they develop
software, and lubricates the formation and running of ecosystems. These same
benefits can be realized in any software domain.

The main OSGi specification is remarkably concise—just 27 Java types. It is
well designed, and specified to be implemented and used in real life. Adoption of
OSGi is not without challenges, however. Make no mistake: Implementing highly
modular and dynamic systems is hard. There is, as they say, no free lunch. Some
have criticized OSGi as being complicated or obtuse. In most cases it is the problem
that is complex—the desire to be modular or dynamic surfaces the issues but is not
the cause. Modularizing existing monolithic systems is particularly challenging.

This book is designed to both highlight such topics and provide knowledge,
guidance, and best practices to mitigate them. We talk heavily of modularity,
components, and dynamism and show you techniques for enhancing your sys-
tem’s flexibility and agility.

Despite using OSGi for many years, participating in writing the OSGi speci-
fications, and implementing Equinox (the OSGi framework specification refer-
ence implementation), during the writing of this book we learned an incredible
amount about OSGi, Equinox, and highly modular dynamic systems. We trust
that in reading it you will, too.

xxvi Preface

About This Book

This book guides up-and-coming and established OSGi developers through all
stages of developing and delivering an example OSGi-based telematics and fleet
management system called Toast.

We develop Toast from a blank workspace into a full-featured client and
server system. The domain is familiar to most everyone who has driven a car or
shipped a package. Telematics is, loosely speaking, all the car electronics—radio,
navigation, climate control, and so on. Fleet management is all about tracking
and coordinating packages and vehicles as they move from one place to another.

The set of problems and opportunities raised allows us to plausibly touch a
wide range of issues from modularity and component collaboration to server-side
programming and packaging and delivery of highly modular systems. We create
stand-alone client applications, embedded and stand-alone server configurations,
and dynamic enhancements to both. This book enables you to do the same in
your domain.

Roughly speaking, the book is split into two sections. The first half, Parts I
and II, sets the scene for OSGi and Equinox and presents a tutorial-style guide to
building Toast. The tutorial incrementally builds Toast into a functioning fleet
management system with a number of advanced capabilities. The tutorial is writ-
ten somewhat informally to evoke the feeling that we are there with you, working
through the examples and problems. We share some of the pitfalls and mishaps
that we experienced while developing the application and writing the tutorial.

The second half of the book looks at what it takes to “make it real.” It’s one
thing to write a prototype and quite another to ship a product. Rather than leav-
ing you hanging at the prototype stage, Part III is composed of chapters that dive
into the details required to finish the job—namely, the refining and refactoring of
the first prototype, customizing the user interface, and building and delivering
products to your customers. This part is written as a reference, but it still includes
a liberal sprinkling of step-by-step examples and code samples. The goal is both
to dive deep and cover most of the major stumbling blocks reported in the com-
munity and seen in our own development of professional products.

A final part, Part IV, is pure reference. It covers the essential aspects of OSGi
and Equinox and touches on various capabilities not covered earlier in the book.
We also talk about best practices and advanced topics such as integrating third-
party code libraries and being dynamic.

OSGi, despite being relatively small, is very comprehensive. As such, a single
book could never cover all possible topics. We have focused on the functions and
services that we use in the systems we develop day to day under the assumption
that they will be useful to you as well.

Preface xxvii

OSGi, Equinox, and EclipseRT

The OSGi community is quite vibrant. There are at least three active open-source
framework implementation communities and a wide array of adopters and
extenders. The vast majority of this book covers generic OSGi topics applicable
to any OSGi system or implementation. Throughout the book we consistently use
Equinox, the OSGi framework specification reference implementation, as the
base for our examples and discussions. From time to time we cover features and
facilities available only in Equinox. In general, these capabilities have been added
to Equinox to address real-world problems—things that you will encounter. As
such, it is prudent that we discuss them here.

Throughout the book we also cover the Eclipse Plug-in Development Envi-
ronment (PDE) tooling for writing and building OSGi bundles. PDE is compre-
hensive, robust, and sophisticated tooling that has been used in the OSGi context
for many years. If you are not using PDE to create your OSGi-based systems, per-
haps you should take this opportunity to find out what you are missing.

Finally, Eclipse is a powerhouse in the tooling domain. Increasingly it is being
used in pure runtime, server-side, and embedded environments. This movement
has come to be known as EclipseRT. EclipseRT encompasses a number of tech-
nologies developed at Eclipse that are aimed at or useful in typical runtime con-
texts. The Toast application developed here has been donated to the Eclipse
Examples project and is evolving as a showcase for EclipseRT technologies. We
encourage you to check out http://wiki.eclipse.org/Toast to see what people have
done to and with Toast.

Audience

This book is targeted at several groups of Java developers. Some Java programming
experience is assumed, and no attempt is made to introduce Java concepts or syntax.

For developers new to OSGi and Equinox, there is information about the ori-
gins of the technology, how to get started with the Eclipse OSGi bundle tooling,
and how to create your first OSGi-based system. Prior experience with Eclipse as
a development tool is helpful but not necessary.

For developers experienced with writing OSGi bundles and systems, the book
formalizes a wide range of techniques and practices that are useful in creating
highly modular systems using OSGi—from service collaboration approaches to
server-side integration and system building as part of a release engineering pro-
cess, deployment, and installation.

For experienced OSGi developers, this book includes details of special fea-
tures available in Equinox and comprehensive coverage of useful facilities such as

http://wiki.eclipse.org/Toast

xxviii Preface

Declarative Services, buddy class loading, Google Earth integration, and the
Eclipse bundle tooling that make designing, coding, and packaging OSGi-based
systems easier than ever before.

Sample Code

Reading this book can be a very hands-on experience. There are ample opportu-
nities for following along and doing the steps yourself as well as writing your
own code. The companion download for the book includes code samples for each
chapter. Instructions for getting and managing these samples are given in Chapter 3,
“Tutorial Introduction,” and as needed in the text. In general, all required mate-
rials are available online at either http://eclipse.org or http://equinoxosgi.org. As
mentioned previously, a snapshot of Toast also lives and evolves as an open-
source project at Eclipse. See http://wiki.eclipse.org/Toast.

Conventions

The following formatting conventions are used throughout the book:

Bold—Used for UI elements such as menu paths (e.g., File > New > Project)
and wizard and editor elements

Italics—Used for emphasis and to highlight terminology

Lucida—Used for Java code, property names, file paths, bundle IDs, and the
like that are embedded in the text

Lucida Bold—Used to highlight important lines in code samples

Notes and sidebars are used often to highlight information that readers may
find interesting or helpful for using or understanding the function being described
in the main text. We tried to achieve an effect similar to that of an informal pair-
programming experience where you sit down with somebody and get impromptu
tips and tricks here and there.

Feedback

The official web site for this book is http://equinoxosgi.org. Additional informa-
tion and errata are available at informit.com/title/0321585712. You can report
problems or errors found in the book or code samples to the authors at
book@equinoxosgi.org. Suggestions for improvements and feedback are also very
welcome.

http://eclipse.org
http://equinoxosgi.org
http://wiki.eclipse.org/Toast
http://equinoxosgi.org

13

CHAPTER 2

OSGi Concepts

The OSGi Alliance1 (http://osgi.org) is an independent consortium with the mis-
sion “to create a market for universal middleware.” This manifests itself as a set
of specifications, reference implementations, and test suites around a dynamic
module system for Java. The module system forms the basis for a “service plat-
form” that in turn supports the creation and execution of loosely coupled,
dynamic modular systems. Originating in the embedded space, OSGi retains its
minimalist approach by producing a core specification of just 27 Java types. This
ethic of simplicity and consistency is pervasive in the OSGi specifications.

In this chapter we explore the basic concepts around OSGi and look at how
they fit together. You will learn about

❍ The OSGi framework, its key parts and operation

❍ Bundles, their structure, and their lifecycle

❍ Services, extensions, and component collaboration

2.1 A Community of Bundles

An OSGi system is a community of components known as bundles. Bundles exe-
cuting within an OSGi service platform are independent of each other, yet they
collaborate in well-defined ways. Bundles are fully self-describing, declaring their
public API, defining their runtime dependencies on other bundles, and hiding
their internal implementation.

1. The OSGi Alliance was founded as the Open Services Gateway initiative. They have since
rebranded as the “OSGi Alliance.”

http://osgi.org

14 CHAPTER 2 • OSGi Concepts

Bundle writers, producers, create bundles and make them available for others
to use. System integrators or application writers, consumers, use these bundles
and write still more bundles using the available API. This continues until there is
enough functionality available to solve a given problem. Bundles are then com-
posed and configured to create the desired system.

As shown in Figure 2-1, an OSGi application has no top and no bottom—it
is simply a collection of bundles. There is also no main program; some bundles
contribute code libraries; others start threads, communicate over the network,
access databases, or collaborate with still others to gain access to hardware
devices and system resources. While there are often dependencies between bun-
dles, in many cases bundles are peers in a collaborative system.

OSGi-based systems are dynamic in that the bundles in the community can
change over the lifetime of the application. A bundle can be installed, uninstalled,
and updated at any time. To facilitate this, bundles must be implemented to
gracefully handle being uninstalled, as well as to respond to the addition,
removal, and possible replacement of collaborating bundles.

