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Foreword

My role as the Chief Technology Officer of SpringSource brings me into frequent
contact with companies building enterprise applications: many familiar names from
the Fortune 500, and a whole host of others besides. If there is one thing you
quickly learn, it is that the world of enterprise applications is messy and complex.
Even four to five years ago, customers adopting Spring were asking us for ways
to help them manage the size and complexity of the applications they were build-
ing. Large team sizes and applications with hundreds or thousands of internal
components (Spring beans) were not uncommon. The pressures on enterprises to
deliver increasingly sophisticated applications, in shorter and shorter time frames,
have only been growing since then. In many cases applications are now always
live and are constantly evolving. The move to deliver software “as a service”—
internally or externally—can only accelerate this trend.

In the enterprise Java landscape, the traditional unit of deployment for an
enterprise application is a web application archive (WAR) file. A number of com-
mon themes arise in my discussions with enterprise development teams:

❍ The WAR file as a single large unit of packaging and deployment is slowing 
down development processes and making it more difficult to structure large 
development teams since everything must come together in a single packaging 
step before anything can be deployed.

❍ WAR files are getting too large and unwieldy—a typical enterprise application 
may have literally hundreds of third-party dependencies, all packaged inside 
the WAR file. This has an adverse effect on upload and deployment times.

❍ Attempting to tackle complexity by deploying multiple WAR files side by side 
in the same container leads to problems with heap usage in the JVM since 
each WAR file has its own copy of all the dependencies, even though many 
of them could in theory be shared.

❍ When deploying WAR files side by side, there is no easy way to share com-
mon services.
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❍ The WAR file as the smallest unit of change means that changes in large 
enterprise applications cannot be easily isolated and contained.

❍ Attempts to introduce “self-policed” (i.e., unenforced) modularity con-
straints into a design typically fail, despite best intentions.

To help manage the large team sizes and complex requirements of modern
enterprise applications, it is clear that we need a more principled way to “divide
and conquer.” Something that lets us encapsulate well-defined parts of the system
as modules with hidden internals and carefully managed externals. Something
that enables those modules to be packaged and deployed individually without
forcing us to revise the whole universe. Something that provides a principled
mechanism for bringing those modules together in a running system, and that can
cope with the changes introduced by continuous evolution.

Facing these requirements back in 2005, it was an easy decision at Spring-
Source (then Interface21) to turn to OSGi, the “dynamic module system for
Java,” as the foundation technology for modular enterprise applications. Even
then, the OSGi Service Platform was already mature and proven in industrial set-
tings, as well as being lightweight through its heritage in embedded systems. 

The modularity layer of OSGi provides a mechanism for dividing a system
into independent modules, known as bundles, that are independently packaged
and deployed and have independent lifecycles. This solved a part of the problem
for us—helping to keep the implementation types of a module private, and expos-
ing only types that form part of the public interface of a module. We wanted
enterprise developers to continue developing their applications using Spring, of
course, and through the Spring Dynamic Modules’ open-source project created a
simple model whereby each module had its own set of components (Spring
beans). Some of those components are private to the module, but some should be
made public so that components in other modules can use them. The OSGi ser-
vice layer provides an answer to this problem, promoting an in-memory service-
oriented design. Components from a module can be published in the OSGi service
registry, and from there other modules can find and bind to those services. OSGi
also provides the necessary primitives to track services that may come and go
over time as modules are installed, uninstalled, and upgraded.

The next stage in our journey with OSGi was the introduction of the Spring-
Source dm Server: an enterprise application server that is not only built on top of
OSGi, but critically also supports the deployment of applications developed as a set
of OSGi bundles. Spring Dynamic Modules works with any compliant OSGi Ser-
vice Platform implementation, but for the dm Server we had to choose an OSGi
Service Platform as the base on which to build. We chose to build on Equinox,
the Eclipse implementation of the OSGi Service Platform, and also the reference
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implementation for the core OSGi specification. The open-source nature of Equi-
nox fit well with our own open-source philosophy and has been invaluable in
enabling us to work closely with the developers of Equinox and submit patches
and change requests over time. The widespread adoption of Equinox (as the
underpinnings of Eclipse, to name but one example) gave us confidence that it
would be battle-hardened and ready for enterprise usage. 

I am seeing a strong and growing serious interest in OSGi among companies
large and small. Building on OSGi will provide a firm foundation for dividing
your application into modules, which in turn will help you structure the team(s)
working on it more effectively. “Organization follows architecture” in the sense
that your ability to divide a complex application into independent pieces also
facilitates the structuring of team responsibilities along the same lines. In other
scenarios, your teams may be fixed, and you need an architecture that enables
those teams to work together most effectively. Again, a principled basis for divid-
ing a system into modules can facilitate that. With OSGi as a basis, your unit of
packaging and deployment can become a single module, removing bottlenecks in
the process and helping to minimize the impact of change. OSGi is also incredibly
well suited to product-line engineering, and to situations where you need to pro-
vide an extension or plug-in mechanism to enable third parties to extend your
software.

