
Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11
Blind folio: 219

CHAPTER
11

Creating User-Defined
Mashups

219

ch11.indd 219 2/1/08 1:28:45 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

220 Oracle Database AJAX & PHP Web Application Development

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

s powerful computers have become more common, users have begun
to see them as information aggregation tools. This is a direct outgrowth
of the web experience. Web sites are a version of data aggregation that
allows users to select the information to be viewed. Today’s browsers
also allow web RSS feeds to show up as links in a page or as bookmarks.

E-mail has long since been included in the browser. All of these, as well as AJAX
applications, lead a user to believe that data aggregation is the purpose of the browser
and therefore the computer itself.

As these users demand more and more application flexibility, web applications
must adapt. Using mashups, multiple portions of separate pages displayed in one
page, is one way of accomplishing this. One description of what a mashup is can be
found at http://en.wikipedia.org/wiki/Mashup_%28web_application_hybrid%29.

After reading this chapter you will be able to create pages that let the user
combine data from various remote web sites or applications into one AJAX-driven
web application. They will be able to define what portions of the pages to display
and where these portions should be displayed on the page.

The items covered in this chapter are

 Using JavaScript to define and display multiple portions of web pages in a
single page

Using JSON for data storage and retrieval

The mashup library API

These dynamic mashups allow the user to customize your application with little
effort on both their part and yours.

Creating a Simple Mashup Page
Home health care nurses do not have as much control of their patients’ environment
as do nurses in a hospital. Because of this they need to monitor the air temperature
and quality in the area where the patient resides. While there are many sites that can
supply a portion of this information for any given location, there are few or none that
supply it all. To keep on top of this data and be proactive, a nurse would need to
regularly check several sites throughout the day. With the extreme time constraints
that these people work under and the potential loss of health and life if this type of
information is ignored, a simple way for them to select their preferred information
sources and display them is needed. A web page mashup is just the trick.

A web page mashup consists of bits of other complete web pages included within
one single page. In its simplest form, such a mashup is defined by the programmer or
engineer and doesn’t allow the user to add new pages. The mashupExample.html file,

■

■

■

A

ch11.indd 220 2/1/08 1:28:46 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 221

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 221

downloadable from www.OraclePress.com and seen in Figure 11-1, is similar to
such a simple mashup and displays air quality information from the Salt Lake City,
Utah area.

Mashup frames consist of the page display and the ability to resize the display,
select the portion of the source page to be displayed, move the display, and
remove the display. The mashupExample.html page also includes a button that
allows the user to temporarily add new mashup frames. All changes made to this
page are temporary because they are not being sent to a server for storage. Storing
this definition information to Oracle Database is covered later in this chapter.

Since these mashup frames are accessing the source pages via the web, they
always display information from the current page on the remote server. Thus, when
the source page changes, the display in the mashup changes as well. This allows the
data to always be up to date. Because of this, one factor to take into account when
selecting a source page for a mashup frame is the stability of the layout of the page.
Since only a selected region within the source page is displayed, if the source page’s
layout changes, the mashup frame will display the new content for the old region.

The API, seen in Table 11-1, used to create mashups consists of three functions
and is dependent on the drag-and-drop library covered in Chapter 6. These three

FIGURE 11-1. A simple mashup page in Firefox on OS X

ch11.indd 221 2/1/08 1:28:46 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

222 Oracle Database AJAX & PHP Web Application Development

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

TABLE 11-1. The Mashup API

Function Description

MashFrame
(a URL, parentID,
xLoc, yLoc, width,
height, scrollDown,
scrollRight)

This function is the constructor for a mashup frame. It has two
required parameters and six optional parameters.

Required:

a URL The URL of the source page. This need not contain
the “http: //” portion but can if desired. All URLs are assumed
to be HTTP and not FTP or some other protocol.

parentID The id of the HTML element that is to be the
container for the mashup frame. This is usually an HTML div.