These characteristics lead to a fundamentally simple but powerful module
system upon which other systems can be built. Indeed, modularity and OSGi bun-
dles are among the secrets to the success of Eclipse as a platform and as an eco-
system. In any suitably large system it is increasingly unlikely that all components

Figure 2–1 An OSGi application as a collection of interdependent bundles

OSGi Application

Bundle D

Bundle F

Bundle G

Bundle H

Bundle E

Bundle A

Bundle C

Bundle B

Bundle X

Bundle Y

Bundle Z

2.2 Why OSGi? 15

will be written by the same producer. In fact, in an OSGi system such as an
Eclipse application, it is common for bundles to come from a variety of produc-
ers, such as open-source projects, corporations, and individuals. The strong mod-
ularity promoted and supported by OSGi dramatically increases the opportunity
for code reuse and accelerates the delivery of applications.

2.2 Why OSGi?

If OSGi is so small and simple, what makes it so special? To understand more,
let’s first look at a traditional Java application. A Java system is composed of
types—classes and interfaces. Each type has a set of members—methods and
fields—and is organized into packages. The set of Java packages defines a global
type namespace, and the Java language defines the visibility rules used to manage
the interactions between types and members. As shown in Figure 2-2, types and
packages are typically built and shipped as Java Archives (JARs). JARs are then
collected together on one classpath that is linearly searched by the Java virtual
machine (JVM) to discover and load classes.

So far it sounds pretty good—packages feel modular and there are visibility
rules to enable information hiding. At the low level the story is reasonable, but
things break down at the system and collaboration level. There are two main

Figure 2–2 A Java application

Java Application

JAR

ClassClass

ClassClass

ClassClass

PkgPkPk

ClassClass

ClassClass

ClassClass

PkgPP

ClassClass

ClassClass

ClassClass

Pkg
g
JAR

ClassClass

ClassClass

ClassClass

Pkg

aa

aa

aa

Pk

a

a

a

Pk

ClassClass

ClassClass

ClassClass

Pkg

aa

aa

aa

Pk

a

a

a

Pk

ClassClass

ClassClass

ClassClass

Pkg

aa

aa

aa

kk
JAR

Class
fields methods

Class

Class
fields methods

Class

Class
fields methods

Class

Package

CCC

CCC

CCC

CCC

CCC

CCC

Class
fields methods

Class

Class
fields methods

Class

Class
fields methods

Class

Package

CCC

CCC

CCC

CCC

CCC

CCC

Class
fields methods

Class

Class
fields methods

Class

Class
fields methods

Class

Package

16 CHAPTER 2 • OSGi Concepts

issues: Packages are too granular to be modules, and JARs are simply a delivery
mechanism with no runtime semantics.

The Java type and member visibility rules allow developers to hide elements
within a package, so it feels natural to say that packages == modules. In practice
this forces either packages to be too large or modules to be too numerous. Expe-
rience tells us that modules are often themselves composed of code from various
sources and that it is a best practice to use fine-grained package naming to enable
later refactoring. Mixing packages with modularity is counter to both experiences.

The JAR concept is very useful. It could be argued that the JAR as a delivery
vehicle was one of the drivers of the original success of Java. Producers create
JARs of useful function, and consumers use these JARs to build systems. Unfor-
tunately, JARs really are just a delivery vehicle and have minimal impact on the
running of the system. Delivered JARs simply go on a flat classpath with no con-
trol over the accessibility of their contents.

Combined, these characteristics mean that Java has no support for defining
or enforcing dependencies. Without dependencies, modularity is not possible.
You end up with systems where JARs fight for position on the classpath, JAR
content has more to do with who wrote the code rather than its functionality,
APIs are unclear, and the relationships between JARs are at best managed by
weak conventions. As shown in Figure 2-3, the net result is monolithic applica-
tions composed of tightly coupled JARs with multidirectional and even cyclical
dependencies. Collaboration and sharing between teams is impacted and applica-
tion evolution hindered.

Figure 2–3 A monolithic application

Java Application

Class

Class

Class

Pkg

a

a

a

Pk

a

a

a

Pk

Class

Class

Class

Pkg

a

a

a

Pk

a

a

a

Pk

Class

Class

Class

Pkg
Class

Class

Class

Pkg

a

a

a

Pk

a

a

a

Pk

Class

Class

Class

Pkg

a

a

a

Pk

a

a

a

Pk

Class

Class

Class

Pkg

Class

Class

Class

Pkg

a

a

a

Pk

a

a

a

Pk

Class

Class

Class

Pkg

a

a

a

Pk

a

a

a

Pk

Class

Class

Class

Pkg

Jar

Jar

Jar

2.2 Why OSGi? 17

OK, so what makes OSGi better? It’s still Java, right? True. OSGi builds on
the basic Java mechanisms just outlined but adds a few key elements. In particular,
rather than talking about JARs, OSGi talks about bundles. A bundle is typically
implemented as a JAR, but with added identity and dependency information; that
is, bundles are self-describing JARs. This simple idea has two effects: Producers
and consumers have an opportunity to express their side of the contract, and the
runtime has the information it needs to enforce these expectations.

By default the packages in a bundle are hidden from other bundles. Packages
containing API must, by definition, be available to other bundles and so must be
explicitly exported. Bundles including code that uses this API must then have a
matching import. This visibility management is similar in concept to Java’s pack-
age visibility but at a much more manageable and flexible level.

The OSGi runtime enforces these visibility constraints, thus forming the basis
of a strong but loosely coupled module system. Importing a package simply states
that the consuming bundle depends on the specified package, regardless of the
bundles that provide it. At runtime a bundle’s package dependencies are resolved
and bundles are wired together, based on rules that include package names, ver-
sions, and matching attributes. This approach effectively eliminates the classpath
hell problem while simultaneously providing significant class loading perfor-
mance improvements and decreased coupling.

No code is an island. All this loose coupling comes at a price. In a traditional
Java system, if you wanted to use some functionality, you would simply reference
the required types. The tightly coupled approach is simple but limiting. In a sce-
nario that demands more flexibility this is not possible. The Java community is
littered with ad hoc and partial solutions to this: Context class loaders,
Class.forName, “services” lookup, log appenders—all are examples of mecha-
nisms put in place to enable collaboration between loosely coupled elements.

While the importing and exporting of packages express static contracts, ser-
vices are used to facilitate dynamic collaboration. A service is simply an object
that implements a contract, a type, and is registered with the OSGi service regis-
try. Bundles looking to use a service need only import the package defining the
contract and discover the service implementation in the service registry. Note that
the consuming bundle does not know the implementation type or producing bundle
since the service interface and implementation may come from different bundles—
the system is collaborative yet remains loosely coupled.

Services are dynamic in nature: A bundle dynamically registers and unregis-
ters services that it provides, and it dynamically acquires and releases the services
that it consumes. Some bundles are service providers, some are service consum-
ers, and others are both providers and consumers.

In many ways OSGi can be thought of as an extension to the Java program-
ming language that allows package visibility and package dependency constraints

18 CHAPTER 2 • OSGi Concepts

to be specified at development time and enforced at runtime. Through these con-
straints it is easier to build applications that are composed of loosely coupled and
highly cohesive components.

2.3 The Anatomy of a Bundle

A bundle is a self-describing collection of files, as shown in Figure 2-4.

The specification of a bundle’s contents and requirements is given in its man-
ifest file, META-INF/MANIFEST.MF. The manifest follows the standard JAR manifest
syntax but adds a number of OSGi-specific headers. The manifest for the
org.equinoxosgi.toast.backend.emergency bundle from the figure looks like this:

org.equinoxosgi.toast.backend.emergency/MANIFEST.MF
Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.equinoxosgi.toast.backend.emergency
Bundle-Version: 1.0.0
Import-Package: javax.servlet;version="2.4.0",
 javax.servlet.http;version="2.4.0",
 org.equinoxosgi.toast.core;version="1.0.0",
 org.equinoxosgi.toast.core.emergency;version="1.0.0",
 org.osgi.service.component;version="1.0.0",
 org.osgi.service.http;version="1.2.0"
Export-Package: org.equinoxosgi.toast.backend.emergency.internal;
 version="1.0.0";x-internal:=true,
 org.equinoxosgi.toast.backend.emergency.internal.bundle;
 version="1.0.0";x-internal:=true
Bundle-RequiredExecutionEnvironment: J2SE-1.4
Bundle-Copyright: Copyright (c) 2009 equinoxosgi.org
Bundle-Name: Toast Back End Emergency
Bundle-Vendor: equinoxosgi.org

All bundle manifests must have the headers Bundle-SymbolicName and Bundle-
Version. The combination of these headers uniquely identifies the bundle to

Figure 2–4 Bundle anatomy

2.4 Modularity 19

OSGi frameworks, developers, and provisioning systems. A bundle also expresses
its modularity through headers such as Export-Package, Import-Package, and
Require-Bundle. Additional headers such as Bundle-Copyright, Bundle-Name, and
Bundle-Vendor are purely documentation. Throughout the book we’ll introduce
additional headers as they arise in the tutorial.

A bundle can contain Java types, native libraries, or other, nonexecutable
files. The content and structure of a bundle depend entirely on what it is deliver-
ing and how it is being used. Most bundles deliver Java code to be executed by a
Java runtime. These are structured as JARs with the Java code in a package-
related folder structure (e.g., org/equinoxosgi/toast/core/Delay.class).

