
Contributors:
AmberPoint

BearingPoint
Composite Software

MomentumSI
Progress Software

Editor:
Jim Green

GETTING IT RIGHT

Service
Oriented
Architecture

Contributing Authors:

David Besemer
Paul Butterworth
Luc Clément
Jim Green
Hemant Ramachandra
Jeff Schneider
Hub Vandervoort

Editor:

Jim Green

GETTING IT RIGHT

An Implementor’s Guide to Service Oriented Architecture
Getting It Right

www.SOAguidebook.com

Copyright © 2007-2008 by Amberpoint Inc., BearingPoint Inc., Composite
Software, Inc., MomentumSI, Progress Software Corporation, and Luc Clem-
ent (“the Contributors”). All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, as amended,
no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior
written permission of publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

ISBN-13: 978-0-9799304-0-9
ISBN-10: 0-9799304-0-5

First Edition
Printed April 2008

Printed and designed by Westminster Promotions.

Information has been obtained by the Contributors from sources believed
to be reliable. However, because of the possibility of human or mechanical
error by our sources, one or more members of the Contributors, the Con-
tributors do not guarantee the accuracy, adequacy, or completeness of any
information and are not responsible for any errors or omissions or the results
obtained from the use of such information.

Designing Services

2.1 Services Introduction

In a service oriented architecture, services provide the basis for
communications between systems and technologies. Services are well-
defined units of functionality that are accessible over the network via
standard protocols. They are invoked by software, and are not accessed by a
human user. In other words, services are more like a remote procedure calls.
The system that implements a service is called a provider, while the system
that uses the service is called a consumer.

Services can be built in a variety of ways, but standards and guidelines exist
to promote interoperability and reuse in an enterprise-class service oriented
architecture. The central standards relevant to service implementation
and deployment are XML, SOAP, WSDL, and UDDI (refer to the following
illustration), and services that conform to these standards are called web
services. A web service is actually a collection of individual service operations,
each of which can be thought of as an individual procedure.

9DESIGNING SERVICES

CHAPTER 2

Service Invocation

Consumer

CLIENT
APPLICATION

Provider

SERVER

Network

SOAP REQUEST

SOAP REPLY

SERVICE
CALL

SERVICE
RESPONSE

(HTTP, JMS, SMTP)

Key RECOMMENDATIONS:

Base your services on vendor •	
independent industry
standards to ensure the best
reuse and interoperability.

Create and deploy your •	
services in an appropriate
and best-of-breed
infrastructure to ensure
operational efficiencies (e.g.
an information server for
data services; an application
server for transaction
services.)

Design service interfaces that •	
are simple, consistent, well-
documented, and motivated
by business requirements to
ensure adoption, reusability,
and expandability.

Employ security policies to •	
meet the business needs of
your enterprise.

David Besemer
Chief Technology Officer

Composite Software

Figure 2.1: Service Invocation

Unfortunately standards alone are not enough to ensure service
interoperability. Additional guidelines have been created by an organization
called the Web Services Interoperability Organization (WS-I). WS-I’s Basic
Profile defines best practices within the Web service standards and promotes
the highest possibility for reuse and platform independence. Organizations
can benefit greatly from following recommendations of the WS-I Basic Profile
for their service development and deployment.

Services generally either provide data to the consumer, or they create or
modify data in an underlying system. The former are called data services,
and the later are called transaction services. An example of a data service
might be retrieveOrdersForCustomer, which might take a customer
number as an input parameter. An example of a transaction service might
be updateOrderShippingStatus, which might take an order number and
the updated shipping status as input parameters. These services present
separate challenges to the service provider and they are generally created
and deployed using different infrastructures. Data services are created and
deployed in an information server, while transaction services are created and
deployed in an application server. These different types of services and their
associated infrastructures are described in detail later in this chapter.

Getting started with service development and deployment in your enterprise
does not have to be difficult or expensive. Rather than following a ’boil
the ocean‘ approach that seeks to define all enterprise-wide services needs
in advance, it is commonly recommended to take an incremental, organic
approach to service development and deployment. Choose a project that
will benefit from a service-oriented approach and begin creating a collection
of services needed for that specific project. Once the first project is in
production, select another project can reuse some of the services from the
first project. You will more than likely need to create new services for your
second project, but you will probably be able to reuse one or more of the
services created for the first project. When reusing services, you may discover
that the services you created for the first project require modification or
augmentation to facilitate reuse, which is perfectly normal. Because the
collection of consumers is limited at this point, you will usually be able to
modify them with little effort. More important, you will have learned what
it takes to create reusable and scalable services for your enterprise. This
pragmatic, incremental methodology allows you to show value quickly and
to refine your strategy as your service usage grows.

