
Using BPEL to Build
Composite Services and

Business Processes
In the previous two chapters, we've looked at how we can service enable functionality
embedded within existing systems. The next challenge is how to assemble these
services to build "composite" applications or business processes. This is the role of
the Web Service Business Process Execution Language or BPEL as it's commonly
referred to.

BPEL is a rich XML based language for describing the assembly of a set of existing
web services into either a composite service or a business process. Once deployed,
a BPEL process itself is actually invoked as a web service.

Thus anything that can call a web service, can also call a BPEL process, including
of course other BPEL processes. This allows you to take a nested approach to
writing BPEL processes, giving you a lot of flexibility.

In this chapter we first introduce the basic structure of a BPEL process, its key
constructs, and the difference between a synchronous and asynchronous service.

We then demonstrate through the building and refinement of two example BPEL
processes, one synchronous the other asynchronous, how to use BPEL to invoke
external web services (including other BPEL processes) to build composite services.
During this procedure we also take the opportunity to introduce the reader to many
of the key BPEL activities in more detail.

Using BPEL to Build Composite Services and Business Processes

[130]

Basic structure of a BPEL process
The following diagram shows the core structure of a BPEL process, and how it
interacts with components external to it; either web services that the BPEL process
invokes (Service A and Service B in this case) or external clients that invoke the BPEL
process as a web service.

From this we can see that the BPEL process divides into two distinct parts; the
Partner Links, with associated WSDL files which describe the interactions between
the BPEL process and the outside world; and the core BPEL process itself, which
describes the process to be executed at run time.

Client

Partner
Link

Partner
Link

BPEL Process

Invoke

Invoke

Reply

Partner
Link

W
S
D
L

Service
A

W
S
D
L

Service
B

W
S
D
L

Receive

Core BPEL process
The core BPEL process consists of a number of steps, or activities as they are called
in BPEL.These consist of simple activities, including:

•	 Assign: It is used to manipulate variables.
•	 Transform: It is a specialised assign activity that uses XSLT to map data from

a source format to a target format.
•	 Wait: It is used to pause the process for a period of time.
•	 Empty: It does nothing. It is used in branches of your process where

syntactically an activity is required, but you don't want to perform
an activity.

Chapter 5

[131]

The structured activities which control the flow through the process. These include:

•	 While: It is used for implementing loops.
•	 Switch: It is a construct for implementing conditional branches.
•	 Flow: It is used for implementing branches which execute in parallel.
•	 FlowN: It is used for implementing a dynamic number of parallel branches.

There are messaging activities as well (for example Receive, Invoke, Reply,
and Pick).

The activities within a BPEL process can be sub-divided into logical groups of
activities, using the Scope activity. As well as providing a useful way to structure
and organize your process, it also enables you to define attributes such as variables,
fault handlers, and compensation handlers that just apply to the scope.

Variables
In addition each BPEL process also defines variables, which are used to hold the state
of the process as well as messages that are sent and received by the process. They can
be defined at the process level, in which case they are considered global and visible
to all parts of the process. Or it can be declared within a Scope in which case they are
only visible to activities contained within that Scope (and scopes nested within the
scope to which the variable belongs).

Variables can be one of the following types:

•	 Simple Type: It can hold any simple data type defined by XML Schema
(for example string, integer, boolean, and float).

•	 WSDL Message Type: It is used to hold the content of a WSDL Message sent
to or received from partners.

•	 Element: It can hold either a complex or simple XML Schema element
defined in either a WSDL file or a separate XML Schema.

Variables are manipulated using the <assign> activity, which can be used to
copy data from one variable to another, as well as create new data using XPath
Expressions or XSLT.

For variables which are WSDL Messages or Complex Elements we can work with
it at the sub-component level by specifying the part of the variable we would like
to work with using an XPath expression.

Using BPEL to Build Composite Services and Business Processes

[132]

Partner Links
All interaction between a process and other parties (or partners) is via web services
as defined by their corresponding WSDL files. Even though each service is fully
described by its WSDL, it fails to define the relationship between the process and the
partner, that is who the consumer of a service is and who the provider is. On first
appearance, the relationship may seem implicit; however, this is not always the case
so BPEL uses Partner Links to explicitly define this relationship.

Partner Links are defined using the <partnerLinkType> which is an extension to
WSDL (defined by the BPEL standard). Whenever you reference a web service whose
WSDL doesn't contain a <partnerLinkType>, JDeveloper will automatically ask you
whether you want it to create one for you. Assuming you answer yes it will create
this as a separate WSDL document, which then imports the original WSDL.