Optional:

xLoc The horizontal offset within the containing HTML
element for the left side of the mashup frame. The default
value is 0 pixels.

yLoc The vertical offset within the containing HTML
element for the top of the mashup frame. The default value is
0 pixels.

width The width of the mashup frame to be displayed in
pixels from the leftmost to the rightmost pixel. The default
value is 300 pixels.

height The height of the mashup frame to be displayed in
pixels from the topmost to the bottommost pixel. The default
value is 294 pixels.

scrollDown The vertical offset in pixels of the viewable
region as if the user had scrolled down the source page. The
default is 0 pixels.

scrollRight The horizontal offset in pixels of the viewable
region as if the user had scrolled right in the source page.
The default is 0 pixels.

■

■

■

■

■

■

■

■

requestNewMashFrame
(parentID)

This function is a wrapper for the MashFrame constructor that uses
the default values for all of the optional parameters. When executed,
this function prompts the user for the URL of the source page. It has
one required parameter.

parentID The id of the HTML element that is to be the
container for the mashup frame. This is usually an HTML div.

■

getMashupDescriptor() This function returns an array of mashup frame descriptors. Each
descriptor consists of all of the current values for a single mash
frame. The returned array is used to store the current state of all of
the mashup frames to the server.

ch11.indd 222 2/1/08 1:28:46 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 223

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 223

functions allow the programmer to define mashup frames and retrieve a description
of all of the frames’ current state. The mashup library, found in mashup.js and
downloadable from www.OraclePress.com, has been written to support the latest
versions of Firefox and Safari on OS X, as well as Firefox and IE on Windows.
Further work may be needed to support Firefox on the various flavors of Linux.

The mashupExample.html file uses two of the API functions listed in Table 11-1.
It consists of four mashup frames positioned and sized differently to display the
current temperature and air quality information for the Salt Lake City, Utah area.

<html>
<head>
 <link rel="stylesheet" type="text/css" href="mashup.css" />
 <script src="util.js" type="text/javascript"></script>
 <script src="mashup.js" type="text/javascript"></script>
 <script src="JSON_Util.js" type="text/javascript"></script>

 <script>
 function init(){
 new mashFrame('www.intermountainallergy.com/pollen.html',
'displayDiv',0,30,550,200,300,60);
 new mashFrame('http://www.airquality.utah.gov/slc.html',
'displayDiv',0,295,700,250,210,200);
 new mashFrame('www.ksl.com/index.php?nid=88',
'displayDiv',625,30,400,230,850,0);
 new mashFrame('www.ksl.com/index.php?nid=88',
'displayDiv',740,310,380,220,550,40);
 }
 </script>
</head>
<body id='mainBody' onload='init()'>
<input type = 'button' value='Add New Page'
onclick='requestNewMashFrame("displayDiv")' />
<div id='displayDiv' style='width: 1000px; height: 3000px;
top: 50px;' >

</div>

</body>
</html></div>
</body>
</html>

Notice that the displayDiv element is set to a large width and height. This was
necessary because when a mashup frame is being dragged around or resized,
sometimes the mouse will leave the grey bar used to drag or resize the mashup
frame. This is common in browsers due to the time required to interpret and execute

ch11.indd 223 2/1/08 1:28:47 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

224 Oracle Database AJAX & PHP Web Application Development

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

the JavaScript code and then render the changes. To overcome this, the mashup
library, via the drag-and-drop library util.js, adds a mouse listener to the parent that
causes the mashup frame to “catch up” to the mouse.

Occasionally this same problem happens within the display area of the mashup
frame as well. On all browsers except IE the mashup frame will again catch up with
the mouse. When moving or resizing a mashup frame in IE, care must be taken to
move the mouse slowly enough that it will not enter the display area of the frame.
The reason for this is that in IE many active components such as links always have
the highest z-order, regardless of the z-order declared for them or their parents, and
therefore the catch-up code could not be implemented.

Since the mashup library, mashup.js, uses a clear, overlaying div known as a
glass pane to cover the display area, it can detect a straying mouse move and make
the mashup frame catch up. In IE this glass pane has been removed since the active
components of the source page would all be above it anyway. Because of this
z-order implementation in IE, the individual active components would capture the
mouse motion and the mashup frame would not be notified to catch up to the
mouse. For consistency, the glass pane was removed. Other limitations exist in the
mashup library as well.