Securing service calls can be a complex topic, but the good news is that there
are relatively straightforward approaches to security that can be implemented
easily. As with services standards, there are both standards and best practices
that can be combined to prescribe an approach that we will explore later in
this chapter.

Individual Service Operation

An individual service operation is
invoked using a SOAP call, which
encapsulates the service request
message (and subsequently, a response
message) for transport over the network
– you can think of it as the envelope
that contains a letter. The SOAP call can
be transported between consumer and
provider over a variety of mechanisms
such as HTTP, SMTP, or a message bus.
Because of the wide availability of HTTP
infrastructures within enterprises, most
web service calls today are transported
via HTTP. Recently, however, the use
of message buses (ESBs) has been
increasing for transporting web service
calls.

Service Request and Messages

The service request and response
messages themselves are written in
XML. The SOAP standard defines two
possible XML message formats, RPC
and document, and two encodings,
SOAP and literal. Most experts
agree that the best way to ensure
interoperability is to use the document
format with literal encoding.

Web Service Specification
Language Document

The complete specification of a web
service (i.e., the location of the service
on the network, the specific operations
available, and the request and response
message formats, etc.) is embodied
in a WSDL document, which service
consumers consult to figure out how
to use the service. The WSDL can be
considered the API definition for a
web service, and as such, it defines
the contract between provider and
consumer.

UDDI Directory

WSDLs are often catalogued in a UDDI
directory that consumers consult to
discover services and their providers.

10 Chapter 2:

2.2 Data Services

An estimated two thirds of all services will be data services, making them the
most prevalent form of services in an enterprise. Data services provide data to
a consumer in a form that addresses current and ongoing business demands.
The focus of data services is to make it easy for consumers to access and
use enterprise data in support of their business processes. However, in many
cases this requested form of the data does not match how the data is stored
in legacy systems, so the data must be transformed, aggregated, combined,
or otherwise modified to support current business needs. This is the primary
role of a data service: To virtualize (abstract) data from its native form for
use (and reuse) in the modern enterprise, while hiding (encapsulating) the
complex work of getting the data into a form for consumption. However,
providing data to a service consumer in an appropriate form can be
challenging for a variety of reasons, including:

Data required to satisfy demand may be distributed amongst two or more •	
systems. For example, the bulk of information about an order might be
stored in the ERP system (e.g., SAP), but customer interactions regarding
the order might be stored in a CRM system (e.g., SalesForce.com).

Protocols for getting data out of the underlying systems are vendor specific •	
and highly varied. You may be able to retrieve customer data directly from
your customer master using SQL, but you might have to use a web service
call—or worse—a vendor-specific API to get the order information from
the ERP system.

The format of the data from the underlying systems is probably not XML, •	
and as a result, will require transformation prior to supporting a web
service call. The native format possibilities for the underlying data are
numerous (e.g. relational, delimited, proprietary, hierarchical, etc.) and
manually mapping these to XML is not practical.

Legacy semantics of the data will not necessarily match current use cases. •	
For example, prior to the dot-com era, an internal data source might have
been created to hold information about a customer. At that time, it was
reasonable to establish fields regarding ’marketing opportunities’, In the
current usage, however, that same data might be presented to a customer
in a self-service portal as ’privacy preferences’.

Approximately ten percent of enterprise data is replicated in data •	
warehouses and data marts, while the remaining ninety percent is in
operational systems. It is important to maintain high levels of performance
in these operational systems. Data services need to optimize data access
performance as well as utilize intelligent caching and other advanced
techniques.

11DESIGNING SERVICES

2.2.1 Data Services Levels

Transforming data from its native ‘physical’ environment to its required
‘virtual‘ form can comprise a complex and difficult set of operations. One
recommended approach to address these data transformation challenges is
to break the problem into smaller pieces (see Figure 2.2), which manifests
itself as layered services of varied granularity, including:

Physical Services.•	 Physical services lie just above the data source and
they transform the data into a form that is easily consumed by higher-level
services. For a well-designed database, these services may be unnecessary
because the data can be understood and used as is. However, many
packaged applications store their data in a form that is designed for
optimal use within that application, and that form of the data does not
lend itself well to direct and transparent access. For this kind of data, it is
very useful to layer a collection of light transformation services just above
the physical layer. These services can change element names, cast data
types, and augment record contents. The output of these services can still
be considered relatively raw, physical data, but it has been put into a form
that is cleaner and more useful.