Messaging activities
BPEL defines three messaging activities <receive>, <reply>, and <invoke>. How
you use these depends on whether the message interaction is either synchronous or
asynchronous and whether the BPEL process is either a consumer or provider of
the service.

Synchronous messaging
With synchronous messaging, the caller will block until it has received a reply
(or times out); that is the BPEL process will wait for a reply before moving onto
the next activity.

As we can see in the diagram below, Process A uses the <invoke> activity to call a
synchronous web service (Process B in this case); once it has sent the initial request,
it blocks and waits for a corresponding reply from Process B.

Process A Process B

<invoke> <receive>

<reply>

Chapter 5

[133]

Process B, uses the <receive> activity to receive the request; once it has processed
the request it uses the <reply> activity to send a response back to Process A.

Theoretically Process B could take as long as it wants before sending a reply, but
typically Process A will only wait a short time (for example 30 seconds) before it
times out the <invoke> operation under the assumption that something has gone
wrong. Thus if Process B is going to take a substantial period of time before replying,
then you should model the exchange as an Asynchronous Send-Receive
(see next section).

Asynchronous messaging
With asynchronous messaging, the key difference is that once the caller has sent the
request, the send operation will return immediately, and the BPEL process may then
continue with additional activities until it is ready to receive the reply, at which point
the process will block until it receives the reply (which may already be there).

If we look at the following diagram, you will notice that just like the synchronous
request Process A uses the <invoke> activity to call an asynchronous web service.
However, the difference is that it doesn't block waiting for a response, rather it
continues processing until it is ready to process the response. It then receives this
using the <receive> activity.

Process A Process B

<invoke> <receive>

<receive> <invoke>

Conversely, Process B uses a <receive> activity to receive the initial request and an
<invoke> activity to send back the corresponding response.

While at a logical level there is little difference between synchronous and
asynchronous messaging (especially if there are no activities between the <invoke>
and <receive> activity in Process A), at a technical level there is a key difference.

Using BPEL to Build Composite Services and Business Processes

[134]

This is because with asynchronous messaging, we have two <invoke>, <receive>
pairs, each corresponding to a separate web service operation; one for the request,
the other for the reply.

From a decision perspective a key driver as to which to choose is the length of
time it takes for Process B to service the request, since asynchronous messaging
supports far longer processing times. In general once the time it takes for Process
B to return a response goes above 30 seconds you should consider switching to
asynchronous messaging.

With potentially many instances of Process A and Process B running
at the same time, BPEL needs to ensure that each reply is matched
(or correlated) to the appropriate request. By default BPEL uses
WS-Addressing to achieve this. We look at this in more detail in
Chapter 14—Message Interaction Patterns.

One way messaging
A variation of asynchronous messaging is one way messaging (also known as fire
and forget). This involves a single message being sent from the calling process, with
no response being returned.

If we look at the following diagram, you will notice that just like the asynchronous
request Process A uses the <invoke> activity to send a message to Process B.

Once Process A has sent the message, it continues processing until it completes, that
is it never stops to wait for a response from Process B. Likewise Process B, upon
receipt of the message, continues processing until it has completed and never sends
any response back to Process A.

Process A Process B

<invoke> <receive>

A simple composite service
Despite the fact that BPEL is intended primarily for writing long running processes,
it also provides an excellent way to build a composite service, that is a service that is
assembled from other services.

Chapter 5

[135]

Let's takes a simple example: say I have a service that gives me the stock quote for
a specified company, and that I also have a service that gives me the exchange rate
between two currencies. I can use BPEL to combine these two services and provide
a service that gives the stock quote for a company in the currency of my choice.

So let's create our stock quote service; we will create a simple synchronous BPEL
process which takes two parameters, the stock ticker and the required currency.
This will then call two external services.

Creating our Stock Quote service
Before we begin, we will create a StockService application, which we will use for all
our samples in this chapter. To do this follow the same process we used to create our
first application in Chapter 2.

Next add a BPEL project to our StockService application. Specify a name of
StockQuote and select a synchronous BPEL process. However, at this stage DO
NOT click Finish.

Using BPEL to Build Composite Services and Business Processes

[136]

You may remember when we created our Echo service back in Chapter 2; JDeveloper
automatically created a simple WSDL file for our service, with a single input and
output field for our service. For our stock quote service we need to pass in multiple
fields (that is Stock Ticker and Currency). So to define the input and output
messages for our BPEL process we are going to make use of a predefined schema
StockService.xsd, shown below (for brevity only the parts which are relevant
to this example are shown; however, the complete schema is provided in the
downloadable samples file for this book).