The future for OSGi looks bright. Version 4.2 of the specification has just
been released, and the OSGi Core Platform and Enterprise Expert Groups are
very active. A glance at the membership of the OSGi Alliance and the composi-
tion of the expert groups tells you just how seriously enterprise vendors are tak-
ing it. I am confident that the investment of your time in reading and studying
this book will be well rewarded. It is my belief that OSGi is here to stay. A firm
grasp of the strengths—and the weaknesses—of the OSGi Service Platform will
prove invaluable to you on your journey toward creating agile, modular software.

—Adrian Colyer
CTO, SpringSource
October 2009
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Preface

OSGi is a hot topic these days; all the major Java application server vendors have
adopted OSGi as their base runtime, Eclipse has been using OSGi as the basis of
its modularity story and runtime for at least the past five years, and countless oth-
ers have been using it in embedded and “under the covers” scenarios. All with
good reason.

The success of Eclipse as a tooling platform is a direct result of the strong
modularity enshrined in OSGi. This isolates developers from change, empowers
teams to be more agile, allows organizations to change the way that they develop
software, and lubricates the formation and running of ecosystems. These same
benefits can be realized in any software domain.

The main OSGi specification is remarkably concise—just 27 Java types. It is
well designed, and specified to be implemented and used in real life. Adoption of
OSGi is not without challenges, however. Make no mistake: Implementing highly
modular and dynamic systems is hard. There is, as they say, no free lunch. Some
have criticized OSGi as being complicated or obtuse. In most cases it is the problem
that is complex—the desire to be modular or dynamic surfaces the issues but is not
the cause. Modularizing existing monolithic systems is particularly challenging.

This book is designed to both highlight such topics and provide knowledge,
guidance, and best practices to mitigate them. We talk heavily of modularity,
components, and dynamism and show you techniques for enhancing your sys-
tem’s flexibility and agility.

Despite using OSGi for many years, participating in writing the OSGi speci-
fications, and implementing Equinox (the OSGi framework specification refer-
ence implementation), during the writing of this book we learned an incredible
amount about OSGi, Equinox, and highly modular dynamic systems. We trust
that in reading it you will, too.
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About This Book

This book guides up-and-coming and established OSGi developers through all
stages of developing and delivering an example OSGi-based telematics and fleet
management system called Toast.

We develop Toast from a blank workspace into a full-featured client and
server system. The domain is familiar to most everyone who has driven a car or
shipped a package. Telematics is, loosely speaking, all the car electronics—radio,
navigation, climate control, and so on. Fleet management is all about tracking
and coordinating packages and vehicles as they move from one place to another. 

The set of problems and opportunities raised allows us to plausibly touch a
wide range of issues from modularity and component collaboration to server-side
programming and packaging and delivery of highly modular systems. We create
stand-alone client applications, embedded and stand-alone server configurations,
and dynamic enhancements to both. This book enables you to do the same in
your domain.

Roughly speaking, the book is split into two sections. The first half, Parts I
and II, sets the scene for OSGi and Equinox and presents a tutorial-style guide to
building Toast. The tutorial incrementally builds Toast into a functioning fleet
management system with a number of advanced capabilities. The tutorial is writ-
ten somewhat informally to evoke the feeling that we are there with you, working
through the examples and problems. We share some of the pitfalls and mishaps
that we experienced while developing the application and writing the tutorial.

The second half of the book looks at what it takes to “make it real.” It’s one
thing to write a prototype and quite another to ship a product. Rather than leav-
ing you hanging at the prototype stage, Part III is composed of chapters that dive
into the details required to finish the job—namely, the refining and refactoring of
the first prototype, customizing the user interface, and building and delivering
products to your customers. This part is written as a reference, but it still includes
a liberal sprinkling of step-by-step examples and code samples. The goal is both
to dive deep and cover most of the major stumbling blocks reported in the com-
munity and seen in our own development of professional products. 

A final part, Part IV, is pure reference. It covers the essential aspects of OSGi
and Equinox and touches on various capabilities not covered earlier in the book.
We also talk about best practices and advanced topics such as integrating third-
party code libraries and being dynamic.

OSGi, despite being relatively small, is very comprehensive. As such, a single
book could never cover all possible topics. We have focused on the functions and
services that we use in the systems we develop day to day under the assumption
that they will be useful to you as well.
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OSGi, Equinox, and EclipseRT

The OSGi community is quite vibrant. There are at least three active open-source
framework implementation communities and a wide array of adopters and
extenders. The vast majority of this book covers generic OSGi topics applicable
to any OSGi system or implementation. Throughout the book we consistently use
Equinox, the OSGi framework specification reference implementation, as the
base for our examples and discussions. From time to time we cover features and
facilities available only in Equinox. In general, these capabilities have been added
to Equinox to address real-world problems—things that you will encounter. As
such, it is prudent that we discuss them here.

Throughout the book we also cover the Eclipse Plug-in Development Envi-
ronment (PDE) tooling for writing and building OSGi bundles. PDE is compre-
hensive, robust, and sophisticated tooling that has been used in the OSGi context
for many years. If you are not using PDE to create your OSGi-based systems, per-
haps you should take this opportunity to find out what you are missing.