Business Services.•	 Business services embody the bulk of the
transformation logic that converts data from its physical form into its
required business form. These services should be thought of as a provider
of the canonical data representations for your business (e.g., customer,
supplier, product, order, shipment, etc.). There may be several ’layers‘ of
business services—especially if intermediate transformations are useful
as business services in their own right. For example, if your company sells
cellular and residential phone service, you may have a ‘customer’ business
service, and above it you might also have a ‘cellularCustomer’ business
service (which leverages but refines the ‘customer’ service). Business
services can be seen as providing master data and transaction data to the
rest of your processes.

Application Services.•	 Application services leverage business services to
provide data optimally to the consuming applications. Application services
are lightweight wrappers that match the business services with their actual
usage in the application layer. If the application layer is a modern BPM
environment, no transformation may be necessary – that is, it may be
possible to use the business services directly via SOAP invocations. On the
other hand, if the application layer is a business intelligence platform, it
probably needs to access the data as if it were stored in a database. So an
application service that looks like a virtual database table will be necessary.
As application services are created and used, discipline should be applied
to avoid business logic creeping into this layer. If data is transformed with
business logic, that logic should reside in the business services layer.

The elimination of duplicated enterprise data and increased opportunities for
reuse are the main advantages of establishing logical layers within the pool

12 Chapter 2:

of data services. With these logical levels of service granularity in use, you
will find that the business services can be reused throughout the enterprise
with few additional transformations required.

2.2.2 Data Services Infrastructure

The challenges associated with providing data services, beyond the usual
scalability and high-availability production needs, dictate the need for an
environment designed specifically to easily create, deploy, and maintain data
services. This infrastructure environment is called an ‘information server’
and several vendors offer products in this category. An information server is
distinctly different from an application server (which will be discussed in the

CUSTOMERS
BY GEOGRAPHY

DELINQUENT
CUSTOMERS

ACCOUNTS
RECEIVABLE
AGING

INACTIVE
CUSTOMERS

SUPPORT
CASE
DETAIL

ACTIVE
CUSTOMERSPAYMENTS

FINANCE ERP CDI HUB CRM SYSTEM

INVOICE
DETAIL

CUSTOMER

Application
Services

Business
Services

Physical
Services

CUSTOMER
REGISTRY

SUPPORT
CASES

CASE
ACTIVITY

INVOICES

INVOICE
LINES PAYMENTS

SALES
POSTAL

COLLECTIONS
WORK BENCH

13DESIGNING SERVICES

Figure 2.2: Data Services Levels

next section on transaction services). Most mature SOA infrastructures will
have both an information server and an application server. (see Figure 2.3)

When selecting information server infrastructure software on which to build
your data services layer, there are many things to consider, including:

Adherence to Standards.•	 The key tenets of a service oriented
architecture are loose coupling and reusability. It is impossible to achieve
either of these if your services do not conform to standards and best
practices.

Performance and Scalability.•	 The run-time execution of individual data
services must be intelligent and efficient, and the overall infrastructure
must provide massive scalability. Advanced query planning and
optimization are the keys to intelligent execution – it’s not enough to
simply throw more processing power at the problem.

Ease-of-Use.•	 One reason to use an infrastructure that focuses specifically
on data services is to eliminate work that would otherwise be done
elsewhere. If the environment is not easy for developers to use and
maintain, adoption will be slow and efficiencies will be lost.

Data Caching.•	 In addition to being a virtualization layer, the data services
infrastructure is also an insulation/buffering layer. This cannot be effectively
accomplished without providing a caching mechanism. There should be
both implicit and explicit caching opportunities, and it should be possible
to cache both query results and procedure calls.

Access to Data Sources.•	 An enterprise’s data services layer must provide
access to all structured enterprise data. This includes relational databases,

Data Services
Information Server

Transaction Services
Application Server

Key Features

Container for Data Services Container for Transaction
Services

Data Access Standards J2EE Standards

Data Federation Session Management

Data Retrieval Performance Memory/Thread Management

Data Transformation Concurrency

Data Caching Security

Data Security

14 Chapter 2:

Figure 2.3: Comparing Information and Application Servers

third-party data services, packaged applications (e.g., SAP, Siebel), files
(e.g., Excel), directories (e.g., LDAP), and legacy mainframes (e.g., VSAM).
It should also provide the capability to expand its reach through custom
development, allowing even the most obscure data source to participate in
the data services layer.

Data Quality Management.•	 A significant amount of enterprise data
is dirty and incomplete. Some of the messiness can be addressed with
straightforward transformation capabilities, but some of it must be
attacked with robust data cleansing functionality.