<?xml version="1.0" encoding="windows-1252"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.packtpub.com/StockService"
 targetNamespace="http://xmlns.packtpub.com/StockService"
 elementFormDefault="qualified" >

 <xsd:element name="getQuote" type=" tGetQuote"/>
 <xsd:element name="getQuoteResponse" type=" tGetQuoteResponse"/>

 <xsd:complexType name="tGetQuote">
 <xsd:sequence>
 <xsd:element name="currency" type="xsd:string"/>
 <xsd:element name="stockSymbol" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tGetQuoteResponse">
 <xsd:sequence>
 <xsd:element name="stockSymbol" type="xsd:string"/>
 <xsd:element name="currency" type="xsd:string"/>
 <xsd:element name="amount" type="xsd:decimal"/>
 </xsd:sequence>
 </xsd:complexType>

 …

</xsd:schema>

Import StockService schema
Within the Create BPEL Process dialogue, click on Next, this will show you the input
and output elements for your process, as shown in the following screenshot:

Chapter 5

[137]

To override the default input and output schema elements generated by JDeveloper,
click on the flashlight (circled above). This will bring up a dialogue that allows you
to browse all schemas imported by the BPEL process and select an element from
them. In our case, as we have yet to import any schemas it will automatically launch
the Select Schema window in file mode which will allow us to search our file system
for an appropriate schema.

Find the StockService.xsd located in the samples folder for Chapter 5 and select
this. It will now open the schema browser dialogue. Browse this and select the
getQuote element as illustrated in the following screenshot:

Using BPEL to Build Composite Services and Business Processes

[138]

Repeat this step for the Output Schema Element, but this time, select the
getQuoteResponse element. Click Finish and this will create our StockQuote process.

You will see that by default JDeveloper has created a skeleton BPEL process,
which contains an initial <receive> activity to receive the stock quote request,
followed by a <reply> activity to send back the result (as we discussed in the earlier
section—Synchronous messaging). In addition it will have created two variables:
inputVariable which contains the initial stock quote request and outputVariable
in which we will place the result to return to the requestor.

If you look in the Projects section of the Application navigator you will
see it contains the file StockQuote.wsdl. This contains the WSDL
description (including Partner Link extensions) for our process. If you
examine this, you will see we have a single operation: process, which is
used to call the BPEL process.

Calling the external web services
The next step is to call our external web services; for our stock quote service we are
going to use Xignite's Quotes web service which delivers delayed equity price quotes
from all U.S. stock exchanges (NYSE, NASDAQ, AMEX, NASDAQ OTC bulletin
board, and Pink Sheets).

Before you can use this service you will need to register with Xignite; to
do this or for more information on this and other services provided by
Xignite go to www.xignite.com.

To call a web service in BPEL we first need to create a Partner Link (as discussed
at the start of this chapter). So from the component pallet, select the Services drop
down and drag a PartnerLink into the Services swim lane in your BPEL process.
This will pop up the following screen:

Chapter 5

[139]

First enter a name for the Partner Link, for example XigniteQuotes. Next we need
to specify the WSDL file for the Partner Link. JDeveloper provides the following
ways to do this:

•	 Browse WSDL File: This allows us to browse the file system for WSDL
files that define the service.

•	 Service Explorer: This allows us to browse services that are already
defined within the composite application (for example other BPEL
processes or ESB services).

•	 Define Adapter Service: This enables us to define adapter services
(as covered in Chapter 3) directly within the context of a BPEL process.

•	 Enter URL: Directly enter the URL for the WSDL File into the
corresponding field.

For our purposes, we have a local copy of the WSDL for Xignite's Quotes service,
called XigniteQuotes.wsdl, which is included with the samples for Chapter 5. Click
on the Browse WSDL File … icon (highlighted in previous screenshot) then browse
to and select this file (select Yes if prompted to create a local copy of the file).

JDeveloper will parse the WSDL and, assuming it is successful, will pop up a
window saying there are no Partner Link types defined in the current WSDL, and
will ask if you want to create partner links for the file: click Yes. JDeveloper will then
create one Partner Link Type for each Port Type defined in the WSDL.