Finally, Eclipse is a powerhouse in the tooling domain. Increasingly it is being
used in pure runtime, server-side, and embedded environments. This movement
has come to be known as EclipseRT. EclipseRT encompasses a number of tech-
nologies developed at Eclipse that are aimed at or useful in typical runtime con-
texts. The Toast application developed here has been donated to the Eclipse
Examples project and is evolving as a showcase for EclipseRT technologies. We
encourage you to check out http://wiki.eclipse.org/Toast to see what people have
done to and with Toast.

Audience

This book is targeted at several groups of Java developers. Some Java programming
experience is assumed, and no attempt is made to introduce Java concepts or syntax.

For developers new to OSGi and Equinox, there is information about the ori-
gins of the technology, how to get started with the Eclipse OSGi bundle tooling,
and how to create your first OSGi-based system. Prior experience with Eclipse as
a development tool is helpful but not necessary. 

For developers experienced with writing OSGi bundles and systems, the book
formalizes a wide range of techniques and practices that are useful in creating
highly modular systems using OSGi—from service collaboration approaches to
server-side integration and system building as part of a release engineering pro-
cess, deployment, and installation.

For experienced OSGi developers, this book includes details of special fea-
tures available in Equinox and comprehensive coverage of useful facilities such as

http://wiki.eclipse.org/Toast
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Declarative Services, buddy class loading, Google Earth integration, and the
Eclipse bundle tooling that make designing, coding, and packaging OSGi-based
systems easier than ever before.

Sample Code

Reading this book can be a very hands-on experience. There are ample opportu-
nities for following along and doing the steps yourself as well as writing your
own code. The companion download for the book includes code samples for each
chapter. Instructions for getting and managing these samples are given in Chapter 3,
“Tutorial Introduction,” and as needed in the text. In general, all required mate-
rials are available online at either http://eclipse.org or http://equinoxosgi.org. As
mentioned previously, a snapshot of Toast also lives and evolves as an open-
source project at Eclipse. See http://wiki.eclipse.org/Toast. 

Conventions

The following formatting conventions are used throughout the book:

Bold—Used for UI elements such as menu paths (e.g., File > New > Project)
and wizard and editor elements

Italics—Used for emphasis and to highlight terminology 

Lucida—Used for Java code, property names, file paths, bundle IDs, and the 
like that are embedded in the text

Lucida Bold—Used to highlight important lines in code samples 

Notes and sidebars are used often to highlight information that readers may
find interesting or helpful for using or understanding the function being described
in the main text. We tried to achieve an effect similar to that of an informal pair-
programming experience where you sit down with somebody and get impromptu
tips and tricks here and there.

Feedback

The official web site for this book is http://equinoxosgi.org. Additional informa-
tion and errata are available at informit.com/title/0321585712. You can report
problems or errors found in the book or code samples to the authors at
book@equinoxosgi.org. Suggestions for improvements and feedback are also very
welcome.

http://eclipse.org
http://equinoxosgi.org
http://wiki.eclipse.org/Toast
http://equinoxosgi.org
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CHAPTER 2

OSGi Concepts

The OSGi Alliance1 (http://osgi.org) is an independent consortium with the mis-
sion “to create a market for universal middleware.” This manifests itself as a set
of specifications, reference implementations, and test suites around a dynamic
module system for Java. The module system forms the basis for a “service plat-
form” that in turn supports the creation and execution of loosely coupled,
dynamic modular systems. Originating in the embedded space, OSGi retains its
minimalist approach by producing a core specification of just 27 Java types. This
ethic of simplicity and consistency is pervasive in the OSGi specifications.

In this chapter we explore the basic concepts around OSGi and look at how
they fit together. You will learn about

❍ The OSGi framework, its key parts and operation

❍ Bundles, their structure, and their lifecycle 

❍ Services, extensions, and component collaboration

2.1 A Community of Bundles

An OSGi system is a community of components known as bundles. Bundles exe-
cuting within an OSGi service platform are independent of each other, yet they
collaborate in well-defined ways. Bundles are fully self-describing, declaring their
public API, defining their runtime dependencies on other bundles, and hiding
their internal implementation.

1. The OSGi Alliance was founded as the Open Services Gateway initiative. They have since
rebranded as the “OSGi Alliance.”

http://osgi.org
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Bundle writers, producers, create bundles and make them available for others
to use. System integrators or application writers, consumers, use these bundles
and write still more bundles using the available API. This continues until there is
enough functionality available to solve a given problem. Bundles are then com-
posed and configured to create the desired system.

As shown in Figure 2-1, an OSGi application has no top and no bottom—it
is simply a collection of bundles. There is also no main program; some bundles
contribute code libraries; others start threads, communicate over the network,
access databases, or collaborate with still others to gain access to hardware
devices and system resources. While there are often dependencies between bun-
dles, in many cases bundles are peers in a collaborative system.