Strong and Flexible Security Mechanisms.•	 Exactly what your enterprise
needs will be determined by your industry and business requirements, but
the infrastructure software should provide general purpose mechanisms to
implement a variety of security measures.

Vision and Focus.•	 The challenges associated with the data services
infrastructure comprise a discipline that is unique. The vendor you choose
to provide this capability to your enterprise should be clearly focused on
this problem, and have a vision for advancing the state of the art. Several
vendors claim data services functionality as part of their broad offerings,
but that slice of the platform will never get the focus it needs to be
effective. We recommend that you select a vendor that offers best-of-
breed in data services technology.

2.2.3 Enterprise-wide Data Services Layer

As the collection of reusable data services in your enterprise grows and the
production requirements of the service consumers become more demanding,
the information server will expand to form an enterprise-wide data services
layer. This clustered and highly available infrastructure establishes a
virtualization layer between enterprise systems that store data and enterprise
applications that use data. The presence of this data services layer in an
enterprise provides several long-term benefits, including:

Consumers of a particular type of data will get that data from the same •	
shared service, ensuring consistency of data across the enterprise.

New business application requirements are less daunting since the IT •	
organization can now provide the application developer with the exact
data they need to be most effective—regardless of how the data exists
in the underlying systems. This sort of data access agility is unheard of in
today’s enterprise IT environment.

Data consumers will be decoupled from the underlying physical systems, •	
allowing legacy systems to be changed, migrated, or retired without
affecting the consuming applications. Only the data services layer will need
to be modified to accommodate the underlying physical changes.

15DESIGNING SERVICES

As data capacity requirements grow, the data services layer can be scaled •	
to accommodate increasing demand. And because caching is available in
this layer, it may not be necessary to add corresponding capacity to the
underlying physical data source.

System consolidation will require data to be grafted from only one of the •	
affected systems into the data services layer without affecting the high-
level business applications. This efficiency overcomes the consolidation
chaos commonly resulting from mergers and acquisitions.

2.3 Transaction Services

Transaction services implement individual business operations that are
executed as part of a larger business process. The effect of invoking a
transaction service is the creation or modification of data in an underlying
data repository. The logic encapsulated in a transaction service represents
your enterprise’s definition of what it means to, for example, create a
customer or update an inventory level.

Some transaction services will be provided inherently as part of a packaged
application (e.g., SAP), and a user indirectly invokes them when a user
employs the application’s user interface. Although many packaged
application vendors do not yet provide their functionality as standard services
for use outside their user interface, most are moving in this direction.

Other transaction services will need to be developed to implement specific,
unique business logic. These services are generally built by IT developers in
a software development environment like an application server (e.g., IBM
WebSphere). These environments offer powerful development tools and
efficient deployment environments. They also provide standard security and
transaction frameworks.

Transaction services generally modify data in a single underlying data source,
and they are therefore generally connected directly to that data source
(rather than relying on the data services layer as an abstraction). This tight
coupling is acceptable because a collection of transaction services normally
’owns‘ the data source it is modifying. However, transaction services also
often need access to data to carry out their business logic. For this data they
should invoke the same data services that everybody else uses (through the
data services infrastructure).

As the names imply, transaction services implement the logical equivalent
of a business transaction (e.g., place an order). As such, an important
characteristic of a transaction service is that it either completely succeeds
or completely fails, leaving no artifacts or incorrect data behind. This is not
difficult if the transaction service is modifying a single relational database
that implements transaction semantics, but it can be more challenging if it
is working with a set of underlying (finer grained) transaction services that
are inherently stateless, or if its transaction data is split among more than

16 Chapter 2:

one data source. The application server environment usually provides strong
transactional models that will assist the developer with this challenge, but
the developer needs to use them.

Just as important as the transactional integrity of the service, it is critical
to define the scope of the service at the appropriate granularity: Your
transaction services should provide business-level granularity so the consumer
is not required to think about the interplay between fine-grained physical
data components. For example, if you wanted to provide a service for
updating the on-hand inventory level for a product, the service should simply
take the increment or decrement amount as input, and then internally
handle the possibilities for concurrency. As another example, if you wanted
to provide a service that deletes a customer, the service should also delete
the customer’s associated orders, payments, service calls, etc. In other words,
the consumer of the service should not have to know the business rules
associated with deleting a customer; the service should simply encapsulate
the rules and offer the comprehensive service to the consumer.