In cases where we have multiple Partner Link types, we will need to specify
which one to use within our process. To do this, click on the drop down next to
Partner Link Type and select the appropriate one. In our case we have selected
XigniteQuotesSoap_PL, as shown in the following screenshot:

Using BPEL to Build Composite Services and Business Processes

[140]

Finally we need to specify the Partner Role and My Role. When invoking a
synchronous service, there will only be a single role defined in the WSDL, which
represents the provider of the service. So specify this for the Partner Role and leave
My Role as ----- Not Specified -----.

Best practice would dictate that rather than call the Stock Quote service
directly from within BPEL, we would invoke it via the service bus.

Calling the web service
Once we have defined a Partner Link for the web service, the next step is to call it. As
this is a synchronous service we will need to use an <invoke> activity to call it, as we
described earlier in this chapter.

On the component palette, ensure the submenu of Process Activities is selected, and
then from it drag an Invoke activity on to your BPEL process.

Next, place your mouse over the arrow next to the Invoke activity; click and hold
your mouse button and then drag the arrow over your Partner Link, then release.
This is shown in the following screenshot:

Chapter 5

[141]

This will then pop up the Edit Invoke activity window as shown in the
following screenshot:

We need to specify a number of values to configure the invoke activity, namely:

•	 Name: This is the name we want to assign to the invoke activity, and can be
any value. So just assign a meaningful value such as GetQuote.

•	 Partner Link: This is the Partner Link whose service we want to invoke; it
should already be set to use XigniteQuotes, as we have already linked this
activity to that Partner Link. An alternative approach would be to click on
the corresponding spotlight icon which would allow us to select from any
Partner Link already defined to the process.

•	 Operation: Once we've specified a Partner Link, we need to specify which of
its operations we wish to invoke. This presents us with a drop down, listing
all the operations that are available; for our purpose select GetSingleQuote.

•	 Input Variable: Here we must specify the variable which contains the data
to be passed to the web service that's being invoked. It is important that the
variable is of type Message, and that it is of the same message type expected
by the Operation (that is as defined in the WSDL file for the web service).

Using BPEL to Build Composite Services and Business Processes

[142]

The simplest way to ensure this is to get JDeveloper to create the variable
for you; to do this, click on the magic wand to the right of the input variable
field. This will bring up the Create Variable window as shown below. You
will notice that JDeveloper creates a default name for the variable (based
on the name you gave the invoke operation and the operation that you are
calling), you can override this with something more meaningful (for example
QuoteInput).

•	 Output Variable: Finally, we must specify the variable into which the value
returned by the web service will be placed. As with the input variable, this
should be of type Message, and corresponds to the output message defined
in the WSDL file for the selected operation. Again the simplest way to ensure
this is to get JDeveloper to create the variable for you.

Once you've specified values for all these fields, as illustrated above, click OK.

Assigning values to variables
In our previous step, we created the variable QuoteInput, which we pass to our
invocation of GetSingleQuote. However, we have yet to initialize the variable or
assign any value to it.

To do this BPEL provides the <assign> activity, which is used to update the values
of variables with new data. The assign activity typically consists of one or more
copy operations. Each copy consists of a target variable, that is the variable that you
wish to assign a value to and a source; this can either be another variable or an
XPath expression.

For our purpose, we want to assign the stock symbol passed into our BPEL process
to our QuoteInput variable.

Chapter 5

[143]

To do this drag an assign activity from the component pallet on to your BPEL
process at the point just before our invoke activity. Then double click on it to open
up the Assign configuration window. Click on the Create menu and select
Copy Operation…

This will present us with the Create Copy Operation window shown in the
following screenshot:

On the left-hand side we specify the From variable (that is the source). Here
we want to specify the stock symbol passed in as part of the input variable to
the BPEL process, so expand the inputVariable tree and select /ns2:getQuote/
ns2:stockSymbol.

For the target expand QuoteInput and select /ns1:GetSingleQuote/ns1:Symbol.

You will notice that for both the source and target, JDeveloper has created the
equivalent XPath expression (circled in the previous screenshot).

The source and target can either be a simple type (for example xsd:int,
xsd:date, or xsd:string), as in the above example. Or a complex type
(for example ns2:getQuote), but make sure the source and target are
either of the same type, or at least compatible.

Using BPEL to Build Composite Services and Business Processes

[144]

Testing the process
At this stage, even though the process isn't complete, we can still save, deploy, and
run our process. Do this in the same way as previously covered in Chapter 2. When
you run the process from the BPEL console you will notice that it doesn't return
anything (as we haven't specified this yet). But if you look at the audit trail you
should successfully see the GetSingleQuote operation being invoked. Assuming
this is the case, we know we have implemented that part of the process correctly.

Calling the exchange rate web service
The next step of the process is to determine the exchange rate between the
requested currency and the US dollar (the currency used by the GetSingleQuote
operation). For this we are going to use the currency convertor service provided by
webserviceX.NET.

For more information on this and other services provided by
webserviceX.NET go to www.webservicex.net.

This service provides a single operation ConversionRate, which gets the conversion
rate from one currency to another. The WSDL file for this service can be found at the
following URL:

http://www.webservicex.net/CurrencyConvertor.asmx?wsdl

For convenience we have included a local copy of the WSDL for webserviceX.NET's
Currency Convertor service, called CurrencyConvertor.wsdl, which is included
with the samples for Chapter 5.

To invoke the ConversionRate operation, we will follow the same basic steps that
we did in the previous section to invoke the GetQuickQuote operation. For the sake
of brevity we won't repeat them here, but will allow the reader to do this.

For the purpose of following the examples below, name the input variable
for the exchange rate web service ExchangeRateInput and the output
variable ExchangeRateOutput.

Assigning constant values to variables
The operation ConversionRate takes two input values:

•	 FromCurrency, which should be set to USD
•	 ToCurrency, which should be set to the currency field contained within the

inputVariable for the BPEL process

Chapter 5

[145]

To set the FromCurrency, create another copy operation. However for the From
value select Expression as the Type (circled in the following screenshot).

This will replace the Variable browser with a free format text box. In here you can
specify any value, within quotes, that you wish to assign to your target variable. For
our purpose we have entered 'USD', as shown in the following screenshot:

To set the value of ToCurrency, create another copy operation and copy in the value
of the currency field contained within the inputVariable.

Again at this stage, save, deploy, and run the process to validate that we are calling
the exchange rate service correctly.

Using the Expression builder
The final part of the process is now to combine the exchange rate returned by one
service with the stock price returned by the other in order to determine the stock
price in the requested currency and return that to the caller of the BPEL process.

To do this, we will again use an assign activity; so drag another assign activity onto
the process, just after our second invoke activity. Now in our previous use of the
assign activity, we have just used it to copy a value from one variable to another.

Using BPEL to Build Composite Services and Business Processes

[146]

Here, it is slightly different, in that we want to combine multiple values into a single
value, and to do that we will need to write the appropriate piece of XPath. Create a
copy operation as before, but for the source type, select Expression from the drop
down as shown in the following screenshot:

Now if you want, you can type in the XPath expression manually (into the
Expression area), but it's far easier and less error prone to use the expression builder.
To do this click on the XPath expression builder icon, circled in the previous figure.
This will pop up the expression builder (shown in the following screenshot).

Chapter 5

[147]

The expression builder provides a graphical tool for writing XPath expressions
which are executed as part of the copy operation. It consists of the following areas:

•	 Expression: The top text box contains the XPath expression, which you are
working on. You can either type data directly in here or use the Expression
Builder to insert XPath fragments in here to build up the XPath required.

•	 BPEL Variables: This part of the expression builder lets you browse the
variables defined within your BPEL process. Once you've located the variable
that you wish to use click the Insert Into Expression button and this will
insert the appropriate code fragment into the XPath Expression.

The code fragment is inserted at the point within the expression that the
cursor is currently positioned.

Using BPEL to Build Composite Services and Business Processes

[148]

•	 Functions: This shows you all the different types of XPath functions that are
available to build up your XPath expression. To make it easier to locate the
required function, they are grouped into categories such as String Functions,
Mathematical Functions.
The drop-down list lets you select the category that you are interested in (for
example Advanced Functions as illustrated in the previous figure), and then
the window below that lists all the functions available with that group.
To use a particular function, select the required function and click Insert into
Expression. This will insert the appropriate XPath fragment into the XPath
Expression (again at the point that the cursor is currently positioned).

•	 Content Preview: This box displays a preview of the content that would be
inserted into the XPath Expression if you clicked the Insert into Expression
button. For example, if you had currently selected a particular BPEL variable,
it would show you the XPath to access that variable.

•	 Description: If you've currently selected a function, this box provides a
brief description of the function, as well as the expected usage and number
of parameters.

So let's use this to build our XPath expression. The expression we want to build is
a relatively simple one, namely, the stock price returned by the stock quote service
multiplied by the exchange rate returned by the exchange rate service.

To build our XPath expression, carry out the following steps:

1.	 First, within the BPEL Variables area, in the variable QuoteOutput locate the
element ns1:GetSingleQuoteResult/ns1:Last as shown:

Chapter 5

[149]

2.	 Then click Insert into Expression to insert this into the XPath Expression.
3.	 Next, within the Functions area, select the Mathematical Functions category

and select the multiply function (notice the description in the Description
box as shown in the following screenshot) and insert this into the
XPath Expression.

4.	 Finally, back in the the BPEL Variables area, locate the element
ConversionRateResult within the variable ExchangeRateOutput and insert
that into the XPath Expression.

You should now have an XPath Expression similar to the one illustrated below; once
you are happy with this click OK.

Finally make sure you specify the target part of the Copy operation, which should be
the amount element within the outputVariable.

In order to complete the assign activity, you will need to create two more copy
operations to copy the Currency and StockSymbol specified in the inputVariable
into the equivalent values in the outputVariable.

Using BPEL to Build Composite Services and Business Processes

[150]

Once done, your BPEL process should be complete, so deploy it to the BPEL engine
and run the process.

Asynchronous service
Following our stock quote service; another service would be a stock order service,
which would enable us to buy or sell a particular stock. For this service a client
would need to specify the stock, whether they wanted to buy or sell, the quantity
and the price.

It makes sense to make this an asynchronous service, since once the order had been
placed it may take seconds, minutes, hours, or even days for the order to be matched.

Now, I'm not aware of any trade services that are free to try (probably for good
reason!). However, there is no reason why we can't simulate one. To do this we will
write a simple asynchronous process.

To do this add another BPEL project to our StockService application and give it the
name of StockOrder, but specify that it is an asynchronous BPEL process.

As with the StockQuote process we also want to specify predefined elements for its
input and output. The elements we are going to use are placeOrder for the input
and placeOrderResponse for the output, the definitions for which are shown:

<xsd:element name="placeOrder" type="tPlaceOrder"/>
<xsd:element name="placeOrderResponse" type="tPlaceOrderResponse"/>

<xsd:complexType name="tPlaceOrder">
 <xsd:sequence>
 <xsd:element name="currency" type="xsd:string"/>
 <xsd:element name="stockSymbol" type="xsd:string"/>
 <xsd:element name="buySell" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:integer"/>
 <xsd:element name="bidPrice" type="xsd:decimal"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="tPlaceOrderResponse">
 <xsd:sequence>
 <xsd:element name="currency" type="xsd:string"/>
 <xsd:element name="stockSymbol" type="xsd:string"/>
 <xsd:element name="buySell" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:integer"/>
 <xsd:element name="actualPrice" type="xsd:decimal"/>
 </xsd:sequence>
</xsd:complexType>

Chapter 5

[151]

These are also defined in the StockService.xsd that we imported for the
StockQuote process; we will also need to import it into our StockOrder process,
so that we can use it here (in Chapter 10 we will look at how we can share a schema
across multiple processes).

As we did when creating our StockQuote process, click on Next within the Create
BPEL Process dialogue to display the input and output elements from the process.
Then in turn for each field click on the flashlight to import the schema, bring up the
type chooser and select the appropriate element definitions. Then click Finish to
create the process.

You will see that by default JDeveloper has created a skeleton asynchronous BPEL
process, which contains an initial <receive> activity to receive the stock order
request, but this time followed by an <invoke> activity to send the result back (as
opposed to a <reply> activity used by the synchronous process).

If you look at the WSDL for the process, you will see that it defines two operations;
initiate to call the process, and onResult which will be called by the process to
send back the result. Thus the client that calls the initiate operation will need to
provide the onResult callback in order to receive the result (this is something we
will look at in more detail in Chapter 14—Message Interaction Patterns).

Now for the purpose of our simulation we will assume that the StockOrder
request is successful and the actualPrice achieved is always the bid price. So to
do this, create an assign operation, that copies all the original input values to their
corresponding output values. Deploy the process and run it from the console.

This time you will notice that no result is returned to the console, rather it displays a
message to indicate that the process is being processed asynchronously, as shown in
the following screenshot:

Using BPEL to Build Composite Services and Business Processes

[152]

Click on the Visual Flow link to bring up the audit trail for the process and then
click on the callbackClient activity at the end of the audit trail. This will pop up a
window showing the details of the response sent by our process, as shown in the
following screenshot:

Using the Wait activity
Now you've probably spotted the most obvious flaw with this simulation, in that the
process returns a response almost immediately, which negates the whole point of
making it asynchronous.

To make it more realistic we will use the <wait> activity to wait for a period of time.
To do this drag the Wait activity from the component pallet onto your BPEL process
just before the assign activity, and then double click on it to open the Wait activity
window as shown on the next page.

The Wait activity allows you to specify that the process waits For a specified
duration of time or Until a specified deadline. In either case you specify a fixed value
or choose to specify an XPath Expression to evaluate the value at run time.

If you specify Expression, then if you click the icon to the right of it, this will
launch the Expression builder that we introduced earlier in the chapter. The result
of the expression must evaluate to a valid value of xsd:duration for periods and
xsd:dateTime for deadlines.

Chapter 5

[153]

The format of xsd:duration is PnYnMnDTnHnMnS; for example P1M would be a
duration of 1 month and P10DT1H25M would be 10 days, 1 hour, and 25 minutes.

For deadlines the expression should evaluate to a valid value of xsd:date.

The structure of xsd:dateTime is YYYY-MM-DDThh:mm:ss+hh:mm, where the +hh:mm
is optional and is the time period offset from UTC (or GMT if you prefer), obviously
the offset can be negative or positive.

For example 2008-08-19T17:37:47-05:00 is the time 17:37:47 on August 19th 2008,
5 hours behind UTC (that is Eastern Standard Time in the US).

For our purposes we just need to wait for a relatively short period of time, so set it to
wait for one minute.

By default, Wait will wait for a period of one day. So after you've changed
the Mins field to 1, ensure that Days field is set to 0. I've often had people
complaining that the BPEL process has been waiting more than a minute
and something has gone wrong!

Using BPEL to Build Composite Services and Business Processes

[154]

Now save, deploy and run the process. If you now look at the audit trail of the
process you will see it has paused on the Wait activity (which will be highlighted
in orange).

Improving the stock trade service
We have a very trivial trade service, which always results in a successful trade after
1 minute. Let's see if we can make it a bit more "realistic".

We will modify the process to call the StockQuote service and compare the actual
price against the requested price. If the quote we get back matches or is better than
the price specified, then we will return a successful trade (at the quoted price).
Otherwise we will wait a minute and loop back round and try again.

Creating the while loop
The bulk of this process will now be contained within a while loop, so from the Process
Activities list of the Component Pallet drag a while activity into the process.

Click on the plus symbol to expand the while activity; it will now display an area
where you can drop a sequence of one or more activities that will be executed every
time the process iterates through the loop.

We want to iterate through the loop until the trade has been fulfilled, so let's create
a variable of type xsd:Boolean called tradeFullfilled and use an assign
statement before the while loop to set its value to false.

The first step is to create a variable of type xsd:Boolean. Up to now we've used
JDeveloper to automatically create the variables we've required, typically as part
of the process of defining an invoke activity. However, that's not an option here.

Chapter 5

[155]

If you look at the diagram of your BPEL process you will see that it is surrounded by
a light grey dashed box, and on the top left hand side are a number of icons. If you
click on the top one of these icons (x) (as shown in the following screenshot), this will
open a window which lists all the variables defined to the process.

At this stage it will list just the default inputVariable and outputVariable which
were automatically created with the process. Click on the Create button; this will
bring up the Create Variable window, as shown in the following screenshot:

Using BPEL to Build Composite Services and Business Processes

[156]

Here we simply specify the Name of the variable (for example tradeFullfilled)
and its type. In our case we want an xsd:Boolean, so select Simple Type and click
the flashlight to the right of it.

This will bring up the Type Chooser, which will list all the simple built in data types
defined by XML Schema. Select Boolean and then click OK.

We need to initialize the variable to false, so drag an assign statement on to your
process just before the while loop. Use the function false(), under the category
Logical Function to achieve this.

Next we need to set the condition on the while loop, so that it will execute only while
tradeFulfilled equals false. Double click on the while loop; this will open the
While activity window, as shown in the following screenshot:

We must now specify an XPath expression which will evaluate to either true or
false. If you click on the expression builder icon (circled in the previous screenshot),
this will launch the Expression builder. Use this to build the following expression:

bpws:getVariableData('tradeFullfilled') = false()

Once we are happy with this click OK.

Checking the price
The first activity we need to perform within the while loop is to get a quote for
the stock that we are trading. For this we will use the stock quote process we
created earlier.

The approach is very similar to the one used when calling an external web service (as
we did when implementing the StockQuote process). Create a Partner Link as before,
but this time click on the Service Explorer icon, circled in the following diagram:

Chapter 5

[157]

This will launh the Service Explorer window, which allows us to browse all the
services defined to the SOA Suite. Expand the BPEL Services node and locate the
StockQuote process as shown below in the following screenshot. Select this and
click OK.