OSGi-based systems are dynamic in that the bundles in the community can
change over the lifetime of the application. A bundle can be installed, uninstalled,
and updated at any time. To facilitate this, bundles must be implemented to
gracefully handle being uninstalled, as well as to respond to the addition,
removal, and possible replacement of collaborating bundles.

These characteristics lead to a fundamentally simple but powerful module
system upon which other systems can be built. Indeed, modularity and OSGi bun-
dles are among the secrets to the success of Eclipse as a platform and as an eco-
system. In any suitably large system it is increasingly unlikely that all components

Figure 2–1 An OSGi application as a collection of interdependent bundles
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will be written by the same producer. In fact, in an OSGi system such as an
Eclipse application, it is common for bundles to come from a variety of produc-
ers, such as open-source projects, corporations, and individuals. The strong mod-
ularity promoted and supported by OSGi dramatically increases the opportunity
for code reuse and accelerates the delivery of applications.

2.2 Why OSGi?

If OSGi is so small and simple, what makes it so special? To understand more,
let’s first look at a traditional Java application. A Java system is composed of
types—classes and interfaces. Each type has a set of members—methods and
fields—and is organized into packages. The set of Java packages defines a global
type namespace, and the Java language defines the visibility rules used to manage
the interactions between types and members. As shown in Figure 2-2, types and
packages are typically built and shipped as Java Archives (JARs). JARs are then
collected together on one classpath that is linearly searched by the Java virtual
machine (JVM) to discover and load classes.

So far it sounds pretty good—packages feel modular and there are visibility
rules to enable information hiding. At the low level the story is reasonable, but
things break down at the system and collaboration level. There are two main

Figure 2–2 A Java application
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issues: Packages are too granular to be modules, and JARs are simply a delivery
mechanism with no runtime semantics.

The Java type and member visibility rules allow developers to hide elements
within a package, so it feels natural to say that packages == modules. In practice
this forces either packages to be too large or modules to be too numerous. Expe-
rience tells us that modules are often themselves composed of code from various
sources and that it is a best practice to use fine-grained package naming to enable
later refactoring. Mixing packages with modularity is counter to both experiences.

The JAR concept is very useful. It could be argued that the JAR as a delivery
vehicle was one of the drivers of the original success of Java. Producers create
JARs of useful function, and consumers use these JARs to build systems. Unfor-
tunately, JARs really are just a delivery vehicle and have minimal impact on the
running of the system. Delivered JARs simply go on a flat classpath with no con-
trol over the accessibility of their contents.

Combined, these characteristics mean that Java has no support for defining
or enforcing dependencies. Without dependencies, modularity is not possible.
You end up with systems where JARs fight for position on the classpath, JAR
content has more to do with who wrote the code rather than its functionality,
APIs are unclear, and the relationships between JARs are at best managed by
weak conventions. As shown in Figure 2-3, the net result is monolithic applica-
tions composed of tightly coupled JARs with multidirectional and even cyclical
dependencies. Collaboration and sharing between teams is impacted and applica-
tion evolution hindered.

Figure 2–3 A monolithic application
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OK, so what makes OSGi better? It’s still Java, right? True. OSGi builds on
the basic Java mechanisms just outlined but adds a few key elements. In particular,
rather than talking about JARs, OSGi talks about bundles. A bundle is typically
implemented as a JAR, but with added identity and dependency information; that
is, bundles are self-describing JARs. This simple idea has two effects: Producers
and consumers have an opportunity to express their side of the contract, and the
runtime has the information it needs to enforce these expectations.

By default the packages in a bundle are hidden from other bundles. Packages
containing API must, by definition, be available to other bundles and so must be
explicitly exported. Bundles including code that uses this API must then have a
matching import. This visibility management is similar in concept to Java’s pack-
age visibility but at a much more manageable and flexible level.

The OSGi runtime enforces these visibility constraints, thus forming the basis
of a strong but loosely coupled module system. Importing a package simply states
that the consuming bundle depends on the specified package, regardless of the
bundles that provide it. At runtime a bundle’s package dependencies are resolved
and bundles are wired together, based on rules that include package names, ver-
sions, and matching attributes. This approach effectively eliminates the classpath
hell problem while simultaneously providing significant class loading perfor-
mance improvements and decreased coupling.

No code is an island. All this loose coupling comes at a price. In a traditional
Java system, if you wanted to use some functionality, you would simply reference
the required types. The tightly coupled approach is simple but limiting. In a sce-
nario that demands more flexibility this is not possible. The Java community is
littered with ad hoc and partial solutions to this: Context class loaders,
Class.forName, “services” lookup, log appenders—all are examples of mecha-
nisms put in place to enable collaboration between loosely coupled elements.

While the importing and exporting of packages express static contracts, ser-
vices are used to facilitate dynamic collaboration. A service is simply an object
that implements a contract, a type, and is registered with the OSGi service regis-
try. Bundles looking to use a service need only import the package defining the
contract and discover the service implementation in the service registry. Note that
the consuming bundle does not know the implementation type or producing bundle
since the service interface and implementation may come from different bundles—
the system is collaborative yet remains loosely coupled.