Bundles that deliver non-Java content (e.g., source, documentation, or static
web content) are structured to suit the mechanism consuming their content. For
example, native executables and files being accessed from other programs must
reside directly on disk rather than nested inside JAR files. OSGi framework
implementations such as Equinox facilitate this by supporting folder-based bun-
dles. Folder-based bundles are essentially just JAR bundles that have been
extracted.

2.4 Modularity

An OSGi bundle provides a clear definition of its modularity—this includes its
identity, its requirements, and its capabilities. The Bundle-SymbolicName and Bundle-
Version manifest headers take care of defining identity. A bundle can have a num-
ber of different capabilities and requirements. The most common pattern is to
express these dependencies in terms of Java packages. Bundle developers can also
specify dependencies on whole bundles.

2.4.1 Exporting a Package

To give access to Java types in a bundle, the bundle must export the package con-
taining the types; that is, OSGi’s unit of Java dependency is the Java package.
Bundles can export any number of packages. By exporting a package, the bundle
is saying that it is able and willing to supply that package to other bundles.
Exported packages form the public API of the bundle. Packages that are not
exported are considered to be private implementation details of the bundle and
are not accessible to others. This is a powerful concept and one of the reasons
that OSGi’s component model is so appealing.

A bundle that uses the Export-Package header to export several packages is
shown in the following manifest snippet. Notice that the packages are specified

20 CHAPTER 2 • OSGi Concepts

in a comma-separated list and that a version number can be specified for each
package. Each package is versioned independently.

org.equinoxosgi.toast.core/MANIFEST.MF
Bundle-SymbolicName: org.equinoxosgi.toast.core
Bundle-Version: 1.0.0
Export-Package: org.equinoxosgi.toast.core;version=1.2.3,
 org.equinoxosgi.toast.core.services;version=8.4.2

2.4.2 Importing a Package

Exporting a package makes it visible to other bundles, but these other bundles must
declare their dependency on the package. This is done using the Import-Package
header.

The following manifest snippet shows a bundle that imports several packages.
As with exports, the set of imported packages is given as a comma-separated list.
Notice here that the import for each package can be qualified with a version
range. The range specifies an upper and lower bound on exported versions that
will satisfy the requirements of this bundle. Versions, version ranges, and depen-
dency management are discussed throughout the book as they form a key part of
developing, maintaining, and deploying modular systems.

org.equinoxosgi.toast.core/MANIFEST.MF
Bundle-SymbolicName: org.equinoxosgi.toast.core
Bundle-Version: 1.0.0
Import-Package: org.osgi.framework;version="[1.3,2.0.0)"
 org.osgi.service.cm;version="[1.2.0,2.0.0)"

2.4.3 Requiring a Bundle

It is also possible to specify a dependency on an entire bundle using a Require-
Bundle header, as shown in the following manifest fragment:

org.equinoxosgi.toast.dev.airbag.fake/MANIFEST.MF
Bundle-Name: Toast Fake Airbag
Bundle-SymbolicName: org.equinoxosgi.toast.dev.airbag.fake
Bundle-Version: 1.0.0
Import-Package: org.eclipse.core.runtime.jobs,
 org.equinoxosgi.toast.core;version="[1.0.0,2.0.0)",
 org.equinoxosgi.toast.dev.airbag;version="[1.0.0,2.0.0)"
Require-Bundle: org.eclipse.equinox.common; bundle-version="3.5.0"

With this approach, a bundle is wired directly to the prerequisite bundle and
all packages it exports. This is convenient but reduces the ability to deploy bun-
dles in different scenarios. For example, if the required bundle is not, or cannot
be, deployed, the bundle will not resolve, whereas the actual package needed may
be available in a different bundle that can be deployed.

2.5 Modular Design Concepts 21

Requiring bundles can be useful when refactoring existing systems or where
one bundle acts as a façade for a set of other bundles. Requiring a bundle also
allows for the specification of dependencies between modules that do not deliver
Java code and so do not export or import packages.

THE HISTORY OF Require-Bundle
Historically, Eclipse projects use Require-Bundle because that is what the orig-
inal Eclipse runtime supported. Now that Eclipse is OSGi-based, many of these
bundles would be better off using Import-Package. This is happening over time
as the need for this additional flexibility is recognized.

2.4.4 Enforcing Modularity

Given these capability and requirements statements, the OSGi framework
resolves the dependencies and wires bundles together at runtime. Modularity in
an OSGi system is enforced through a combination of wires and standard Java
language visibility rules. To manage this, the framework gives each bundle its
own class loader. This keeps separate the classes from the different bundles.
When a bundle is uninstalled or updated, its class loader, and all classes loaded
by it, are discarded. Having separate class loaders allows the system to have mul-
tiple versions of the same class loaded simultaneously. It also enforces the stan-
dard Java type visibility rules, such as package visible and public, protected and
private, in a bundle world.

2.5 Modular Design Concepts

Given these constructs, how do we talk about OSGi-based applications? One way
is to look at the abstraction hierarchy:

Application > Bundle > Package > Type > Method

This shows that a bundle is an abstraction that is bigger than a package but
smaller than an application. In other words, an application is composed of bun-
dles; bundles are composed of packages; packages are composed of types; and
types are composed of methods. So, just as a type is composed of methods that
implement its behavior, an application is composed of bundles that implement its
behavior. The task of decomposing an application into bundles is similar to that
of decomposing an application into types and methods.

22 CHAPTER 2 • OSGi Concepts

Another way to talk about OSGi-based systems is to talk about decomposi-
tion. Key to high-quality design at all levels is the decomposition used. We talk
about and measure decomposition along three axes: granularity, coupling, and
cohesion. Here we relate these terms to the OSGi environment:

Granularity—Granularity is the measure of how much code and other con-
tent is in a bundle. Coarse-grained bundles are easy to manage but are inflex-
ible and bloat the system. Fine-grained bundles give ultimate control but
require more attention. Choosing the right granularity for your bundles is a
balance of these tensions. Big is not necessarily bad, nor small, good. In some
ways granularity is the overarching consequence of coupling and cohesion.

Coupling—Coupling is an outward view of the number of relationships between
a bundle and the rest of the system. A bundle that is highly coupled requires
many other bundles and generally makes many assumptions about its surround-
ing context. On the other hand, loosely coupled bundles operate independently
and offer you the flexibility to compose your application to precisely meet
your changing requirements without dragging in unnecessary dependencies.

Cohesion—Cohesion is an inward view of the relevance of the elements of a
bundle to one another. In a highly cohesive bundle, all parts of the bundle are
directly related to, and focused on, addressing a defined, narrowly focused topic.
Low-cohesion bundles are ill-defined dumping grounds of random content.
Highly cohesive bundles are easier to test and reuse, and they enable you to
deliver just the function you need and nothing more. A common pitfall is to
consider a bundle to be either an entire subsystem or an entire layer in the
application’s architecture, for example, the domain model or the user inter-
face. A highly cohesive bundle often provides a solution to part, but not all,
of a problem.

These ideas are not unique to OSGi—they are tenets of good design practices
and fundamental to object-oriented and agile approaches. In the case of OSGi,
however, the system is designed to expose and enforce key aspects of coupling,
cohesion, and granularity, making the benefits directly tangible. OSGi encourages
you to decompose your application into right-grained bundles that are loosely
coupled and highly cohesive.

2.6 Lifecycle

OSGi is fundamentally a dynamic technology. Bundles can be installed, started,
stopped, updated, and uninstalled in a running system. To support this, bundles
must have a clear lifecycle, and developers need ways of listening to and hooking
into the various lifecycle states of a bundle (see Fig. 2-5).

2.6 Lifecycle 23

Every bundle starts it runtime life in the installed state. From there it becomes
resolved if all of its dependencies are met. Once a bundle is resolved, its classes
can be loaded and run. If a bundle is subsequently started and transitions to the
active state, it can participate in its lifecycle by having an activator. Using the acti-
vator, the bundle can initialize itself, acquire required resources, and hook in with
the rest of the system. At some point—for example, on system shutdown—active
bundles get stopped. Bundles with activators have a chance to free any resources
they may have allocated. Bundles transition back to the resolved state when they
are stopped. From there they may be restarted or uninstalled, at which time they are
no longer available for use in the system.

All of this state changing surfaces as a continuous flow of events. Bundles
support dynamic behavior by listening to these events and responding to the
changes. For example, when a new bundle is installed, other bundles may be
interested in its contributions.

The OSGi framework dispatches events when the state of the bundles, the
services, or the framework itself changes.

Service events—Fired when a service is registered, modified, or unregistered

Bundle events—Fired when the state of the framework’s bundles changes, for
example, when a bundle is installed, resolved, starting, started, stopping,
stopped, unresolved, updated, uninstalled, or lazily activated

Framework events—Fired when the framework is started; an error, warning,
or info event has occurred; the packages contributing to the framework have
been refreshed; or the framework’s start level has changed

Figure 2–5 Bundle lifecycle

UNINSTALLED

RESOLVED

INSTALLED

STOPPING

ACTIVE

STARTING

install

resolve

uninstall

start
uninstall

stop

policyrefresh
update

update
refresh

24 CHAPTER 2 • OSGi Concepts

2.7 Collaboration

OSGi-based systems are composed of self-describing bundles as outlined previ-
ously. Bundles can collaborate by directly referencing types in other bundles. That
is a simple pattern familiar to all Java programmers, but such systems are tightly
coupled and miss out on the real power of modularity—loose coupling and
dynamic behavior.