From here implement the required steps to invoke the process operation of the
StockQuote process, making sure that they are included within the while loop.

Using the Switch activity
Remember our requirement is that we return success if the price matches or is better
than the one specified in the order. Obviously whether the price is better depends on
whether we are selling or buying. If we are selling we need the price to be equal to or
greater than the asking price; whereas if we are buying we need the price to be equal
to or less than the asking price.

Using BPEL to Build Composite Services and Business Processes

[158]

So for this we will introduce the <switch> activity. Drag a <switch> activity from
the Process Activities list of the Component Pallet on to your process, and then
click on the plus symbol to expand the <switch> activity. By default it will have two
branches as illustrated in the following screenshot:

The first branch contains a <case> condition, with a corresponding area where you
can drop a sequence of one or more activities that will be executed if the condition
evaluates to true.

The second branch contains an <otherwise> sub-activity, with a corresponding area
for activities. The activities in this branch will only be executed if all case conditions
evaluate to false.

We want to cater for two separate tests (one for buying, the other for selling), so click
on the Add Switch Case arrow (highlighted in the previous diagram) to add another
<case> branch.

Next we need to define the test condition for each <case>. To do this, click on the
corresponding ExpressionBuilder icon to launch the expression builder (circled in
the previous screenshot). For the first one use the expression builder to create
the following:

bpws:getVariableData ('inputVariable','payload',
'/ns1:PlaceOrder/ns1:BuySell') = 'Buy' and

bpws:getVariableData ('inputVariable', 'payload',
'/ns1:PlaceOrder/ns1:BidPrice') >=

bpws:getVariableData ('StockQuoteOutput', 'payload',
'/ns3:GetQuoteResult/ns3:Amount')

Chapter 5

[159]

For the second branch, use the expression builder to define the following:

bpws:getVariableData ('inputVariable','payload',
'/ns1:PlaceOrder/ns1:BuySell') = 'Sell' and

bpws:getVariableData ('inputVariable', 'payload',
'/ns1:PlaceOrder/ns1:BidPrice') <=

bpws:getVariableData ('StockQuoteOutput', 'payload',
'/ns3:GetQuoteResult/ns3:Amount')

Once we have defined the condition for each case, we just need to create a
single <assign> activity in each branch. This needs to set all the values in the
outputVariable to the corresponding values in the inputVariable, except for the
ActualPrice element, which we should set to the value returned by the StockQuote
process. Finally we also need to set tradeFullfilled to true, so that we exit the
while loop.

The simplest way to do this is drag the original <assign> we created in the first
version of this process and drag it onto the first branch and then modify it as
appropriate. Then create a similar assign activity in the second.

You've probably noticed that you could actually combine the two tests
into a single test; however we took this approach to illustrate how you
can add multiple branches to a switch.

If we don't have a match, then we want to wait a minute and then circle back round
the while loop and try again. As we've already defined a <wait> activity, simply
drag this from its current position within the process, into the Activity area for the
<otherwise> activity.

That completes the process, so try deploying it and running it from the console.

The other obvious thing is that this process could potentially run forever
if we don't get a stock quote in our favor. One way to solve this would be
to put the while activity in a scope and then set a timeout period on the
scope so that it would only run for so long.

Using BPEL to Build Composite Services and Business Processes

[160]

Summary
In this chapter we've gone beyond individual services and looked at how we can
use BPEL to quickly assemble these services into composite services. Using this
same approach we can also implement end-to-end business processes or complete
composite applications (something we will do in the second section of this book).

You may have also noticed that although BPEL provides a rich set of constructs for
describing the assembly of a set of existing services, it doesn't try to reinvent the
wheel where functionality is already provided by existing SOA standards. Rather
it has been designed to fit naturally with and leverage the existing XML and web
services specifications, such as XML Schema, XPath, XSLT, and of course WSDL
and SOAP.

This chapter should have given you a solid introduction into the basic structure of
a BPEL process, its key constructs, and the difference between a synchronous and
asynchronous service. Building the examples will help to re-enforce this as well as
give you an excellent grasp of how to use JDeveloper to build BPEL processes.

Even though this chapter will have given you a good introduction to BPEL, we
haven't yet looked at much of its advanced functionality, such as its ability to handle
long-running processes, its fault and exception management, and how it uses
compensation to undo events in the case of failures. These are areas we will cover
in more detail within later chapters of this book.