Services are dynamic in nature: A bundle dynamically registers and unregis-
ters services that it provides, and it dynamically acquires and releases the services
that it consumes. Some bundles are service providers, some are service consum-
ers, and others are both providers and consumers.

In many ways OSGi can be thought of as an extension to the Java program-
ming language that allows package visibility and package dependency constraints
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to be specified at development time and enforced at runtime. Through these con-
straints it is easier to build applications that are composed of loosely coupled and
highly cohesive components.

2.3 The Anatomy of a Bundle

A bundle is a self-describing collection of files, as shown in Figure 2-4.

The specification of a bundle’s contents and requirements is given in its man-
ifest file, META-INF/MANIFEST.MF. The manifest follows the standard JAR manifest
syntax but adds a number of OSGi-specific headers. The manifest for the
org.equinoxosgi.toast.backend.emergency bundle from the figure looks like this:

org.equinoxosgi.toast.backend.emergency/MANIFEST.MF
Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.equinoxosgi.toast.backend.emergency
Bundle-Version: 1.0.0
Import-Package: javax.servlet;version="2.4.0",
 javax.servlet.http;version="2.4.0",
 org.equinoxosgi.toast.core;version="1.0.0",
 org.equinoxosgi.toast.core.emergency;version="1.0.0",
 org.osgi.service.component;version="1.0.0",
 org.osgi.service.http;version="1.2.0"
Export-Package: org.equinoxosgi.toast.backend.emergency.internal;
 version="1.0.0";x-internal:=true,
 org.equinoxosgi.toast.backend.emergency.internal.bundle;
 version="1.0.0";x-internal:=true
Bundle-RequiredExecutionEnvironment: J2SE-1.4
Bundle-Copyright: Copyright (c) 2009 equinoxosgi.org
Bundle-Name: Toast Back End Emergency
Bundle-Vendor: equinoxosgi.org

All bundle manifests must have the headers Bundle-SymbolicName and Bundle-
Version. The combination of these headers uniquely identifies the bundle to

Figure 2–4 Bundle anatomy
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OSGi frameworks, developers, and provisioning systems. A bundle also expresses
its modularity through headers such as Export-Package, Import-Package, and
Require-Bundle. Additional headers such as Bundle-Copyright, Bundle-Name, and
Bundle-Vendor are purely documentation. Throughout the book we’ll introduce
additional headers as they arise in the tutorial.

A bundle can contain Java types, native libraries, or other, nonexecutable
files. The content and structure of a bundle depend entirely on what it is deliver-
ing and how it is being used. Most bundles deliver Java code to be executed by a
Java runtime. These are structured as JARs with the Java code in a package-
related folder structure (e.g., org/equinoxosgi/toast/core/Delay.class).

Bundles that deliver non-Java content (e.g., source, documentation, or static
web content) are structured to suit the mechanism consuming their content. For
example, native executables and files being accessed from other programs must
reside directly on disk rather than nested inside JAR files. OSGi framework
implementations such as Equinox facilitate this by supporting folder-based bun-
dles. Folder-based bundles are essentially just JAR bundles that have been
extracted.

2.4 Modularity

An OSGi bundle provides a clear definition of its modularity—this includes its
identity, its requirements, and its capabilities. The Bundle-SymbolicName and Bundle-
Version manifest headers take care of defining identity. A bundle can have a num-
ber of different capabilities and requirements. The most common pattern is to
express these dependencies in terms of Java packages. Bundle developers can also
specify dependencies on whole bundles.

2.4.1 Exporting a Package

To give access to Java types in a bundle, the bundle must export the package con-
taining the types; that is, OSGi’s unit of Java dependency is the Java package.
Bundles can export any number of packages. By exporting a package, the bundle
is saying that it is able and willing to supply that package to other bundles.
Exported packages form the public API of the bundle. Packages that are not
exported are considered to be private implementation details of the bundle and
are not accessible to others. This is a powerful concept and one of the reasons
that OSGi’s component model is so appealing.

A bundle that uses the Export-Package header to export several packages is
shown in the following manifest snippet. Notice that the packages are specified
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in a comma-separated list and that a version number can be specified for each
package. Each package is versioned independently.

org.equinoxosgi.toast.core/MANIFEST.MF
Bundle-SymbolicName: org.equinoxosgi.toast.core
Bundle-Version: 1.0.0
Export-Package: org.equinoxosgi.toast.core;version=1.2.3,
 org.equinoxosgi.toast.core.services;version=8.4.2

2.4.2 Importing a Package

Exporting a package makes it visible to other bundles, but these other bundles must
declare their dependency on the package. This is done using the Import-Package
header.