To loosen the coupling between modules, there must be a collaboration
mechanism, a third party, that acts as an intermediary and keeps the collabora-
tors at arm’s length. The typical OSGi mechanism for this is the service registry.
Equinox, of course, supports the service registry but also adds the Extension Reg-
istry. These complementary approaches are outlined in the following sections and
discussed in more detail throughout the book.

2.7.1 Services

The OSGi service registry acts like a global bulletin board of functions coordinat-
ing three parties: bundles that define service interfaces, bundles that implement
and register service objects, and bundles that discover and use services. The ser-
vice registry makes these collaborations anonymous—the bundle providing a service
does not know who is consuming it, and a bundle consuming a service does not
know what provided it. For example, Figure 2-6 shows Bundle C that declares an
interface used by Bundle B to register a service. Bundle A discovers and uses the
service while remaining unaware of, and therefore decoupled from, Bundle B.
Bundle A depends only on Bundle C.

Figure 2–6 Service-based collaboration

OSGi Application

Bundle C

Bundle B

Bundle A

2.7 Collaboration 25

Services are defined using a Java type, typically a Java interface. The type
must be public and reside in a package that is exported. Other bundles—and per-
haps even the same bundle—then implement the service interface, instantiate it,
and register the instance with the service registry under the name of the service
interface. The classes that implement the service, being implementation details,
generally are not contained in packages that are exported.

Finally, a third set of bundles consumes the available services by importing
the package containing the service interface and looking up the service in the ser-
vice registry by the interface name. Having obtained a matching service object, a
consuming bundle can use the service until done with it or the service is unregis-
tered. Note that multiple bundles can consume the same service object concur-
rently, and multiple service objects may be provided by one or more bundles.

The dynamic aspect of service behavior is often managed in conjunction with
the lifecycle of the bundles involved. For example, when a bundle is started, it
discovers its required services and instantiates and registers the services it pro-
vides. Similarly, when a bundle is stopped, its bundle activator unregisters con-
tributed services and releases any services being consumed.

2.7.2 Extensions and Extension Points

The Equinox Extension Registry is a complementary mechanism for supporting
inter-bundle collaboration. Under this model, bundles can open themselves for
extension or configuration by declaring an extension point. Such a bundle is
essentially saying, “If you give me the following information, I will do”
Other bundles then contribute the required information to the extension point in
the form of extensions.

In this book we use the example of an extensible web portal that allows
actions to be contributed and discovered via the Extension Registry. In this
approach the portal bundle declares an actions extension point and a contract
that says,

“Bundles can contribute actions extensions that define portal actions with a
path, a label, and a class that implements the interface IPortalAction. The
portal will present the given label to the user organized according to the given
path and such that when the user clicks on the label, a particular URL will
be accessed. As a result of the URL request, the portal will instantiate the
given action class, cast it to IPortalAction, and call its execute method.”

Figure 2-7 shows this relationship graphically.

26 CHAPTER 2 • OSGi Concepts

Extension-to-extension-point relationships are defined using XML in a file
called plugin.xml. Each participating bundle has one of these files. As bundles
are resolved in the system, their extensions and extension points are loaded into
the Extension Registry and made available to other bundles. A full set of Exten-
sion Registry events is broadcast to registered listeners along the way. Extension
and extension points can also be managed programmatically.

2.8 The OSGi Framework

The modularity mechanisms described previously are largely implemented by the
OSGi Framework. As such, an OSGi application is a collection of one or more
bundles executing in an OSGi framework. The framework takes care of all the
dependency resolution, class loading, service registrations, and event management.

TERMINOLOGY
The phrases “the OSGi framework,” “the OSGi runtime,” and “the service plat-
form” are often used interchangeably and are typically abbreviated to just “the
framework,” “the runtime,” or “the platform.”

The framework is reified in a running system as the System Bundle. Repre-
senting the OSGi framework as a bundle allows us to view the entire platform
consistently as a collection of collaborating bundles. While the System Bundle is
clearly special, it contains a manifest, exports packages, provides and consumes
services, and broadcasts and listens to events like any other bundle.

The System Bundle differs from other bundles in that its lifecycle cannot be
managed. It is started automatically when the framework is started and continues
in the active state until the framework is stopped. Stopping the System Bundle
causes the framework to shut down. Similarly, the System Bundle cannot be unin-
stalled while running, since doing so would cause the framework to terminate.

Figure 2–7 Extension contribution and use

Web Portal UI

instantiates
calls execute()

implements

contributes
o.e.t.b.portal.actions

IPortalAction TrackingAction

Extension

Tracking

2.10 OSGi Framework Implementations 27

The other bundles in an OSGi system are installed into the framework and
started as needed. The set of installed bundles in a framework is persisted from
run to run—when the framework is shut down and relaunched, the same set of
bundles is present and started in the new framework. As such, bundles need to be
installed and started only once.

Interestingly, the framework specification does not say how the framework
itself is started or how the initial set of bundles is installed. In general it is envi-
sioned that there is an external management agent installing and uninstalling, and
starting and stopping, bundles. This may be a central service provider, systems
integrator, provisioning agent, or the end user. This approach is powerful, as it
makes the framework equally applicable in a wide range of scenarios.

The framework also supplies some rudimentary data management facilities.
Each bundle is given its own data area to use as required. The data written in this
area is persisted for as long as the bundle is installed in the framework.

2.9 Security

The OSGi specifications include security as a fundamental element. In addition
to the standard Java 2 permissions, OSGi-specific permissions are defined
throughout the framework and supplemental services. For example, with the sys-
tem running in secure mode, bundles require distinct permissions to register and
look up services and access properties.

The permissions in a system are managed by special-purpose services such as
the Conditional Permissions Admin service. This service can be used to manage
permissions on a per-bundle basis by, for example, giving bundles certain permis-
sions if they are digitally signed by particular parties. In addition, the User Admin
service facilitates the management of user-level or application permissions based
on the current user’s identity and role.

The real value of the OSGi permission model is that it is used throughout the
entire framework and service set.

2.10 OSGi Framework Implementations

At the time of this writing there have been four major revisions of the OSGi spec-
ifications. Over the ten-year history of OSGi there have been many implementa-
tions. The current R4.x specifications are implemented by several open-source
and commercial entities:

Equinox—Perhaps the most widely used open-source OSGi implementation,
Equinox is the base runtime for all Eclipse tooling, rich client, server-side, and

28 CHAPTER 2 • OSGi Concepts

embedded projects. It is also the reference implementation for the core frame-
work specification, several service specifications, and JSR 291. It is available
under the Eclipse Public License from http://eclipse.org/equinox.

Felix—Originally the Oscar project, the Felix open-source project at Apache
supplies a framework implementation as well as several service implementa-
tions. It is available under the Apache License v2 from http://felix.apache.org.

Knopflerfish—The Knopflerfish open-source project supplies an R4.x frame-
work implementation as well as several service implementations. It is available
under a BSD-style license from http://knopflerfish.org.

mBedded Server—This commercial R4.x implementation from ProSyst is
used in a number of embedded application areas. ProSyst offers several addi-
tional service implementations. It is available under commercial terms from
http://prosyst.com.

Concierge—Concierge is an open-source highly optimized and minimized
R3.0 specification implementation that is suitable for use in small embedded
scenarios. It is available under a BSD-style license from http://concierge
.sourceforge.net.

Despite the many features and functions included in the base framework,
implementations are very small and run on minimal JVM implementations. Con-
cierge weighs in at a mere 80K disk footprint. The base specification-compliant
parts of R4.x implementations tend to have a 300–600K disk footprint. Imple-
mentations such as Equinox include considerable additional functionality such as
enhanced flexibility, advanced signature management, and high scalability in
their base JARs but still stay under 1M on disk.

2.11 Summary

The OSGi framework specification is a good example of power through simplic-
ity and consistency. The technology is based on a small number of simple but gen-
eral notions such as modularity and services. OSGi’s origins in the embedded
world drive a minimalist approach that is present throughout the specification.

It is this simplicity that allows the framework to be extended and applied in
a wide range of situations. This is the key value in OSGi—its universality. The
Eclipse adoption of OSGi and its subsequent spread to use in the rich client and
now server world bring real power to Java developers and system integrators.

http://eclipse.org/equinox
http://felix.apache.org
http://knopflerfish.org
http://prosyst.com
http://concierge.sourceforge.net
http://concierge.sourceforge.net

459

Index

\ (backslash), 249, 429–430, 440
/ (forward slash), 249, 358, 363, 440
${buildDirectory}, 353, 365
${buildDirectory}/features, 353, 365
${buildDirectory}/plugins, 353, 365
${variable} substitution, 353
&, 444
>, 444
<, 444
@noDefault, 433
@none, 433
@user.dir, 434
@user.home, 434

A
absolute:, 363
Abstraction hierarchy, 21–22
Action lookup, 209–213
action property, 213–215, 234–235
actions extensions, 276–280
activate attribute, 94–96, 101–103, 250,

437–438, 447–450
Activation policy, 417, 420–422
Activators, 23–25, 62–64, 71, 78, 418–419
Active (bundle), 417
addAction, 211–213, 260–261
addExtension, 289–290
Addition, dynamic awareness, 375

addListener method, 52–53
Add-on features, 364–366
addProfile, 229–231
Agent (p2 architecture), 218–220, 229, 233
Airbag, 52–53, 167–169
Airbag Bundle, 60–61, 101
Airbag Bundle Activator, 94–95
Airbag domain logic, 263–265
Airbag service, 75–78
AirbagSimulator, 167–169
Alias, 308–313
Anonymous extensions, 282
Ant

build scripts, 344
documentation, 353
pattern syntax, 346
properties, 353, 356
release engineering, 355

Apache Commons Logging, 304, 325,
389–390

API surface area, 115–116
app (buddy policy), 398
app (Java application class loader), 424
AppenderHelper, 400–402
Appenders, 395–397
Application management, 184
Application model, 184–187
Application writers (consumers), 14
ApplicationDescriptor, 184

460 Index

ApplicationHandles, 184
archivePrefix, 350
Artifact repositories, 219–220, 230, 237, 239,

352
Audio support, 226–227
Audio user interface, 181–184
Authentication and login, 314–317
Automated Management of Dependencies,

71–76, 91, 230
Automatic updating of dependencies, 73–75
Auto-start, 138, 146, 165, 419, 421–423
Auto-substitution, version numbers, 360–361

B
Back end

core bundles, 108–109
emergency bundle, 109–111
features, 222–225
launch, 121–122, 142, 148
tracking bundle, 199

backendDeployer.product, 239
backend.product, 150, 233, 325, 337
backend-war.product, 326, 329, 333, 337
Backslashes, 249, 429–430, 440
Base ID and location, 350–351
base property, 350
basearch, 349, 351, 365
baseos, 349, 351, 364
basews, 349, 351, 365
Basic tracking scenario, 201
Binary Build, 149–150, 318, 345
bind attribute, 90, 103, 111, 211, 251, 300,

443, 452
BindException, 319
bin.excludes, 346
bin.includes, 329, 346, 362
bnd, 162, 394
boot (buddy policy), 397
Boot delegation, 428

boot (Java boot class loader), 424
bootclasspath, 349, 352–353
Bridged configuration, 322–329
BrowseAction, 213–214, 235
Browsers, 166, 188–190, 202–205
Buddy Class, 397–399
Buddy policies, 396–398, 424
BuddyLoader, 424
Bug reports, 320
Build naming, 350
Build scripts, 347, 356–357
build target, 348
Build templates, 357
buildDirectory, 349–350, 353, 358–360,

365–367
-buildfile, 354, 366
buildID, 349–350
buildLabel, 349–350, 366–367
build.properties, 345–353, 364–365
buildType, 349–350
build.xml, 347, 364, 366
Bundle build.properties, 346–347
Bundle IDs, 59, 92, 270, 406–407
BundleActivator, 62–63, 71, 78, 86, 380, 410,

418, 421
Bundle-Classpath, 393–394, 412, 414
BundleContext, 80–81, 135–136, 410,

447–448
BundleListeners, 377–378, 418
Bundle-relative path, 440
Bundle(s)

activation policy, 419–421
API surface area, 115–116
directories, 411–413
dynamic-enabled, 380–381
events, 23, 418
folder-based, 19
granularity, 22, 32
host, 413
JARs, 411–413

Index 461

lifecycle, 22–23, 416–419
manifest editor, 59–60
manifest file, 18–19
writers, 14

Bundle-SymbolicName, 18, 59–60, 78, 92, 116,
155, 279, 281

BundleTracker, 378–379
bundle-unique name, 437
Bundle-Version, 18–19, 60–61
Bundling by injection, 388–390
Bundling by reference, 392–394
Bundling by wrapping, 390–391
Bundling using bnd, 394

C
Cache management, 152
Caching, 284–290
Capability mechanism, 220
Carbon, 180, 193
cardinality attribute, 211, 252, 443, 445–446,

449, 452
catalina run/catalina stop, 331
Channel bundle, 112–116
ChannelMessage, 112–113, 119
Circular dependencies, 57
class attribute, 439
Class loading

boot delegation, 428
class lookup algorithm, 424
Class.forName, 395–399
context class loaders, 399–401
declaring imports and exports, 424
importing versus requiring, 426
JRE classes, 401–402
optional prerequisites, 426
optionality, 426
re-exporting, 427
serialization, 402–403
uses directive, 426–427
x-internal and x-friends, 428

Class lookup algorithm, 424
ClassNotFoundExceptions, 395, 400, 424
Classpath hell problem, 17
-clean, 152
clear*, 211
clearLog, 298–300, 304
Client features

audio support, 226–227
climate control, 227
emergency management, 228
GPS, 227
guidance system, 228
mapping, 227
shell feature, 225–226

Client tracking bundle, 199–204
client.builder

base ID and location, 350–351
build naming and locating, 350
build target, 348
build.properties, 348–353, 360–361
cross-platform building, 351
Java class libraries and compiler control,

352–353
p2 Repository, 352
PDE build target, 348
product and packaging control, 349–350
publishing to a p2 Repository, 352
SCM access control, 351–352

client.exe, 362
client.map, 358
Client/server interaction, 107

back end emergency bundle, 109–111
bundle API surface area, 115–116
channel bundle, 112–116
constants, 119
core bundles, 108–109
emergency monitor bundle, 116–119
logging, 120–121
properties, 119–120
Require-Bundle, 116–117
running toast, 121–123

462 Index

Client-side dynamic deployment, 241–242
Climate control, 227
Climate user interface, 181–183
Cocoa, 180, 193
Code libraries, integrating

bundling by injection, 388–390
bundling by reference, 392–394
bundling by wrapping, 390–391
bundling using bnd, 394
JARs as bundles, 388
troubleshooting class loading, 394–403

Cohesion, 18, 22, 57, 116
Collaboration, 4–5, 24–26
CommandInterpreter, 407
commandline, 333
Command-line arguments, 431
CommandProvider, 270, 407–409
Commons Logging, 304, 325, 389–390
Comparing the workspace, 38
compilelogs, 355
Compiler control, 352–353
Compiler preferences, 54
Compiler warnings, 53
compilerArg, 349, 352
component <component id>, 270
Component XML schema v1.1.0

<component> element, 436–439
<implementation> element, 436, 439
namespace and schema, 435–437
<properties> element, 436, 440–441
<property> element, 436, 439–440
<provide> element, 436, 442
<reference> element, 436, 442–444
<service> element, 436, 441–442

ComponentConstants, 457
ComponentFactory Service, 266–268
component.factory property, 266
component.name property, 266
Component(s)

activation/deactivation, 447–450

definition, 154–156, 271–272
enablement, 445
factory, 262–269
ID, 270
immediate attribute, 255–256, 438,

453–454
lifecycle, 444–457
modification, 447–450
properties, 454–457
referenced service policy, 449
Strict mode, 158
versions and version ranges, 155–156
x-friends directive, 158, 428
x-internal directive, 157, 428

Components (DS), 98–100, 103, 199, 212–213,
248–250

component.xml, 98–103, 188, 191, 199, 249,
251, 253, 265, 298, 301, 304, 309, 408

Concierge, 28
Conditional Permissions Admin service, 27
config.ini, 362, 423, 428–429
configs property, 351, 365
Configurable tracking, 204
Configuration area, 432–434
Configuration elements, 279–280
Configuration page, 146
ConfigurationAdmin, 201–205, 304, 437–439,

446, 454
configuration-policy attribute, 438
configurator.xml, 266
Configuring Equinox, 428–432
-console, 319, 332, 333, 406
-consolelog, 354
Constants, 119
Constraint solver SAT4J, 221
Container, 335
Context class loaders, 399–401
Context Finder, 401
Context (logging), 304–306
Contexts, 311, 314–318

Index 463

Continuation character \ (backslash), 249,
429–430, 440

Contribution IDs, 281
Control properties, 346–347
ControlCenter, 258, 336–338
Copy into Workspace, 38
Core bundles, 108–109, 198
Core tracking bundle, 198–199
Coupling,17, 22, 24, 57, 68–70, 301, 426, 442
CreateAction, 234
createComponent, 267–268
createContext, 316
createDefaultHttpContext, 308–309
createExecutableExtension, 279–280, 289, 396
Cross-platform issues, 154, 344, 351, 365
CruiseControl, 367
Crust shell, 174–175, 225–226, 361–362, 419
Crust widgets, 175
crust.ini, 362
Ctrl-key commands, 46–47, 53, 73, 170
Custom callbacks, 347, 356–357
customAssembly, 357
customTargets.xml, 359
cvs, 359

D
-D, 120, 353, 422, 428, 428, 431Data areas,

432–434
deactivate attribute, 94–96, 101–103, 250, 380,

437–438, 447–450
Debugging

DS apps, 269–270
missing property files, 441
release engineering, 355–356

Declarative Services (DS), 247, 435
accessing referenced services, 450–453
activate, deactivate, and modified, 437–438,

447–450
<component> element, 436–439

components, 98, 199, 292, 453–457
console commands, 270
debugging, 269–270
-Dequinox.ds.print=true, 104, 121, 270, 441
editor, 99
factory components, 262–269
immediate components, 255–256, 438,

453–454
<implementation> element, 436, 439
launching, 269–270
lifecycle, 444–457
model, 247–248
modifying the bundles, 98–104
naming conventions, 103
PDE tooling, 270–273
<properties> element, 436, 440–441
<property> element, 436, 439–440
<provide> element, 436, 442
providing services, 253–255
<reference> element, 436, 442–444
referencing services, 250–252, 254–255
root element, 437
scr namespace identifier, 436
<service> element, 436, 441–442
start levels, 383
target properties, 456–457
unbind methods, 102
Whiteboard Pattern, 256–262
XML schema v1.1.0, 435–444

Decoupling, 67, 70, 82, 126, 257
delay (property), 200–204
delayChanged, 200, 203–204
Delayed component instantiation, 213
Delta pack, 40, 43–44, 153–154, 348
Dependencies, 57, 61, 72–75
Dependencies page, 144–146
Dependency injection, 55, 69, 87, 118, 126,

135, 211, 257
dependent (buddy policy), 398
Deployed (bundle), 416

464 Index

-Dequinox.ds.print=true, 104, 121, 270, 441
Device drivers, 161
Device simulation, 165–167
DeviceSimulatorServlet, 166, 170
diag command, 407
Directory bundle layout, 411–412
dis (disable component), 270
Discouraged access, 157–158, 230–232
Discovery service, 335
dispose, 186, 268, 380–381
Distributed system, 340–341
Distributed Toast, 335–336
doGet method, 109–110, 202, 208–209
Duplication approach, 162
Dynamic best practices, 371

dynamic awareness, 374–378
dynamic enablement, 379–382
Extender Pattern and BundleTracker,

378–379
services, 383–384
start levels, 382–383
startup and shutdown, 382–385

Dynamic configuration, 197
back end tracking bundle, 199
basic tracking scenario, 201
client tracking bundle, 199–204
configurable tracking, 204
ConfigurationAdmin, 201
core tracking bundle, 198–199
persistent configuration, 205
tracking scenario, 197–198

Dynamic extension, 284–291
dynamic (policy attribute setting), 211, 444,

449
Dynamic services, 85

Declarative Services (DS), 97–105
Service Activator Toolkit (SAT), 86, 93–97
Service Trackers, 86–93
StartLevel service, 85

DynamicImport-Package, 399–400, 402

E
Easymock, 126–130, 132
Eclipse-BuddyPolicy, 397–398
Eclipse Communication Framework (ECF),

115, 322, 334–335
Eclipse Delta pack, 40, 43–44, 153–154, 348
Eclipse-ExtensibleAPI, 414–415
Eclipse Help online, 220
Eclipse-PlatformFilter, 414
Eclipse Integrated Development Environment

(IDE), 10, 37, 40, 248, 277, 355, 372
Eclipse-RegisterBuddy, 397
Eclipse Rich Ajax Platform (RAP), 208, 314
Eclipse Rich Client Platform (RCP) SDK, 40, 44
Eclipse SDK, 143, 248
Eclipse Update Manager, 217, 222
eclipse.ignoreApp, 104–105
eclipse.product, 429
Ecosystems, 7
Emergency bundle, 102–104, 109–111
Emergency domain logic, 176–178
Emergency management (client feature), 228
Emergency monitor bundle, 95–96, 116–119
Emergency user interface, 176, 179–181
EmergencyMonitor, 54, 88–90, 120, 127
EmergencyMonitorTestCase, 128, 130
EmergencyServlet, 109–111, 122, 170
enableComponent, 438, 445–446
enabled attribute, 438, 445
enableFrameworkControls, 333
Ensemble, 8, 10–11
entry attribute, 440
Equinox, 27–28

cache management, 152
configuring and running, 428–432
console, 406–409
LogService implementations, 304–306
p2, 218–221, 236–239, 352, 425
SDK, 40, 44, 153, 313
Servlet Bridge, 324–328, 333

Index 465

Equinox x-friends, 156–158, 428
Equinox x-internal, 156–158, 428
Event listener bundle, 257
Event source bundle, 257
Event sources, 210, 377
Event strategy, 450–451
Events, 23
.exe, 148
Executable, 147–148, 282–283, 292, 363,

430–432
Executables feature, 348
Execution environment, 147–148
Export directives, 428
Exported Packages, 60, 73–74, 116, 156–158
Exporting Toast, 149–152
Export-Package, 18–20, 60–61, 115–116, 156,

401, 427
ext (buddy policy), 397
ext (Java class loader), 424
extendedFrameworkExports, 333
ExtendedLogEntry, 304–306
ExtendedLogReaderService, 304–305
ExtendedLogService, 304–306
Extender Pattern and BundleTracker, 378–379
Extensible user interface, 173

climate and audio, 181–184
crust, 173–175
emergency scenario, 175–181
navigation and mapping, 187–194
OSGi application model, 184–187

Extensible Web portal, 207–216
ExtensionActionLookup, 278–279
Extension(s), 25, 275

addExtension, 289–290
anonymous, 282
caching, 284–287
contribution IDs, 281
deltas, 283–284, 286–288
dynamic, 284–291
and extension points, 25–26, 278–280,

312–313

Extension Registry, 275–278, 283–284,
292–293

factories, 282–283, 292
named, 282
object caching, 287–290
removeExtension, 289–290
services and extensions, 290–292
singletons, 279, 281, 291
tracker, 289–290

External bundle JARs, 393
extra.<library>, 346

F
Factory components (DS)

airbag domain logic, 263–265
ComponentFactory Service, 266–268
declaring, 265–266
launching Toast, 269

Factory ID, 439
Fake Airbag, 163–164
Fake GPS, 164
Feature build, 362–366
Feature Builder, 364–366
feature IDs, 224
feature.builder/build.properties, 364
feature|fragment|plugin@elementId=, 358
features/customBuildCallbacks, 357
FeatureSync, 241–242
Felix, 28
Fetching from an SCM system, 358–360
Fetching the maps, 360
Fetching the product file, 359
fetchTag, 352
FileLocator, 412
Firefox, 188, 192
Folder bundles, 391
Folder-based bundles, 19
Food chain, 75, 94, 111, 177, 255, 373–374,

454
forceContextQualifier, 361

466 Index

Forward slash, 249, 358, 363, 440
Fragment bundles, 128, 249, 413–415
framework (class loader), 424
Framework events, 23
Framework implementations, 27–28
Framework (OSGi), 26–27
frameworkLauncherClass, 333
FrameworkUtil.getBundle, 377
Friends directive, 158
Futures (IFuture object), 340

G
Galileo SR1 release, 36
Generic types, 53
getAvailableFeatures, 229, 231–232
getBundle, 297, 378
getCache, 286
getContextClassLoader, 401
getException, 297
getExtension, 282, 284, 287–288
getExtensionDeltas, 283–284, 287–288
getExtensionPoint, 284
getExtensionRegistry, 289
getHelp, 407–408
getImportedService, 95
getImportedServiceNames, 95–96, 98
getKind, 263
getLevel, 297
getLog, 297
getLogger, 305
getMapFiles, 360
getMessage, 297
getObjects, 290
getOrientation, 263
getRow, 263
getServiceReference, 297
getServlet, 289–290
getTime, 297
getUsingBundle, 442

GlassFish, 321
Google Earth, 180, 187–195, 227–228
GPS, 169
GPS bundle, 58, 98–100
GPS Bundle Activator, 94
Gps class, 51–52
GPS service, 69–75
Granularity, 22, 32
Guidance system, 228

H
Headless, 108, 197, 239, 354, 357, 394
headless-build, 357, 364
Host bundle (fragments), 413
HTTP support, 307

BindException, 319
Configuring the port, 312
contexts, 314–318
extensions, 312–313
JAAS, 314–318
Jetty, 313–314
port query, 319–320
registering a servlet, 309–313
secured client, 317–318

http.address, 320
http.port, 320
HttpRegistryManager, 288–289
http.schema, 320
HttpService, 109–111, 121, 166, 285,

308–314, 318–320, 374, 376
HttpServlet, 109–110, 199, 208–209
http.timeout, 319–320
Hudson, 367

I
IActionLookup, 210–211, 214
IAirbagListener, 52–54
IArtifactRepositoryManager, 230

Index 467

IChannel, 112, 114, 115, 119, 131, 200, 254,
338

IClimateControl interface, 181–183
IClimateControlListener interface, 181–182
Icons, 147–148, 174, 178–180, 183–184, 273
ICrustDisplay, 174, 186, 292, 419
ICrustShell, 174, 178, 183, 191, 251, 256
IDs, 281, 350
IEngine, 230
IExecutableExtension, 283
IExtension, 288–290
IExtensionChangeHandler, 288–289
IExtensionDeltas, 283–284, 286–288
IExtensionRegistry, 282
IExtensionTracker, 288–289
ignore (configuration-policy), 439
IGoogleEarth, 189–192
IGps, 70–71, 73, 79–80, 99–100, 169, 190,

200, 253
Illegal XML characters, 444
IMappingScreen, 191–192
IMetadataRepositoryManager, 230
Immediate components, 255–256, 438,

453–454
Implementation, 162–165, 178
<implementation> element, 436, 439
Imported Packages, 61, 73–74
Importing versus requiring, 426
Import-Package, 19–21, 78, 394
Imports and exports, declaring, 424
Imports, organizing, 53, 73
Initialization file, 430
initializeTracker, 289–290
init-param, 328, 332
initparams, 309–310
injection, 87, 388–390
Install area (Equinox data area), 432–434
InstallAction, 235
Installed (bundle), 23, 416
install.xml, 235
Instance area (Equinox data area), 432–434

integer, 448
Integrating code libraries, 387

bundling by injection, 388–390
bundling by reference, 392–394
bundling by wrapping, 390–391
bundling using bnd, 394
JARs as bundles, 388
troubleshooting class loading problems,

394–403
interface attribute, 442–443
Interface duplication, 162
Interface/implementation separation, 138,

162–165, 178
Interfaces, 162–165
Internal directive, 157
Internal packages, 71, 115–116, 157–158
Internet Explorer, 192
Introspection, 332, 377, 406
IPlanner, 230
IPortalAction, 25–26, 209–215, 258–262,

276–281
IProfileRegistry, 230
IProvisioner, 229
IRegistryChangeEvent, 283, 286–288
IRegistryChangeListener, 283, 286
ISafeRunnable, 377
ITrackingConstants, 198, 200, 203
IUs (installable units), 219–222, 231–232

J
jarsigner, 36
Java Archives (JARs), 15–18, 188, 346, 357,

388, 391–395
Java Authentication and Authorization Service

(JAAS), 307, 314–318
Java class libraries, 352–353
Java database connectivity (JDBC), 392–394
Java Development Tools (JDT), 36
Java Runtime Environment (JRE), 36, 356,

401–402, 425

468 Index

Java Servlet API, 309
Java Software Development Kit (SDK), 36, 330
Java system components, 15–18
Java virtual machine (JVM), 15
JavaScript, 190
javax.servlet, 109, 325
javax.servlet.http, 325
javax.servlet.http.HttpServlet, 209
javax.servlet.resources, 325
Jetty, 313–314, 322–323
Jingle, 334
JMock, 127
join, 77, 384–385
JUnit, 126, 128–130, 136–139
junit.jar, 411

K
Key/value pairs, 120, 285, 328, 347
Keyboard shortcuts, 46–47, 53, 73, 170
Knopflerfish, 28

L
label property, 214–215
<<lazy>>, 420
Launch configuration, 63–64, 148, 205
Launcher Name, 148
Launching page, 147–148
launch.ini, 328
Lazy activation, 417, 419–420, 422
LDAP filters, 406, 414, 444, 456
Licensed material, 391
Lifecycle (bundle), 22–23, 291, 410, 416
Linux, 192, 319
listBundles, 407–408
Listener/Observer Pattern, 52–54, 77, 79, 86,

177–179, 182, 257, 283, 286–288, 292,
298, 300–305

Listeners
addListener method, 52–53
BundleListeners, 377–378
dynamic best practices, 376
Event listener bundle, 257
IAirbagListener, 52–54
IClimateControlListener interface, 181–182
IRegistryChangeListener, 283
registry, 286, 288, 381
removeListener method, 52–55
service listeners, 86
weak listener list, 377

locateService, 103, 259–260, 452–453
Logging, 295

clearLog, 298–300, 304
getLog, 297
getLogger, 305
log appenders, 395
log service specification, 295–298
LogEntry, 297
LogFilter, 305
logging levels, 296
logInfo, 299–300
LogListener, 298
LogReaderService, 295, 297–298, 301–303
LogService, 133–134, 298–301, 304–306
LogUtility, 119–121, 133, 303–304
setLog, 135–137, 298–300, 304
writing to the log, 296–297

Logical location, 312
Login, 314–318
log4j, 304, 395
LogService.LOG_DEBUG, 296
LogService.LOG_ERROR, 296
LogService.LOG_INFO, 296
LogService.LOG_WARNING, 296
LogUtility, 119–121, 133, 303–304
Lookup algorithm, 424
Lookup strategy, 450–452

Index 469

M
Mac platform issues, 180, 185–186, 193
main class, 55–56
ManageAction, 235
Map, 447–448
Map files, 351, 358–360
Mapping, 187–192, 227
mapsCheckoutTag, 349, 351, 360
mapsRepo, 349, 351, 360
mapsRoot, 349, 351, 360
Marker properties, 351–353
mBedded Server, 28
Metadata, 219–220
Metadata repositories, 219–220, 230–231,

237–239, 352
META-INF, 18, 60, 149, 346
MockAirbag, 127, 131–138
Mocking, 127, 132
MockLog, 131, 133–136
modified attribute, 437–438, 447–450
Modularity, 20–22

N
name attribute, 437, 440, 443
Named extensions, 282
Names with . (dot), 455
Namespace, 220
namespace and schema, 435–437
Naming conventions, 103, 224, 455
NASA, 8, 10–11
Native configuration, 322
Navigation and mapping

extensibility, 191–192
Google Earth integration, 187–190
mapping support, 191
user interface, 192–194

Navigation operations, 46–47
Nested DS components, 437
Nested reference elements, 250

netstat -anb, 319, 331
NetWeaver, 321
newInstance, 268, 454
NoClassDefFoundErrors, 395, 400

O
Object constructors, 380
Object handling, 376–377
Observer Pattern, 177, 181
Observers, 376–377
Open Services Gateway initiative, 13n
optional (configuration-policy), 439
Optional prerequisites, 426
Optional service, 446, 449
Orbit, 390
OSGi Alliance, 13
OSGi application model, 184–187
OSGi Mobile Expert Group (MEG), 184
OSGi R4.2 Enterprise Expert Group (EEG),

333–334
osgi.bundles, 422–423, 429
OSGI-INF, 98
osgi.instance.area, 429
osgi.noShutdown, 104–105
Overview page (Toast), 143–144

P
Package Explorer, 53, 56, 70–71, 150
Package filtering, 61
Package visibility, 156–158
Packaging, 141

Binary Build, 149–150
component definition, 154–158
exporting Toast, 149–152
launch configuration, 142–143
platform-specific code, 152–154
product configurations, 141–149
versions and version ranges, 155–156

470 Index

Parallel development, 161, 165
parent (buddy policy), 398
Password, 314–318
Path separator, 440
PDE (Plug-in Development Environment), 36,

148, 152
Build, 344–345, 362–363
Build target, 348
Build templates, 357
tooling, 270–273

Permissions, 27
perm_pattern, 363
Persistent configuration, 205
Persistent ID (PID), 198, 203, 319–320, 437,

439, 445–446, 455
Persistent starting, 422
Physical location, 312
Platform, 7, 26–27
Platform-specific code, 152–154
Platform-specific issues, 180
Pluggable services, 161–170
pluginPath, 349, 351, 357
Plug-ins view, 47
plugins/customBuildCallbacks, 357
plugin.xml, 26, 47, 276
POJO, 33, 126
policy attribute, 252, 443–444, 449
Port 8080, 121
Port 8081, 170, 312
Port management, 319–320, 331, 456
Port query, 319–320
Portal actions, 212–215
PortalServlet, 208–210, 256, 258
postSetup, 359
processSync, 241
Producers (bundle writers), 14
Product configurations

configuration page, 146
creating, 142–143
dependencies page, 144–146

launching page, 147–148
overview page, 143–144
productizing the client, 149
running the product, 148
sync with launch configuration, 148

Product files, release engineering, 359
product (property), 349
productBuild.xml, 348, 356, 366
Productizing the client, 149
Profile registry, 230
Properties, 119–120
<properties> element, 436, 440–441
<property> element, 436, 439–440
PropertyManager class, 111, 119–120, 122
Protocol providers, 335
<provide> element, 253, 436, 442–443
providing services, 68–69, 98–101, 253–255
Provisioner, 229–233
Provisioning UI, 235
p2 (Equinox)

architecture, 218–219
artifacts, 220
director, 221, 239
engine, 221
metadata, 219–220
profiles, 220, 425
repository, 220, 236–238, 352
wiki, 220

p2.artifact.repo, 349, 352, 365
p2.compress, 349, 352, 365–366
p2.gathering, 349, 352, 365–366
p2.inf, 231, 237
p2.metadata.repo, 349, 352, 365

Q
qualifier, 155, 361–362
Qualifying version numbers, 361–362
Quality, 22, 126, 131, 248
Query, 210, 231, 286, 305, 409

Index 471

R
Raw types (compiler warnings), 53, 283
Re-exporting bundles, 427
Refactoring, 59, 70, 71, 79, 176
Reference (bundling), 392–394
<reference> element, 103–104, 250–252, 261,

436, 442–444, 449–452, 456
Reference implementation (RI), 9
Referenced services, 68–69, 102–104, 250, 446,

450–453
REF_WEAK, 289–290, 377
registered (buddy policy), 396–398
Registering/unregistering a servlet, 309–313
registerObject, 289–290
registerResources, 308–311
registerService, 73, 186
registerServlet, 111, 210, 309–311
Registration Pattern, 210
Registry change events, 283, 286–288
Registry change listeners, 286, 288, 381
Regression testing, 164–165
Release engineering, 343

add-on features, 363–366
Ant properties, 353
build.properties, 345–353, 360, 364–365
client.builder, 347–353
control properties, 346–347
cross-platform building, 351
custom build scripts, 347, 356–357
debugging, 355–356
Eclipse delta pack, 348
feature.builder, 364–366
fetching from an SCM system, 358–360
Java class libraries, 352–353
map files, 358–360
p2 repository, 352
PDE Build, 344–345
product files, 345, 359
repositories, 352, 357
root files, 362–363

SCM access control, 351–352
SCM integration, 359–360
version numbers, 360–362
WARs, 367

Remote Method Invocation (RMI), 402
Remote Services, 322, 333–341
Remote service client, 338–339
Remote service host, 336–337
Removal, dynamic awareness, 375
removeAction, 211–212, 260–261
removeExtension, 289–290
removeListener method, 52–55
repoBaseLocation, 352, 357, 364–365
Repositories, 219–220, 230–231, 236–238,

242, 352, 357
repository directory, 355
require (configuration-policy), 439
Require-Bundle, 19–21, 78, 116–117
Required services, 80, 97, 104, 446
Resolved (bundle), 17, 23, 283–284, 417
Reverse domain name convention, 59
Root element, 437
Root files, 362–363
root.<os.ws.arch>, 362
Roots, 231
ROOT_TAG, 232
ROOT.war, 330
running, 385
Runtime, 26–27

S
Safari, 188, 192
SafeRunner, 377
Samples Manager, 37–39
SAT4J constraint solver, 221
SAX (Simple API for XML) classes, 425
SCM access control, 351–352, 365
SCM integration, 359–360
SCM system, 358–360

472 Index

scr namespace identifier, 436
Secured client, 317–318
Security, 27, 314–318
Semantic naming, 103
Separation approach, 162–164
Separation of concerns, 210, 301, 311, 324
Serialization, 402–403
Server side, 321

bridged configuration, 322–333
distributed Toast, 335–336
Eclipse Communication Framework (ECF),

334–335
embedding OSGi, 323–333
<init-param>s, 333
native configuration, 322
remote service client, 338–339
remote service host, 336–337
Remote Services, 335
servers and OSGi, 322–323
service discovery, 339–340
Service Location Protocol (SLP), 339–340
Servlet Bridge, 324–325, 327–328, 333
solo configuration, 322
Web Application Root (WAR) files, 326–329
Zeroconf, 339

Service Activator Toolkit (SAT), 93–97, 303
Service Component Runtime (SCR), 98, 248,

270
Service discovery, 339–340
<service> element, 436, 441–442
Service events, 23
Service listeners, 86
Service Location Protocol (SLP), 339–340
Service platform (sp) commands, 331–332
Service registry, 24–26
Service Trackers, 86–93
ServiceActionLookup, 211–213, 259–261
Service-based action lookup, 210–213
Service-Component, 100, 164, 249, 379,

413, 444

servicefactory attribute, 441
service.id property, 409
service.ranking property, 409
ServiceReference, 80, 186, 212, 261, 296,

451–452
ServiceRegistration, 73
Services, 17, 24, 67, 85

acquiring, 79–81
definition, 67
and extensions, 290–292
launching, 81
optional, 446, 449
registering the airbag service, 75–78
registering the GPS service, 69–75
required, 80, 97, 104, 446
troubleshooting, 82

services command, 406
ServiceTrackerCustomizers, 88–90
servlet, 327–328
Servlet Bridge, 324–328, 333
servletbridge.jar, 327
servlet-class, 327–328
servlet-mapping, 328
set*, 211, 230
setAirbag method, 54–56
setChannel, 118–119
setGps method, 55–56
setHttp, 110–111, 309–310
setLog, 135–137, 298–300, 304
setUp, 135–136
Shell feature, 225–226
short status command, 91–92, 332, 406, 415
Signing, 391
Simple Configurator, 333, 383, 429
SimpleLoginModule, 317
Simulated devices, 167–170
Simulator framework, 165–167
Singletons, 120, 279, 281, 291, 415–416
skipBase, 349, 351, 353, 364
skipFetch, 349, 352, 359, 365

Index 473

skipMaps, 349, 352, 360, 365
SoftReferences, 377
solo configuration, 322
some.bundle/plugin.xml, 282
source.<library>, 346
sp_deploy, 331
sp_redeploy, 331
sp_start, 331
sp_stop, 331
sp_test, 331
sp_undeploy, 331
special_executable, 363
Splash screen, 430
Split packages, 76
Spring DM, 321
ss command (short status), 91–92, 332, 406, 415
Standard Widget Toolkit (SWT), 35, 173–175,

179–180, 188, 190–192, 414–415, 427
Start levels, 82, 146, 382–383
Starting, 422
Starting (bundle), 417
StartLevel service, 85
startup method, 55, 78, 136–137, 265, 268
Static imports, 129
static (policy attribute setting), 443, 449
Stopping (bundle), 417
Strict mode, 158
svn, 359
Symmetry, 55
Synchronization (Product Export), 151
Synchronized launch and product configura-

tions, 148
System Bundle, 26–27, 425
System deployment with p2, 217

architecture, 218–219
artifacts, 220
back end features, 222–225
client features, 225–228
client-side dynamic deployment, 241–242
director, 221

engine, 221
exporting, running, and provisioning,

235–241
feature IDs, 224
p2 metadata, 219–220
profiles, 220
provisioner, 229–233
repositories, 220
Web UI, 233–235

System integrators (consumers), 14
SystemTestCase, 135, 137
System-testing Toast, 131–139

T
target attribute, 444, 456
Target editor, 41–45
Target platform, 39–46, 104, 138
Target properties, 456–457
Telematics, 31–32, 35, 49–56
Templates, 347–349, 356–357, 364, 367
Testing, 125

Easymock, 126–130, 132
fragment bundles, 128
JUnit, 126, 128–130, 136–139
mocking, 127, 132
regression testing, 164–165
static imports, 129
system-testing, 131–139
test cases, 127–130, 135–137
test harness, 127, 131–134
unit-testing, 126–130

Tickle, 235, 241–242
Toast

dynamic-awareness, 375
evolution, 34–35
exporting, 149–152
sample code, 36–39
target content, 46
target platform setup, 39–46

474 Index

ToastBackEnd, 142, 148, 170, 229, 239
ToastLogReader, 301, 306
toast.war, 330–331
toast.zip, 238, 330
toFileURL, 188–189
Tomcat, 323, 331
topLevelElementID, 364–365
topLevelElementType, 364–365
Touchpoints, 218, 221
Trackers, 289–290
Tracking code, 198–201
Tracking Scenario, 197–198
TrackingConfigServlet, 202–204, 310–312
TrackingMonitor, 197–203
TrackingServlet, 197–199
transformedRepoLocation, 357, 364–365
Troubleshooting

class loading problems, 394–403
ClassNotFoundExceptions, 395, 400, 424
HttpService, 318–320
server side, 332–334
services, 82

Twitter, 334
type attribute, 440

U
unbind attribute, 88–90, 102–104, 211, 251,

300, 304, 443
ungetService, 80–81
UninstallAction, 235
Uninstalled, 23, 378, 417
uninstall.xml, 235
Unit-testing Toast, 126–130
unregister, 309–310
Unresolved, 23, 281, 378
Unzip, 389, 391
updateDelay, 200–203
URL, 44, 188, 331

URL pattern, 327–328
UrlChannel, 114–115, 122
URLConverter, 188
User Admin service, 27
User area (Equinox data area), 433–434
User interface

climate and audio, 183–184
emergency, 176, 178–181
navigation and mapping, 192–194
See also Extensible user interface

uses directive, 426–427
UTF-8, 249
util package, 427
Utility classes

constants, 119
logging, 120–121
properties, 119–120

V
Validity testing, 376
value attribute, 439
Version numbers, 155, 297, 360–361, 364–365
VM arguments, 104, 120–121, 137, 158, 170, 432
void <method>, 451

W
wait, 384–385
war.builder/customTargets.xml, 367
watchFor, 134–136
Weak listener list, 377
WeakReferences, 289–290, 377
Web archive (WAR), 326–333, 367
Web interface, 165–166, 169–170, 204
Web portal, 207

action lookup, 209–213
delayed component instantiation, 213
portal actions, 212–215

Index 475

PortalServlet, 208–210, 256, 258
Whiteboard Pattern, 210, 215–216

Web UI, 233–235
WEB-INF, 326, 330–332
WebSphere, 321, 323
web.xml, 326–327, 332–333
Whiteboard Pattern, 210, 215–216, 256–262,

377
Whitespace in config.ini files, 430
Widgets, 173–175
Wildcards, 46, 249
Windows, 192, 360
Workspace bundles, 63, 138, 393
Wrapping a code library, 390–391

X
Xalan, 401
x-friends, 156–158, 428
x-internal, 156–158, 428
XML, 26, 98, 248–249, 261, 401
XML namespace and schema, 435–437
XML-compliance, 437
XMPP, 334–335

Z
Zeroconf, 339
Zip, 238, 344, 352, 357, 367, 389, 391
Zombie bundles, 375

	Foreword
	Preface
	Chapter 2 OSGi Concepts
	2.1 A Community of Bundles
	2.2 Why OSGi?
	2.3 The Anatomy of a Bundle
	2.4 Modularity
	2.5 Modular Design Concepts
	2.6 Lifecycle
	2.7 Collaboration
	2.8 The OSGi Framework
	2.9 Security
	2.10 OSGi Framework Implementations
	2.11 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