If the source page includes Flash or other embedded interpreters, the resultant
display of the movie or other content can appear even though it is outside the
viewable area. This issue appears to be more prevalent on Windows, for both
Firefox and IE, than on OS X and has not been tested on Linux. It appears to be
more site dependent than browser dependent and as such means that careful
consideration needs to be given to source page selection.

Another limitation is JavaScript menus. Some sites have menus that automatically
pop up as the page is loaded. These menus also can sometimes appear even though
they are outside the display region of the mashup frame.

There is also a difference in functionality between how the mashup library works
on Windows and other operating systems. Figure 11-1 shows a simple example in
Firefox on OS X. Notice that there are no scrollbars within the mashup frames. Here,
dragging it within the mashup frame changes the region of the source page being
displayed. When this drag-and-drop approach to source page region display was
used in Firefox and IE on Windows, both browsers would misrender the display area
and leave behind visual artifacts outside the display region. This problem went away
if scrollbars were used instead, as seen in Figure 11-2.

These visual artifacts did not appear in Firefox or Safari on OS X, so it appears
that the issue is within the MFC Windows library used for visual display in both of
these Windows browsers.

It is hoped that as time goes by, the mashup library will become stronger and
more sophisticated so that these issues can be overcome.

ch11.indd 224 2/1/08 1:28:47 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 225

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 225

Embedding Mashups in the
Medical Data System
As stated at the beginning of the previous section, the use of mashups can be of
great worth to home health care nurses. As such it is important to make the
mashup program simple for them to use, and it needs to remember the choices they
have made. If the same user interface components are used as in the other portions
of the medical data system, the user can easily use the functionality. By using the
same design approach as in the other chapters in this book, the programmer can
more readily include the functionality. Figure 11-3 shows mashup frames included
in the main page.

Chapter 10 covers how the client-side Session object is stored in and retrieved from
Oracle using AJAX. Since the mashup choices made by the user need to be stored, they
can be added to the Session object, as was the initial subpage choice in that chapter. The
login process from Chapter 10 will then retrieve these choices and they will be available
from within the Session object when the user chooses to display the mashup view.

FIGURE 11-2. The simple mashup page displayed in Firefox on Windows

ch11.indd 225 2/1/08 1:28:47 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

226 Oracle Database AJAX & PHP Web Application Development

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

In order to piggy-back on the code to store the Session object, a BCO needs to be
created as described in Chapter 3. The saveMashupBCO is found in the CO.js file, also
downloadable from www.OraclePress.com.

function saveMashupBCO(){
 //create or replace the attribute with a new one
 session.addAttribute('mashupDesc', getMashupDescriptor());
 //post the session string to the server using no VCO
 theSAO.makeCall('POST', null, 'Text', true, '',
'cmd=store&sessDef='+session.toJSONString());
}

The saveMashupBCO inserts the descriptions of all of the user-defined mashup
frames by adding the results of the getMashupDescriptor API function as an attribute
of the Session object. Then piggy-backing on the client session storage functionality
created on the server in Chapter 10, it makes the same HTTP POST call as seen
there. This will cause the descriptions to be stored in the field in the database that
contains the session as a JSON string. To find out more about JSON see the last
section of Chapter 10.

FIGURE 11-3. The medical data system after clicking Show Mashup

ch11.indd 226 2/1/08 1:28:48 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 227

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 227

As seen in previous chapters, when the user selects to see the mashup view, a BCO
and a matching VCO need to be accessed. The mashupBCO, as seen in the following
code and in CO.js, differs from most of the JavaScript BCOs seen so far in that it does
not contact the server for data. When the user logged in, the Session object that was
instantiated already included all of the mashup description information needed if
the user had already stored it.

function mashupBCO(){
 //no connection to the server is required since the
 //client session information was retrieved at login
 var mashupDescriptorArray = session.getAttribute('mashupDesc');
 var aVCO = new mashupVCO();
 aVCO.notify(mashupDescriptorArray);
}

Because of this, the BCO needs only to retrieve these descriptions from the Session
object and call its matching VCO directly, passing the description data as a parameter.