The following manifest snippet shows a bundle that imports several packages.
As with exports, the set of imported packages is given as a comma-separated list.
Notice here that the import for each package can be qualified with a version
range. The range specifies an upper and lower bound on exported versions that
will satisfy the requirements of this bundle. Versions, version ranges, and depen-
dency management are discussed throughout the book as they form a key part of
developing, maintaining, and deploying modular systems.

org.equinoxosgi.toast.core/MANIFEST.MF
Bundle-SymbolicName: org.equinoxosgi.toast.core
Bundle-Version: 1.0.0
Import-Package: org.osgi.framework;version="[1.3,2.0.0)"
 org.osgi.service.cm;version="[1.2.0,2.0.0)"

2.4.3 Requiring a Bundle

It is also possible to specify a dependency on an entire bundle using a Require-
Bundle header, as shown in the following manifest fragment:

org.equinoxosgi.toast.dev.airbag.fake/MANIFEST.MF
Bundle-Name: Toast Fake Airbag
Bundle-SymbolicName: org.equinoxosgi.toast.dev.airbag.fake
Bundle-Version: 1.0.0
Import-Package: org.eclipse.core.runtime.jobs,
 org.equinoxosgi.toast.core;version="[1.0.0,2.0.0)",
 org.equinoxosgi.toast.dev.airbag;version="[1.0.0,2.0.0)"
Require-Bundle: org.eclipse.equinox.common; bundle-version="3.5.0" 

With this approach, a bundle is wired directly to the prerequisite bundle and
all packages it exports. This is convenient but reduces the ability to deploy bun-
dles in different scenarios. For example, if the required bundle is not, or cannot
be, deployed, the bundle will not resolve, whereas the actual package needed may
be available in a different bundle that can be deployed.



2.5 Modular Design Concepts 21

Requiring bundles can be useful when refactoring existing systems or where
one bundle acts as a façade for a set of other bundles. Requiring a bundle also
allows for the specification of dependencies between modules that do not deliver
Java code and so do not export or import packages.

THE HISTORY OF Require-Bundle
Historically, Eclipse projects use Require-Bundle because that is what the orig-
inal Eclipse runtime supported. Now that Eclipse is OSGi-based, many of these
bundles would be better off using Import-Package. This is happening over time
as the need for this additional flexibility is recognized.

2.4.4 Enforcing Modularity

Given these capability and requirements statements, the OSGi framework
resolves the dependencies and wires bundles together at runtime. Modularity in
an OSGi system is enforced through a combination of wires and standard Java
language visibility rules. To manage this, the framework gives each bundle its
own class loader. This keeps separate the classes from the different bundles.
When a bundle is uninstalled or updated, its class loader, and all classes loaded
by it, are discarded. Having separate class loaders allows the system to have mul-
tiple versions of the same class loaded simultaneously. It also enforces the stan-
dard Java type visibility rules, such as package visible and public, protected and
private, in a bundle world.

2.5 Modular Design Concepts

Given these constructs, how do we talk about OSGi-based applications? One way
is to look at the abstraction hierarchy:

Application > Bundle > Package > Type > Method

This shows that a bundle is an abstraction that is bigger than a package but
smaller than an application. In other words, an application is composed of bun-
dles; bundles are composed of packages; packages are composed of types; and
types are composed of methods. So, just as a type is composed of methods that
implement its behavior, an application is composed of bundles that implement its
behavior. The task of decomposing an application into bundles is similar to that
of decomposing an application into types and methods.



22 CHAPTER 2 • OSGi Concepts

Another way to talk about OSGi-based systems is to talk about decomposi-
tion. Key to high-quality design at all levels is the decomposition used. We talk
about and measure decomposition along three axes: granularity, coupling, and
cohesion. Here we relate these terms to the OSGi environment:

Granularity—Granularity is the measure of how much code and other con-
tent is in a bundle. Coarse-grained bundles are easy to manage but are inflex-
ible and bloat the system. Fine-grained bundles give ultimate control but 
require more attention. Choosing the right granularity for your bundles is a 
balance of these tensions. Big is not necessarily bad, nor small, good. In some 
ways granularity is the overarching consequence of coupling and cohesion.

Coupling—Coupling is an outward view of the number of relationships between 
a bundle and the rest of the system. A bundle that is highly coupled requires 
many other bundles and generally makes many assumptions about its surround-
ing context. On the other hand, loosely coupled bundles operate independently 
and offer you the flexibility to compose your application to precisely meet 
your changing requirements without dragging in unnecessary dependencies.

Cohesion—Cohesion is an inward view of the relevance of the elements of a 
bundle to one another. In a highly cohesive bundle, all parts of the bundle are 
directly related to, and focused on, addressing a defined, narrowly focused topic. 
Low-cohesion bundles are ill-defined dumping grounds of random content. 
Highly cohesive bundles are easier to test and reuse, and they enable you to 
deliver just the function you need and nothing more. A common pitfall is to 
consider a bundle to be either an entire subsystem or an entire layer in the 
application’s architecture, for example, the domain model or the user inter-
face. A highly cohesive bundle often provides a solution to part, but not all, 
of a problem.

These ideas are not unique to OSGi—they are tenets of good design practices
and fundamental to object-oriented and agile approaches. In the case of OSGi,
however, the system is designed to expose and enforce key aspects of coupling,
cohesion, and granularity, making the benefits directly tangible. OSGi encourages
you to decompose your application into right-grained bundles that are loosely
coupled and highly cohesive.

2.6 Lifecycle

OSGi is fundamentally a dynamic technology. Bundles can be installed, started,
stopped, updated, and uninstalled in a running system. To support this, bundles
must have a clear lifecycle, and developers need ways of listening to and hooking
into the various lifecycle states of a bundle (see Fig. 2-5).
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Every bundle starts it runtime life in the installed state. From there it becomes
resolved if all of its dependencies are met. Once a bundle is resolved, its classes
can be loaded and run. If a bundle is subsequently started and transitions to the
active state, it can participate in its lifecycle by having an activator. Using the acti-
vator, the bundle can initialize itself, acquire required resources, and hook in with
the rest of the system. At some point—for example, on system shutdown—active
bundles get stopped. Bundles with activators have a chance to free any resources
they may have allocated. Bundles transition back to the resolved state when they
are stopped. From there they may be restarted or uninstalled, at which time they are
no longer available for use in the system.

All of this state changing surfaces as a continuous flow of events. Bundles
support dynamic behavior by listening to these events and responding to the
changes. For example, when a new bundle is installed, other bundles may be
interested in its contributions.

The OSGi framework dispatches events when the state of the bundles, the
services, or the framework itself changes.

Service events—Fired when a service is registered, modified, or unregistered

Bundle events—Fired when the state of the framework’s bundles changes, for 
example, when a bundle is installed, resolved, starting, started, stopping, 
stopped, unresolved, updated, uninstalled, or lazily activated

Framework events—Fired when the framework is started; an error, warning, 
or info event has occurred; the packages contributing to the framework have 
been refreshed; or the framework’s start level has changed

Figure 2–5 Bundle lifecycle
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2.7 Collaboration

OSGi-based systems are composed of self-describing bundles as outlined previ-
ously. Bundles can collaborate by directly referencing types in other bundles. That
is a simple pattern familiar to all Java programmers, but such systems are tightly
coupled and miss out on the real power of modularity—loose coupling and
dynamic behavior.

To loosen the coupling between modules, there must be a collaboration
mechanism, a third party, that acts as an intermediary and keeps the collabora-
tors at arm’s length. The typical OSGi mechanism for this is the service registry.
Equinox, of course, supports the service registry but also adds the Extension Reg-
istry. These complementary approaches are outlined in the following sections and
discussed in more detail throughout the book.

2.7.1 Services

The OSGi service registry acts like a global bulletin board of functions coordinat-
ing three parties: bundles that define service interfaces, bundles that implement
and register service objects, and bundles that discover and use services. The ser-
vice registry makes these collaborations anonymous—the bundle providing a service
does not know who is consuming it, and a bundle consuming a service does not
know what provided it. For example, Figure 2-6 shows Bundle C that declares an
interface used by Bundle B to register a service. Bundle A discovers and uses the
service while remaining unaware of, and therefore decoupled from, Bundle B.
Bundle A depends only on Bundle C.

Figure 2–6 Service-based collaboration
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Services are defined using a Java type, typically a Java interface. The type
must be public and reside in a package that is exported. Other bundles—and per-
haps even the same bundle—then implement the service interface, instantiate it,
and register the instance with the service registry under the name of the service
interface. The classes that implement the service, being implementation details,
generally are not contained in packages that are exported.

Finally, a third set of bundles consumes the available services by importing
the package containing the service interface and looking up the service in the ser-
vice registry by the interface name. Having obtained a matching service object, a
consuming bundle can use the service until done with it or the service is unregis-
tered. Note that multiple bundles can consume the same service object concur-
rently, and multiple service objects may be provided by one or more bundles.

The dynamic aspect of service behavior is often managed in conjunction with
the lifecycle of the bundles involved. For example, when a bundle is started, it
discovers its required services and instantiates and registers the services it pro-
vides. Similarly, when a bundle is stopped, its bundle activator unregisters con-
tributed services and releases any services being consumed.

2.7.2 Extensions and Extension Points

The Equinox Extension Registry is a complementary mechanism for supporting
inter-bundle collaboration. Under this model, bundles can open themselves for
extension or configuration by declaring an extension point. Such a bundle is
essentially saying, “If you give me the following information, I will do . . . .”
Other bundles then contribute the required information to the extension point in
the form of extensions.

In this book we use the example of an extensible web portal that allows
actions to be contributed and discovered via the Extension Registry. In this
approach the portal bundle declares an actions extension point and a contract
that says, 

“Bundles can contribute actions extensions that define portal actions with a
path, a label, and a class that implements the interface IPortalAction. The
portal will present the given label to the user organized according to the given
path and such that when the user clicks on the label, a particular URL will
be accessed. As a result of the URL request, the portal will instantiate the
given action class, cast it to IPortalAction, and call its execute method.”

Figure 2-7 shows this relationship graphically.
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Extension-to-extension-point relationships are defined using XML in a file
called plugin.xml. Each participating bundle has one of these files. As bundles
are resolved in the system, their extensions and extension points are loaded into
the Extension Registry and made available to other bundles. A full set of Exten-
sion Registry events is broadcast to registered listeners along the way. Extension
and extension points can also be managed programmatically.

2.8 The OSGi Framework

The modularity mechanisms described previously are largely implemented by the
OSGi Framework. As such, an OSGi application is a collection of one or more
bundles executing in an OSGi framework. The framework takes care of all the
dependency resolution, class loading, service registrations, and event management.

TERMINOLOGY
The phrases “the OSGi framework,” “the OSGi runtime,” and “the service plat-
form” are often used interchangeably and are typically abbreviated to just “the
framework,” “the runtime,” or “the platform.”

The framework is reified in a running system as the System Bundle. Repre-
senting the OSGi framework as a bundle allows us to view the entire platform
consistently as a collection of collaborating bundles. While the System Bundle is
clearly special, it contains a manifest, exports packages, provides and consumes
services, and broadcasts and listens to events like any other bundle.

The System Bundle differs from other bundles in that its lifecycle cannot be
managed. It is started automatically when the framework is started and continues
in the active state until the framework is stopped. Stopping the System Bundle
causes the framework to shut down. Similarly, the System Bundle cannot be unin-
stalled while running, since doing so would cause the framework to terminate.

Figure 2–7 Extension contribution and use
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The other bundles in an OSGi system are installed into the framework and
started as needed. The set of installed bundles in a framework is persisted from
run to run—when the framework is shut down and relaunched, the same set of
bundles is present and started in the new framework. As such, bundles need to be
installed and started only once.

Interestingly, the framework specification does not say how the framework
itself is started or how the initial set of bundles is installed. In general it is envi-
sioned that there is an external management agent installing and uninstalling, and
starting and stopping, bundles. This may be a central service provider, systems
integrator, provisioning agent, or the end user. This approach is powerful, as it
makes the framework equally applicable in a wide range of scenarios.

The framework also supplies some rudimentary data management facilities.
Each bundle is given its own data area to use as required. The data written in this
area is persisted for as long as the bundle is installed in the framework.

2.9 Security

The OSGi specifications include security as a fundamental element. In addition
to the standard Java 2 permissions, OSGi-specific permissions are defined
throughout the framework and supplemental services. For example, with the sys-
tem running in secure mode, bundles require distinct permissions to register and
look up services and access properties.

The permissions in a system are managed by special-purpose services such as
the Conditional Permissions Admin service. This service can be used to manage
permissions on a per-bundle basis by, for example, giving bundles certain permis-
sions if they are digitally signed by particular parties. In addition, the User Admin
service facilitates the management of user-level or application permissions based
on the current user’s identity and role.

The real value of the OSGi permission model is that it is used throughout the
entire framework and service set.

2.10 OSGi Framework Implementations

At the time of this writing there have been four major revisions of the OSGi spec-
ifications. Over the ten-year history of OSGi there have been many implementa-
tions. The current R4.x specifications are implemented by several open-source
and commercial entities:

Equinox—Perhaps the most widely used open-source OSGi implementation, 
Equinox is the base runtime for all Eclipse tooling, rich client, server-side, and 



28 CHAPTER 2 • OSGi Concepts

embedded projects. It is also the reference implementation for the core frame-
work specification, several service specifications, and JSR 291. It is available 
under the Eclipse Public License from http://eclipse.org/equinox.

Felix—Originally the Oscar project, the Felix open-source project at Apache 
supplies a framework implementation as well as several service implementa-
tions. It is available under the Apache License v2 from http://felix.apache.org.

Knopflerfish—The Knopflerfish open-source project supplies an R4.x frame-
work implementation as well as several service implementations. It is available 
under a BSD-style license from http://knopflerfish.org.

mBedded Server—This commercial R4.x implementation from ProSyst is 
used in a number of embedded application areas. ProSyst offers several addi-
tional service implementations. It is available under commercial terms from 
http://prosyst.com.

Concierge—Concierge is an open-source highly optimized and minimized 
R3.0 specification implementation that is suitable for use in small embedded 
scenarios. It is available under a BSD-style license from http://concierge
.sourceforge.net.

Despite the many features and functions included in the base framework,
implementations are very small and run on minimal JVM implementations. Con-
cierge weighs in at a mere 80K disk footprint. The base specification-compliant
parts of R4.x implementations tend to have a 300–600K disk footprint. Imple-
mentations such as Equinox include considerable additional functionality such as
enhanced flexibility, advanced signature management, and high scalability in
their base JARs but still stay under 1M on disk.

2.11 Summary

The OSGi framework specification is a good example of power through simplic-
ity and consistency. The technology is based on a small number of simple but gen-
eral notions such as modularity and services. OSGi’s origins in the embedded
world drive a minimalist approach that is present throughout the specification.

It is this simplicity that allows the framework to be extended and applied in
a wide range of situations. This is the key value in OSGi—its universality. The
Eclipse adoption of OSGi and its subsequent spread to use in the rich client and
now server world bring real power to Java developers and system integrators.

http://eclipse.org/equinox
http://felix.apache.org
http://knopflerfish.org
http://prosyst.com
http://concierge.sourceforge.net
http://concierge.sourceforge.net
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delayed component instantiation, 213
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