A transaction is not a substitute for application integration which would
be accomplished with an ESB layer or a similar system with traditional EAI
capability. That is, it should not be the responsibility of the transaction
service to update the same data in multiple underlying sources. The
transaction service should modify its system(s) of record only. Any required
propagation of new or modified data to other systems should be done after
the transaction is completed, and it should be performed by an appropriate
infrastructure that is designed for this kind of pattern.

2.3.1 Transaction Services Infrastructure

Important considerations when choosing a transaction server development
environment are a superset of the those when choosing an application server
environment. In most cases, an enterprise will already have at least one
in-house application server environment which IT is familiar with, and that
same environment can probably be effectively used to create and deploy
transaction services. Since application servers are well understood by most
IT departments, the following list comprises only additional considerations
that should influence the selection of an application server for building
transaction services.

Service Standards Support.•	 The transaction environment should offer
built-in support for XML manipulation, SOAP semantics, and automatic
WSDL creation. In addition, it should be easy to implement services that
conform to the WS-I Basic Profile for web services.

Vendor Neutrality.•	 Make sure the services that are created in the
environment do not require software from the same vendor on the
consumer side of the interaction. This is a key point in guaranteeing truly
reusable and loosely coupled services.

17DESIGNING SERVICES

Robust Transaction Semantics.•	 The environment should support
various transaction implementation models, from two-phase commit to
compensation models, and it should be easy for the software developer to
wrap his work in a reliable transaction scope.

Easy and Efficient Service Invocation.•	 Transaction service developers
will need to access data from the data services infrastructure, so it is
important that service invocation be easy and efficient for the developer
to accomplish. Otherwise, the developer will be tempted to access data
directly, thereby compromising the abstraction provided by the data
services layer.

Strong and Flexible Security Mechanisms.•	 Exactly what your enterprise
needs will be determined by your requirements, but the software vendor
should provide general purpose mechanisms to implement a variety of
security measures. Later in this chapter there is a section that describes
service security.

2.4 Service Interface Design

The web service standards and recommendations leave service creators with
broad latitude for designing service interfaces. From one viewpoint, this is
a very positive situation: You can design service interfaces that exactly meet
the needs of your enterprise. From another viewpoint, however, this broad
latitude creates a problem because it will be easy to inadvertently create
service interfaces that have no relationship with one another, are difficult to
use, and the resulting services will embody no unified design vision. In other
words, it will be a mess.

You may be able to take service design guidance from the dominant
packaged application vendor in your enterprise. Some of the application
vendors have made significant progress in providing service-based APIs. SAP
currently provides the most complete treatment, although it requires their
installed base to upgrade to take full advantage of their offering. Other
vendors have not made significant public commitments to service-based APIs,
so it’s not clear what direction they will take. If you are a customer of one of
these vendors you should demand to see their plans so that you can begin
your own planning. When you learn more about the APIs that your vendors
provide, you can consider modeling your own APIs along the same lines,
or wrap those APIs in your own to extend or elevate their interfaces. The
guidelines below will help you determine whether the vendor-provided APIs
are appropriate for your needs.

You should think of your service interfaces as the public API into your
enterprise data. As such, care should be taken to make them useful, easy to
learn, well documented, consistent, supportable, and extendable. If you have
ever been on the consumer side of a poorly designed API, you can appreciate
the need for simplicity and elegance – it should all hang together and make
sense to the consumer.

18 Chapter 2:

Fortunately, we can learn something about how to do this from another
software development paradigm: Object oriented programming. In this
paradigm, a developer creates a class for a specific type of data, and the class
implements methods (procedures) for manipulating that data. Related classes
that work with each other to accomplish something broader are usually
grouped into packages, and multiple packages that form a comprehensive
framework are packaged and distributed together.

An analogous paradigm can be used as a guideline for developing your
services.

Categorize Your Data.•	 Design a collection of services for manipulating
a particular category of data. For example, customer. Services should be
provided for creating, updating, deleting, and retrieving customers. There
may be several services for each of these activities. For example, you might
provide multiple ways to retrieve customers.

Group Services by Category.•	 Create these sets of services for each
category of data in your enterprise. The categories of data will either be
master data (e.g., employee, customer, and product) or operational data
(e.g., order, PO, shipment). The collection of services might be slightly
different for these two categories of data, but the differences should be
motivated by requirements of your service consumers.

Judiciously Provide Cross-Category Services.•	 Where necessary, create
services that operate on multiple categories of data, but leverage the
service interfaces you designed for the individual data types. For example,
you might need to provide a service that retrieves a customer and all
of their orders. Make sure the input parameter to specify the customer
matches the input parameter for specifying a customer in the collection
of customer-specific services. Furthermore, make sure the schema of the
returned data (customer and orders) match the schemas for customer and
order data returned in the data-specific services.