Both of these BCOs are very simple. The mashupVCO, found in CO.js, is very
simple as well because of the use of the mashup library.

function mashupVCO(){
 this.notify = function(data){
 var displayString = "<div>";
 displayString += "<input type='button' value='Add Another Page'
onclick='requestNewMashFrame(\"mashupContainer\")' />";
 displayString += "<input type='button' value='Save Mashup
Changes' onclick='saveMashupBCO()' />";
 displayString += "<div id='mashupContainer' style='height:
4000px; width: 2000px;'></div></div>";
 document.getElementById('content').innerHTML = displayString;

 MashFrame.mashCount = 0;
 MashFrame.mashArray = new Array();
 if(data != null){
 var numFrames = data.length;
 for(var i = 0; i < numFrames; i++){
 var aDescription = data[i];
 new MashFrame(aDescription.URL, 'mashupContainer',
aDescription.left, aDescription.top,
 aDescription.width, aDescription.height,
aDescription.scrollDown, aDescription.scrollRight);
 }
 }
 }
}

ch11.indd 227 2/1/08 1:28:48 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

228 Oracle Database AJAX & PHP Web Application Development

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

The mashupVCO sets up two divs for display purposes. The first one contains
buttons to add new mashup frames and save mashup descriptions to the server. The
second div is the container for the mashup frames themselves. Additionally, this
VCO creates a MashupFrame object for each stored description and places it in the
appropriate parent.

How It Is Done
The mashup library, found in mashup.js and downloadable from www.OraclePress
.com, depends on the understanding of one major concept, element manipulation
using JavaScript to change CSS style attributes. In order not to reinvent the wheel,
much of this CSS style manipulation is done using the drag-and-drop library covered
in Chapter 6. By using that pre-existing library, found in util.js, behaviors such as
manipulating the location, width, and height of mashup frames are handled using
prebuilt functionality. When the client is running on OS X, the moving of the web
page display within the mashup frame is also done using drag and drop, as opposed
to using scrollbars when it is running under Windows.

Other than this, the only other item required to understand what is happening in
the mashup library is that each mashup frame consists of two main components, an
iframe used to display the requested page, and a div that holds the iframe and has
its CSS overflow style set to hidden. In order to help you to understand how this
works, a page (mashupBasics.html) has been created that doesn’t use the drag-and-
drop library. This page, seen in Figure 11-4, allows the user to manipulate the same
CSS attributes that the drag-and-drop library does but using input fields instead.

FIGURE 11-4. The mashup basics page

ch11.indd 228 2/1/08 1:28:48 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 229

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 229

From this example of being able to manipulate the CSS style attributes directly
instead of using the drag-and-drop library, you can understand the underlying
simplicity of embedding mashup frames.

The mashupBasics.html file, as seen in the following code and downloadable
from www.Oracle.com, consists mainly of the HTML used to define the display.
The JavaScript functionality consists of two functions, updateEmbeddedPage and
getUpperLeftPoint. It is important to understand that the updateEmbeddedPage
function is not used in the mashup library, but has been created to allow the same
types of manipulations that the library enables via drag and drop.

<html>
<head>
<title>Mashup Basics</title>
<style>
#containerDiv{
 width: 1px;
 height: 1px;
}
#maskDiv{
 width: 350px;
 height: 220px;
 border: solid;
 position: absolute;
 top: 150px;
 left: 10px;
 overflow: hidden;
 background-color: white;
}
#display{
 width: 1000px;
 height: 5000px;
 border: none;
 position: absolute;
}
</style>
<script>
function updateEmbeddedPage(){
 var basePoint = getUpperLeftPoint(document.getElementById('containerDi
v'));
 var aURL = document.getElementById('url').value || 'http://www.byui.
edu/CIT';
 var locX = document.getElementById('locX').value || 0;
 var locY = document.getElementById('locY').value || 0;
 var visX = document.getElementById('visX').value || 0;
 var visY = document.getElementById('visY').value || 0;

ch11.indd 229 2/1/08 1:28:49 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