Package Related Services Together.•	 Finally, group related services
together in a single WSDL to provide consumers access to the whole
framework at once.

The important thing is to avoid designing individual service interfaces in
isolation. If consumers are familiar with your services for manipulating an
employee, it should be natural and easy for them to begin using your services
that manipulate a customer. It sounds like common sense, but it will make a
huge difference in the adoption rate of your shared services.

2.4.1 Individual Service Design

With this service framework in mind, we can turn our attention to the design
of the individual services, beginning with some guidelines, including:

19DESIGNING SERVICES

Keep interfaces as simple as possible. Service consumers do not want a •	
comprehensive service that does everything possible on a particular kind
of data, but requires an overly complex service call simply to, for example,
change a phone number of a customer. Service consumers want it to be
easy and obvious how to accomplish their task.

A service that modifies data should either completely succeed or cleanly •	
fail: Without leaving corrupted or incomplete data behind. Exactly how
the service accomplishes this will depend on the implementation, but the
consistency contract with the customer should not be compromised.

Try not to provide services to consumers that would allow them to •	
unwittingly do harm to enterprise data. For example, if you provide a
service that sets the inventory level of a product, a service consumer
could retrieve the existing inventory level, add some recently received
product to the count, and then update the inventory to the new count.
Unfortunately, if two different consumers perform this sequence at roughly
the same time, it would be possible to lose inventory because one of the
consumers can overwrite the other consumer’s change. It is preferable to
provide a service that increments or decrements inventory, and the service’s
implementation should employ a locking strategy to ensure correct and
consistent behavior.

Establish and use a standard error reporting scheme for all services (refer to •	
the following section for more details).

2.4.2 Error Handling

Reporting errors that occur during service invocation should be done in a
way that allows the client to handle errors in a consistent way. There are four
kinds of errors that can occur during service invocation, including:

Communication Errors.•	 These happen when the service infrastructure is
unavailable to complete the invocation (e.g., the network is down). These
errors will usually manifest as something outside the SOAP standard (e.g.,
an HTTP connect error). As a service implementer, you don’t have control
over how to report them. You should, however, perform internal testing
with your own infrastructure to see how errors will be reported to your
consumers. This will enable you to provide direction for handling errors
effectively in the service orchestration environment.

System Errors.•	 These occur inside the execution of the service, but
they are related to the system rather than to the application logic. For
example, temporary disk space for assembling results might become full,
or a required data source is currently unavailable. These errors are usually
not correctable by the caller. This class of errors should be reported to the
caller as a fault in the SOAP invocation, with the standard fault code of
soap:Server. SOAP faults are like exceptions, and they are returned to the
caller instead of the return message. The caller can catch the SOAP fault
and process it accordingly.

20 Chapter 2:

Application Errors.•	 These are errors in processing business logic that
defines the service. For example, when a user attempts to set a phone
number to an invalid string. Application errors should also be reported
using SOAP faults, but with the standard fault code of soap:Client, which
distinguishes them from system errors. It is useful to establish a convention
for reporting additional information in the detail element of the fault.
The WS-I Basic Profile for interoperability allows arbitrary sub-elements
underneath the detail element so a schema snippet can be created
and included in every SOAP fault. This will result in offering additional
information that will be useful to the client (e.g., an application error
code).

Application Warnings. •	 These are non-fatal errors that are discovered
during the processing of the business logic. They are not severe enough to
cause the request to fail, but you might like to tell the caller about them.
For example, there might be a service that updates a customer’s address,
and the service caller might provide a zip code that does not match the
city and state in the address. While it may be reasonable to allow this
service to succeed (your own business rules will determine this), it will be
useful to issue a warning that the customer’s address data is not internally
consistent. If you plan to issue warnings with your services you should
create a standard part of the document schema for reporting them. All
return messages should include the warning component as an optional
part of the return message. The caller can choose to ignore it, but the
information is available if they want to process the error.

2.4.3 Example

With these guidelines in mind, designing specific service interfaces required
for a type of data can be straightforward. Here is a typical set of services you
might create.

Design an XML representation (schema) for the data.•	
Design CRUD (Create, Retrieve, Update, Delete) service operations for the •	
data (leveraging the XML schema).
Design supplemental services to further manipulate the data, as required •	
by the business.