230 Oracle Database AJAX & PHP Web Application Development

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

 var width = document.getElementById('width').value || 350;
 var height = document.getElementById('height').value || 220;
 //set the URL of the iframe
 if(document.getElementById('display').src != aURL){
 document.getElementById('display').src = aURL;
 }
 //set the location of the top and left of the
 //containing div
 var maskDiv = document.getElementById('maskDiv');
 maskDiv.style.top = (basePoint.topValue+(locY*1))+'px';
 maskDiv.style.left = (basePoint.leftValue+(locX*1))+'px';
 //set the width and height of the containing div
 maskDiv.style.width = width+'px';
 maskDiv.style.height = height+'px';
 //set the location of the top and left of the
 //iframe
 var display = document.getElementById('display');
 display.style.top = visY+'px';
 display.style.left = visX+'px';
}
//find the top and left values in
//pixels of an element in
//the page where 0,0 is the top and
//left of the page and not any other
//container of the element.
function getUpperLeftPoint(aNode){
 var aPoint = new Object()
 aPoint.leftValue = aNode.offsetLeft;
 aPoint.topValue = aNode.offsetTop;
 while((aNode = aNode.offsetParent) != null){
 aPoint.leftValue += aNode.offsetLeft;
 aPoint.topValue += aNode.offsetTop;
 }
 return aPoint;
}
</script>
<body>
<table>
 <tr>
 <td>URL: </td>
 <td><input id='url' value='http://www.byui.edu/CIT'</td>
 </tr>
 <tr>
 <td>Location X: </td>
 <td><input id='locX' value='0'/></td>
 <td>Visual X: </td>
 <td><input id='visX' value='0'/></td>
 </tr>

ch11.indd 230 2/1/08 1:28:49 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 231

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

Chapter 11: Creating User-Defined Mashups 231

 <tr>
 <td>Location Y: </td>
 <td><input id='locY' value='0'/></td>
 <td>Visual Y: </td>
 <td><input id='visY' value='0'/></td>
 </tr>
 <tr>
 <td>Width: </td>
 <td><input id='width' value='350'/></td>
 <td>Height: </td>
 <td><input id='height' value='220'/></td>
 </tr>
</table>
<input type='button' value='Update Display' onclick='updateEmbeddedPag
e()';
<hr/>

<div id='containerDiv'>
 <div id='maskDiv'>
 <iframe id='display' src="http://www.byui.edu/CIT" ></iframe>
 </div>
</div>
<div style='position: absolute; top: 500px;'>
</div>
</body>
</html>

The updateEmbeddedPage function begins by retrieving all of the values from the
inputs in the page and storing them in variables inside the JavaScript. If the user has
not entered values into the input elements, default values are assigned to the variables
instead. Once this is done, the process of manipulating the CSS styles begins.

As stated earlier, two main elements exist, a containing div called maskDiv and
an iframe called display. The iframe’s src attribute, which holds the location of the
page it is to display, is set to the value found in the URL input element. As with any
iframe, when this is done the page display is refreshed.

The top and left of the iframe display are set to be relative to the top, left point of
the entire page. This enables it to float freely within maskDiv. Since it can float freely,
it can appear to move around within maskDiv when in fact it is moving around within
the page instead. In spite of this, it is still contained by maskDiv, so maskDiv’s CSS
overflow setting of hidden still applies. This causes any portion of the iframe that
exists outside of maskDiv to appear to be clipped off. This appearance that the iframe
is clipped off gives a mashup frame its special qualities.

Using the mashupBasics.html file to experiment with the positions and widths of
its elements allows you to understand what the drag-and-drop components of the
mashup library must be able to do. It also prepares you to begin looking at the code
for the mashup library itself.

ch11.indd 231 2/1/08 1:28:49 PM

Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11 Oracle-Regular / Oracle Database AJAX & PHP Web Application Development / Barney & McLaughlin / 277-7 / Chapter 11

232 Oracle Database AJAX & PHP Web Application Development

Summary
By leveraging the mashup library as well as the client session object and storage from
Chapter 10, mashup frame inclusion is easily done in the health care application as
well as any other web page or application you desire. It allows the user to aggregate
additional data that they believe is needed into your application without changing the
application code. By doing so, the user becomes more a partner than ever before in
the production of web applications and gains some personal ownership of them
without having to know code or expend even small amounts of time. Including
mashups in your application will ease your load and dramatically increase the
positive aspects of the user experience.

ch11.indd 232 2/1/08 1:28:49 PM