To make these service development activities clearer, let’s apply them to an
example of customer data:

Design a XML representation (schema) for the type of data that the •	
services will work with. A customer represented in XML might begin
something like this:

<customer>
	 <id>123456</id>
	 <creationTimestamp>2007-01-13 14:35:22.345</
	 <creationTimestamp>
	 <modificationTimestamp>2007-02-09 08:30:55.127</
	 <modificationTimestamp>

21DESIGNING SERVICES

	 <firstName>John</firstName>
	 <lastName>Smith</lastName>
	 <gender>M</gender>
	 <birthDate>1962-07-10</birthDate>
	 …
</customer>

Create a service for creating a new customer.•	 The input document
should be the schema designed above. The service should confirm that
all required data elements have been provided. It is possible to specify
required and optional elements in the XML schema, but different uses
of the same schema will have different requirements, so it is better
to embody this business logic in the service itself. The service should
automatically create some of the fields for the consumer (e.g., the
customer id should be uniquely generated, and the timestamps should be
handled automatically). The service should return the complete customer
(as created) using the same schema.

Create a service for easily modifying an existing customer. •	 The input
document should be the customer schema designed above. The id element
specifies which customer is to be updated and the other elements will be
used to update (overwrite) the customer’s data.

Provide a service for easily deleting a customer.•	 The input document
for this service should simply contain the customer’s id—no other data
should be required. The service itself should implement all business logic
required to delete a customer from the enterprise. For example, it may be
desirable to remove a customer’s orders, payments, and service calls as
well. Whatever the business logic is, it should be performed in a manner
that can guarantee integrity of the underlying data.

Provide a service for easily retrieving (querying) customers.•	 The
input document should be the customer schema, and then only the
provided fields will be used to match existing customers. For example,
if an id is provided, a single customer will be matched. If a last name is
provided, multiple customers may be matched. The service should return a
list of customers that match the input values.

Provide additional services for retrieving customers in other useful •	
ways, as dictated by the requirements of the consumers. The input
document should be designed to accommodate the necessary input data.
The service should return a list of customers (using the same schema as
all the other services). For example, somebody may want a service that
retrieves all customers who placed orders since a given date (or between
two dates).

Provide additional services for operating on customers, as dictated •	
by the requirements of the consumers. Again, the input document
should be designed to accommodate the necessary input data. In this case,
the output document should be designed to accommodate the service
requirements. For example, somebody may want a service that counts

22 Chapter 2:

customers by geography, returning a list of countries, states, or zip codes,
and the corresponding customer count for each geography. The important
thing about designing these services is to wait until they are needed.
Designing these services in the absence of real business requirements is
usually time wasted.

This methodology can be applied repeatedly to all the data in your enterprise.
It is not recommended that you do it all at once, however, because when
consumers begin to use services you have provided, you will learn lessons
that can be applied to future efforts. Expanding your service collection
incrementally, as needed by the consumer community, is the most efficient
way to proceed.

2.5 Security Considerations

Security of enterprise data is always a priority, and introducing services as
an access and manipulation paradigm adds new challenges. Since each
enterprise has its own philosophies on security, the best approach to service
security is to extend your enterprise’s current security strategies to these new
paradigms. In keeping with that idea, this section is not a service security
cookbook, but is provided to help educate the readers about the available
security alternatives.

There are three areas of security to be considered when deploying services:

User Authentication•	
Access Authorization•	
Message Privacy•	

Several standards exist that contribute to service security implementation
(HTTP Authorization, WS-Security, SSL, SAML, etc). However, as with
other web services standards, there is quite a bit of latitude, and therefore
broad variability, as to how security is actually implemented. The WS-I has
formulated the WS-I Basic Security Profile in an attempt to narrow the range,
and increase both security and interoperability, and we urge readers to
consult this recommendation to assist with security questions.

2.5.1 User Authentication

Services are essentially executable modules, available to other consumers
over the network. But who gets to execute them? It is possible to provide
services that are open to anyone, but this is not the usual situation in an
enterprise. Rather, access to a service usually requires a user to be identified
and authenticated so that authorization can be performed. With web
services, this can be done in a number of ways:

HTTP Basic Authentication.•	 If your services are accessed over HTTP, your
server can use HTTP basic authentication to require a user to provide a

23DESIGNING SERVICES

username and password to essentially ’log in‘ to invoke the service. This is
a simple but effective mechanism for authentication that is widely used.
When combined with a wire-level encryption (i.e., SSL), it is quite secure.
This kind of authentication mechanism is roughly equivalent to a normal
client login to a database today.

SAML.•	 This is a standard XML-based authentication mechanism modeled
on the presentation of a secured token. SAML is considered the future of
web service authentication but it is not yet widely used. It is recommended
that you use a service infrastructure provider that plans to support SAML
within a year. The SAML model is similar to Kerberos, so if you currently
use something similar to Kerberos for your enterprise authentication,
you will be interested in learning about SAML for use with your service
implementations.

Custom Login Service.•	 You can provide a custom service that accepts
a user’s login credentials and returns an identity token. The identity
token is then presented as part of the input to each subsequent service
invocation. This mechanism is widely used today, but it does not promote
interoperability of services, and it requires all services to accommodate
the mechanism. Combined with a wire-level encryption, however, it is
quite secure. You can think of this approach as being equivalent to a login
box on a web page portal where the web protocol is probably encrypted
(HTTPS), but the actual authentication is processed by the application
(which is probably running in an application server).

2.5.2 Access Authorization

Once a user is authenticated to the service infrastructure, there are two types
of authorization to consider:

Does the user have permission to invoke the service?•	
Does the user have permission to access all of the data returned by the •	
service?

The WS-I Basic Security Profile addresses both of these in detail, so we will
not duplicate that effort in this book. However, some general considerations
can be offered, including:

Your service infrastructure should provide general purpose enforcement •	
mechanisms for these. It should not be necessary to build authorization
logic into the service implementation itself.

If a user does not have permission to invoke a service, the simplest way to •	
indicate this is to immediately return a SOAP fault.

A service may return a rich XML document containing a significant amount •	
of data, but the current user may be authorized to see only portion of the
data. In this case, only the sections of the document for which the user

24 Chapter 2:

is authorized will be populated. Again, your service infrastructure should
provide general purpose enforcement mechanisms for this type of security.

2.5.3 Message Privacy

Services operate using request and response messages, the contents of
which are generally XML documents. When transported over an unsecured
network, these request and response messages are potentially vulnerable to
snooping, which dictates the need for message privacy strategies. There are
two main mechanisms used to accomplish this today, SSL for HTTP and WS-
Security.

SSL for HTTP
Most services today are accessed via HTTP. SSL can be used to provide a
secure (encrypted) point-to-point communication channel between the
consumer and the provider (HTTPS). This is the same mechanism used by
your web browser when you submit your credit card information during a
purchase. The advantage of this mechanism is that it’s easy to implement and
easy to use. Most secure web service calls are protected by this mechanism
today. There are, however, two main disadvantages of this privacy
mechanism:

Proxy Protection.•	 If the service call goes through a proxy, the secure
communications channel does not extend through the proxy, potentially
leaving the communications vulnerable. It is not always clear to the
provider or the consumer exactly where proxies exist in the call chain, so
care should be taken.

In-transit Protection.•	 The encryption exists only on the point-to-point
communication channel, and does not secure the message itself. If the
SOA architecture includes mechanisms for service mediation (e.g., store-
and-forward), the message is unprotected when not being transported.
Similarly, if messages are logged to a disk or database, the message is not
secured.

WS-Security
This is a collection of security standards designed to secure web services. Its
scope is actually broader than transport privacy (it can also be used to assist
with authentication), but it is primarily aligned with message security. The
WS-Security standards are not currently in wide use, but it is expected that
they will be as SOA implementations proliferate. A comprehensive discussion
of WS-Security is beyond the scope of this chapter, but the following is a
summary of what it provides:

Element-level Message Encryption•	 . Specific sections of a service
message (i.e., the XML document) can be encrypted for privacy. This
encryption is within the message, so it persists for the life of the
message—regardless of how or where the message travels.

25DESIGNING SERVICES

Message Integrity•	 . Allows the consumer of the message to reliably
determine whether the message has been modified since being created.

Message Authentication•	 . Reliably identifies and guarantees the sender/
creator of the message.

Your service infrastructure vendor should provide support for WS-Security—it
should be an important part of your vendor selection criteria.

Security is a broad and deep topic, and we have only scratched the surface
in this section. The important point is that you can extend your current
enterprise security strategies to embrace services as well. We recommend
you formulate your enterprise’s service security requirements, and then work
with the service infrastructure vendors to put software in place that meets
those requirements.

2.6 Conclusion

The collection of services you create will form the foundation for your service
oriented architecture efforts. Your foundation’s strength and longevity will be
enhanced if you follow the suggestions outlined in this chapter.

You can begin creating services today. You do not need to wait until you
have a comprehensive set of requirements, and you can get started with
limited staff and investment. Select a project with specific well-known needs,
and build the services needed to address those requirements.

26 Chapter 2:

