
C H A P T E R 2

■ ■ ■

9

The Visual Studio IDE and MEF

This release of Visual Studio sees the IDE overhauled and much of it rewritten using WPF and managed
code. The move to WPF allows Microsoft to make some stunning aesthetic additions to the IDE, and also
opens up customization possibilities when combined with the new Managed Extensibility Framework
(MEF).

Microsoft’s use of WPF for a flagship product such as Visual Studio is important, as this
demonstrates its commitment to the framework and confidence in its maturity.

In this chapter I will begin by looking at some of the new productivity enhancements in VS2010. I
will then create a code snippet and customize the start page. Finally I will introduce MEF and take a
look at some of the advanced customizations that it enables.

64-BIT VERSION OF VISUAL STUDIO?

A common question is whether Microsoft will release a 64-bit version of Visual Studio. At the time of writing,
Microsoft has said it has no plans to do, for the following reasons:

• Making use of lazy loading techniques would be a more cost-efficient way to improve the IDE’s
performance, and would benefit 32-bit users as well.

• A 64-bit version could adversely affect performance because data structures will use more memory.

• There are cost issues. Rico Mariani (see the following link) suggests that the cheapest way to provide 64-
bit support would be to incrementally convert the IDE to managed code, but this would break many
existing extensions.

For a detailed discussion of this issue, please refer to the following link: http://blogs.msdn.com/ricom/
archive/2009/06/10/visual-studio-why-is-there-no-64-bit-version.aspx.

General Improvements
VS2010 contains some long-awaited changes, including the following:

• There is now support for multiple monitors and the ability to drag windows outside
the IDE (see Figure 2-1).

• IntelliSense is now two to five times quicker than previous versions.

• Readability of text is improved.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

10

Figure 2-1. VS2010 allows you to drag windows outside the IDE.

Improved Multitargeting Support
When a new version of Visual Studio/.NET is released, it can take time to upgrade and test existing
applications. This can prevent you from taking advantage of features such as IDE enhancements if you
are not ready to upgrade your application yet. VS2010 contains improved support for targeting
previous versions of the framework.

As per previous studio releases, the New Project dialog contains a drop-down menu that allows
you to select the version of the framework that you are targeting when creating an application (see
Figure 2-2). When you make a selection, Visual Studio will filter the project types you can create to
those available in that version of the framework. Note that you can also select the framework version
you are targeting in the project properties.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

11

Figure 2-2. Select the version of the .NET Framework to target from the drop-down menu.

In VS2010 the Toolbox and Properties windows are filtered to display functionality available in
the targeted framework version. Previously, some properties that were not available in the targeted
framework would still be exposed. VS2010 will even try to display the correct version of third-party
components for the targeting framework version.

VS2010 emulates what is available in previous framework versions through reference assemblies.
These assemblies contain metadata that describes functionality available in previous versions.
VS2010 itself uses the .NET 4.0 Framework, so when adding multitargeting support the team decided
against running a previous framework version inside the same process. When your application is
compiled to guarantee application compatibility, previous compiler versions are used.

■TIP You may be interested in the ability to specify that your application should be run using a specific version of
the framework. I discuss this in Chapter 3.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

12

IntelliSense
IntelliSense will now perform partial string matching. For example, if you were to type the word build,
Visual Studio would display both the StringBuilder and UrlBuilder options. This can be very useful
if you cannot remember the exact property or type name.

IntelliSense also supports lookups based on capitalization. Because all .NET types are Pascal case,
you can simply enter just the uppercase letters of the type. For example, entering SSB would return the
type StringBuilder, among others with the same Pascal casing (as shown in Figure 2-3). IntelliSense
performance has also been improved, particularly for JavaScript libraries.

Figure 2-3. IntelliSense supports partial string matching.

Add References
Adding a reference to a project was previously very slow. In VS2010 it is now lightening quick. When
the Add Reference dialog first displays, the focus is set to the Projects tab while separate threads load
up the .NET and COM tabs.

Web Development (Code-Optimized Profile)
VS2010 contains some environment profiles, including the Web Development (code-optimized)
profile shown in Figure 2-4. This profile is optimized for code and hides design features. You can select

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

13

the code-optimized profile when you first load Visual Studio or by selecting Tools ➤ Import, and then
selecting Export Settings.

Figure 2-4. VS2010 contains environmental profiles, such as the Web Development (code-optimized)
profile.

Zoom
As much of the IDE is written in WPF, it was easy for Microsoft to add functionality such as the ability to
zoom into the code editor (as shown in Figure 2-5). To zoom into the code editor window, simply press
Ctrl and use the mouse wheel to increase and decrease the zoom level. You can utilize this feature in
presentations/code reviews or to zoom out to help you navigate a lengthy piece of code.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

14

Figure 2-5. VS2010 includes the ability to zoom into the code editor window.

Highlight References
Highlight References allows you to quickly navigate through different instances of the same method
call within a file. For example, if you want to navigate through all calls to the ToString() method, then
click once anywhere on the ToString() method text (note that you don’t have to highlight the text), and
you will find that the IDE marks all the other ToString() calls in the same file with a light-gray
background, as shown in Figure 2-6. You can then navigate to the next ToString() method by pressing
Ctrl+Shift+Down or Ctrl+Shift+Up to return to the previous instance.

Figure 2-6. Highlight References allows you to quickly move between calls to the same method.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

15

Navigate To
Sometimes when you need to find a specific piece of code, it can be much quicker to use the search
functionality than to trawl through Solution Explorer. VS2010 improves on the existing search and
search-in-files functionality with the Navigate To window.

To bring up the Navigate To window, simply press Ctrl+comma or select Navigate To on the Edit
menu. You can then enter a phrase you want to search for in your solution, and Navigate To will
immediately filter results as you type, as shown in Figure 2-7. You can then click these results to be
taken directly to the results location. Navigate To will perform partial and in-string matches, and also
supports Pascal casing searches (e.g., typing BBT would return a class called BigTiger).

Navigate To supports all the commonly used file types, including C#, Visual Basic (VB), and XML,
and is much quicker and easier to navigate than previous search methods.

Figure 2-7. Search files in your project with the Navigate To window.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

16

Box Selection
Box selection is one of my favorite new features. It allows you to quickly perform the same change on
many lines of code. To use box selection, place the cursor where you want to make the change, and
then hold down Shift+Alt in combination with the arrow keys to create a “box” where the change will
be applied. Finally, enter your change and it will be applied to all the selected lines.

Box selection could, for example, be used to refactor a number of class variables’ access levels
from private to public in one edit, as shown in Figure 2-8.

Figure 2-8. Quickly make changes to multiple lines of code with box selection.

Call Hierarchy
The Call Hierarchy window allows you to see all calls made to a particular method and all calls from
the method. Call hierarchy is recursive. To open the Call Hierarchy window, right-click a method,
property, or constructor and select View Call Hierarchy. The Call Hierarchy window will then open,
displaying calls to and from the method (see Figure 2-9). Note that you can filter the Call Hierarchy
window by solution, project, and document.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

17

Figure 2-9. See calls made to and from a particular method with the Call Hierarchy window.

Code Generation
A great feature in VS2008 is that you can enter a new method name that doesn’t exist and have the IDE
create a stub of it for you (to do this, enter a method name that doesn’t exist, press Ctrl+. and select the
“Generate method stub...” option). VS2010 expands on this functionality and allows you to create
classes, structs, interfaces, and enums in a similar manner. This is a great feature when you are
starting the development of an application, and is particularly suitable for TDD-style development.
Let’s try this out now.

1. Create a new console application.

2. Enter the following code:

Zebra MyZebra = new Zebra();

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

18

3. Either click the smart tag beneath the Z in zebra or press Ctrl+. (the easier ay) to bring up
the menu (as shown in Figure 2-10).

Figure 2-10. There are new options available in VS2010 for generating classes and method
stubs.

4. You now you have the choice of creating a Zebra class in a separate file (Zebra.cs) by
selecting “Generate class,” or you can select “Generate new type” to bring up an options
screen that allows greater control of generated type. For this example, please select
“Generate new type.”

5. The Generate New Type screen (shown in Figure 2-11) will appear, allowing you to
specify a number of options, including the access level, file name, and item to create.
Select Class on the Kind drop-down menu and change the access level to Internal.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

19

Figure 2-11. Generate New Type allows you greater control over what is created.

Visual Studio will then generate a new Zebra internal class.

Consume-First Mode
IntelliSense is a great feature, but can sometimes get in your way. For example, imagine an
application where you have a class called TigerCage and you now want to create a Tiger class. If you
want to use VS2010’s new class generation features and you start typing Tiger, then Visual Studio’s
IntelliSense will jump in and smugly change your code to TigerCage.

To resolve this issue, IntelliSense now operates in two modes: default and consume-first.
Consume-first mode prevents IntelliSense from automatically completing a type or member that has
not yet been defined. To switch to consume-first mode, press Ctrl+Alt+Space. You can press
Ctrl+Alt+Space again to switch back to default mode.

■NOTE IntelliSense is now programmed to switch automatically to consume-first mode in common cases where
it is known to be problematic.

Breakpoints
VS2010 allows you to export/import and label breakpoints. You can use this feature to share a
collection of breakpoints with a colleague or quickly return to a previous debugging setup. Note that
the exported file holds the breakpoint location by line number, so if you modify your code and import
breakpoints, they will no longer be positioned correctly.

Individual breakpoints can be exported by right-clicking on them and then selecting the Export
option. Or you can export all breakpoints (or those matching a specific search criteria) by opening the

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

20

Breakpoints window (Debug ➤ Windows ➤ Breakpoints) and selecting the “Export all breakpoints”
option. Breakpoints can be imported in the Breakpoints window.

VS2010 allows you to apply a label to a breakpoint, as shown in Figure 2-12. This may be useful to
associate it with a particular issue or with grouping in the Breakpoints window. To label a breakpoint,
right-click one and select the “Edit labels” option. VS2010 will then give you the option of entering a
new label for the breakpoint or reusing an existing one.

Figure 2-12. Labelling a breakpoint

Toolbox
If you start typing a letter, the toolbox will jump to items containing the letter typed. You can also tab
through to the next item that matches.

Code Snippets
Previous versions of Visual Studio contained a feature called snippets, which allowed you to save
blocks of code for later insertion, preventing you from having to retype (or remember) them. VS2010
contains a number of new snippets (in particular for ASP.NET) and allows you to easily create your
own. Although you can create your own snippets in VS2008, it isn’t an easy process without the use of
third-party applications (e.g., Snippet Editor; http://msmvps.com/blogs/bill/archive/2007/
11/06/snippet-editor-2008-release.aspx).

This changes, however, in VS2010 and is now very easy. There are two types of snippet:

• Expansion (the snippet is inserted at the cursor)

• SurroundsWith (wraps around existing code)

Let’s take a look at this now and create a code file header snippet:

1. Add a new XML file to your project called verHeader.snippet (snippets always have the
extension .snippet).

2. Right-click the editor window and select Insert Snippet ➤ Snippet. VS2010 will then
create a basic XML snippet template.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

21

3. In this example we will create an expansion snippet, so we need to remove the tag that
reads as follows:

<snippetType>SurroundsWith</snippetType>

4. Modify the Title tag to read “Code File Header.”

5. Modify the Author tag to your name.

6. Modify the Shortcut tag (this is the trigger word that activates the snippet) to “codehead.”

7. Enter a description for the snippet, such as “Adds a header to a code file.”

8. Snippets can be created for different languages (such as VB and XML), but in this example
we are creating a C# snippet. Change the Language attribute of the Code tag so it reads as
follows:

<Code Language="CSharp">

9. We now need to alter the Literal section. Literals allow you to define editable values that
are inserted into your snippet. We want the user to enter his or her own name in the
author section, so change the ID value to Author and enter your name as the Default tag.

10. The Code section contains what will be added when the snippet is inserted. Modify it to
look like the following:

<Code Language="CSharp">
 <![CDATA[

 Author: $Author$
 Date:
 Version:
 Purpose:

]]>
</Code>

Your finished snippet should end up looking like the following:

<CodeSnippet Format="1.0.0"
 xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
 <Header>
 <Title>Code File Header</Title>
 <Author>Alex Mackey</Author>
 <Shortcut>codehead</Shortcut>
 <Description>Adds a header to a code file</Description>
 <SnippetTypes>
 <SnippetType>Expansion</SnippetType>
 </SnippetTypes>
 </Header>

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

22

 <Snippet>
 <Declarations>
 <Literal>
 <ID>Author</ID>
 <Default>Alex Mackey</Default>
 </Literal>
 </Declarations>
 <Code Language="CSharp">
 <![CDATA[

 Author: $Author$
 Date:
 Version:
 Purpose:

]]>
 </Code>
 </Snippet>
</CodeSnippet>

Loading the Snippet into Visual Studio
Before we can use our snippet, we need to load it into Visual Studio. Because snippets are pretty useful,
you will probably want to create more than one. Follow these steps to create a new directory
somewhere on your computer called MySnippets.

1. Copy the verHeader.snippet file in your solution to the snippets directory you just created.

2. On the main menu, go to Tools ➤ Code Snippets Manager, and you should see a screen
similar to Figure 2-13.

3. Select Import.

4. Select the snippet you saved earlier, and click OK. Visual Studio will then confirm that you
want to place the snippet in the My Code Snippets directory.

That’s it; your snippet is ready to use. You can now use this snippet by typing codehead.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

23

Figure 2-13. Code Snippets Manager

■TIP You can avoid the previous installation steps and have Visual Studio automatically pick up the snippet by
saving it to VS2010’s Code Snippets directory. Its default location is C:\Users\<Username>\Documents\
Visual Studio 10\Code Snippets\. You will not even have to restart VS.

Using Snippets
There are a number of ways to add snippets to your code. No doubt the quickest way is to use a trigger
word (such as textbox in an ASP.NET application). However, sometimes you may not know the trigger
word to use. In that case you can pick the word from the Snippet dialog.

To open the Snippet dialog, right-click the editor and select Insert Snippet. You can then choose
from either the ASP.NET or HTML snippets. You can also press Ctrl+K and then Ctrl+X to bring up the
Insert Snippet enhancement, which allows you to navigate through the snippets using the keyboard.

Creating Custom Start Pages
VS2010 allows you to customize the start page that is displayed when the IDE first loads. You could use
this feature to display items such as current bugs, last night’s build status, and so on. On my Windows 7
machine, this directory is held at the following path: C:\Users\alex\Documents\Visual Studio 10\
StartPages.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

24

1. Open the project StartPage.csproj. Note how StartPage.xaml is a standard XAML page with
some Visual Studio–specific controls to display items such as recently opened projects.

2. Perform a simple modification, such as altering some of the text content.

3. Save the file with a new file name, such as CustomStartPage.xaml, in the same directory.

Before you can use your new start page, you have to select it in the Visual Studio options. Go to
Tools ➤ Options, and then select the Startup node. Select the new custom start page from the Custom
Start Page drop-down menu.

Close Visual Studio and reopen it. Your new start page should now appear the next time Visual
Studio is loaded.

Text Template Transformation Toolkit Files
A Text Template Transformation Toolkit (T4) template is a code-generation language that has been
around since VS2005. You should be aware of T4 templates, as they are used in areas such as Entity
Framework and ASP.NET MVC, and can be useful for your own development. To see T4 templates in
action, create a file with the extension .tt, add some text content, save the file, and note how Visual
Studio will generate a code file from the template. You can apply complex logic using T4 templating
language to change the output that is generated depending on various conditions.

T4 templates in VS2010 are compiled when they are saved (preprocessed). This means that they
are another type that can be instantiated.

Scott Hanselman has some great and information on this area, so please refer to the following article:
www.hanselman.com/blog/T4TextTemplateTransformationToolkitCodeGenerationBestKept➥
VisualStudioSecret.aspx.

T4 templates don’t have IntelliSense, so your best bet is to download the Tangible T4 plug-in:
http://visualstudiogallery.msdn.microsoft.com/en-us/60297607-5fd4-4da4-97e1-3715e90c1a23.

For more information, see http://code.msdn.microsoft.com/DslTools/Wiki/
View.aspx?title=What%27s%20new and http://karlshifflett.wordpress.com/2009/10/30/
t4-preprocessed-text-templates-in-visual-studio-2010/.

VS2010 Premium and Ultimate
I will only be covering VS2010 Professional edition in this book, but I want to make you aware of a
couple of fantastic features available in more expensive versions.

Generate Sequence Diagram
The Generate Sequence Diagram feature creates a diagram of a methods calls. To use this feature,
simply right-click a function and select Generate Sequence Diagram.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

25

Historical Debugging (Team System Edition Only)
Visual Studio Team System edition contains a very cool feature called Historical Debugging. Ian Who,
a developer on the profiler team, says the following about it:

The Historical Debugger plays a role similar to that of a black box in a plane. We
keep track of important points in your programs execution and allow you to play
back what happened at those points at a later time.

http://blogs.msdn.com/ianhu/archive/2009/05/13/historical-debugging-in-
visual-studio-team-system-2010.aspx

Static Analysis of Code Contracts
Code contracts (which I cover in Chapter 3) allow you to express constraints within code that can be
analyzed at compile time to check if your code violates them. Although code contracts are present in all
versions of Visual Studio, only Premium and Ultimate provide static analysis.

Customization of IDE
VS2010 allows you to create much more advanced customizations than changing the start page or
creating snippets. VS2010 has been written from the ground up for extensibility and customization.

• Screens have been rewritten in WPF and managed code.

• The IDE API has been refactored for easier use.

• The IDE API is fully documented.

• New immutable text snapshots make it easier to obtain accurate snapshots of the
text editor.

Many areas of the IDE can be overridden by creating a MEF component (I will talk about MEF
shortly).

So, what can you customize? VS2010 allows you to customize the following areas, among other
things:

• Margins and scrollbars

• Tags

• Adornments (items painted on the editor surface)

• Mouse processors

• Drop handlers

• Options

• IntelliSense and the debugger

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

26

Before you can perform any of these customizations, however, you will first need to download and
install the Visual Studio SDK (http://www.microsoft.com/downloads/details.aspx?FamilyID=➥
cb82d35c-1632-4370-acfb-83c01c2ece24&displaylang=en).

Extensions in VS2010 make heavy use of a new technology called MEF. Before you create any
customizations, however, you need to understand a bit about MEF.

MEF
Managed Extensibility Framework (MEF) is a new framework for creating customizable applications
that can be used by any .NET-compatible language. Glenn Block (PM for the new MEF in .NET 4.0) says
the following:

Quite simply, MEF makes building extensible apps, libraries, and frameworks easy. It
shares some common characteristics of other frameworks out there, but it also addresses
a whole new set of problems that arise in building extremely large scalable extensible
systems.

http://blogs.msdn.com/gblock/archive/2008/09/26/what-is-the-managed-
extensibility-framework.aspx

Let’s say you have created a Tetris application and want to allow users to extend it by creating
their own shapes of bricks. MEF enables you to do this by defining a brick interface and then
dynamically loading and resolving the created extensions.

When creating a MEF application, take the following steps:

1. Define areas of the application that can be extended and decorate them with the [Import]
attribute.

2. Determine a contract/interface that defines what your extensions must do/be (this could
be as simple as stating they must be of type String).

3. Create an extension that meets these requirements and decorate it with the [Export]
attribute.

4. Modify your application to load these extensions.

Why Use MEF?
Using MEF has the following advantages:

• Microsoft hopes that MEF will become the preferred standard method of creating
extensions. By utilizing a standard plug-in model, your extensions could be used in
many applications.

• MEF provides a number of flexible ways to load your extensions.

• Extensions can contain metadata to provide further information about their
capabilities. For example, you may only want to load extensions that can
communicate securely.

• MEF is open source and works on VS2008 (www.codeplex.com/MEF).

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

27

BUT COULDN’T I ACCOMPLISH THIS WITH REFLECTION/DEPENDENCY

INJECTION/IOC CONTAINERS/VOODOO?

There is overlap in the functionality provided by the technologies mentioned in this section and MEF. MEF and
Inversion of Control (IOC) containers do have some overlap, and many people would classify MEF as an IOC
container. MEF’s primary purpose is, however, creating extensible applications through discovery and
composition, whereas IOC containers are generally more focused on providing an abstraction for testing
purposes. It’s not a discussion I want to get into, but Oren Eini does, so please refer to http://ayende.com/
Blog/archive/2008/09/25/the-managed-extensibility-framework.aspx.

Hello MEF
In this sample application, you will create two extensions that print out a message. You will then load
them both into an IEnumerable<string> variable called Message before iterating through them and
printing out the messages.

1. Create a new console project and call it Chapter2.HelloMEF.

2. Add a reference to System.ComponentModel.Composition.

3. Add a new class called MEFTest.

4. Add the following using statements to the class:

using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Reflection;

5. Modify the MEFTest class code to the following (note how we decorate the Message property
with the [Import] attribute):

public class MEFTest
{
 [Import]
 public string Message { get; set; }

 public void HelloMEF()
 {
 CompositionContainer container = new CompositionContainer();
 CompositionBatch batch = new CompositionBatch();
 batch.AddPart(new Extension1());
 batch.AddPart(this);
 container.Compose(batch);

 Console.WriteLine(Message);

 Console.ReadKey();
 }
}

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

28

6. We now need to create the extensions to load, so create a new class called Extension1, and
add the following using statement:

using System.ComponentModel.Composition;

7. Amend Extension1.cs to the following:

public class Extension1
{
 [Export]
 public string Message
 {
 get
 {
 return "I am extension 1";
 }
 }
}

8. Finally, open Program.cs and add the following code:

static void Main(string[] args)
{
 MEFTest MEFTest = new MEFTest();
 MEFTest.HelloMEF();
}

9. Press F5 to run the application, and you should see that both extensions are loaded and the
Message is property printed out, as Figure 2-14 shows.

Figure 2-14. Output from HelloMEF application

Congratulations, you have created your first MEF application.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

29

How Did This Example Work?
You started off by telling MEF that your Message property can be extended by marking it with the
[Import] attribute. The [Import] attribute means “I can be extended” to MEF:

[Import]
public string Message { get; set; }

You then created an extension class and added the [Export] attribute. [Export] tells MEF “I am
an extension”:

class extension1
{
 [Export]
 public string Message
 {
 get
 {
 return "I am extension 1";
 }
 }
}

You then created a container (containers resolve MEF extensions when they are requested) to hold
the extensions and added your extension classes to it using a CompositionBatch:

CompositionContainer container = new CompositionContainer();
CompositionBatch batch = new CompositionBatch();
batch.AddPart(new extension1());
batch.AddPart(this);

The Compose() method was then called, which caused MEF to load our extensions into the Message
property:

container.Compose(batch);

MEF then loaded extensions into the Messages property decorated with the [Export] attribute that

matched the contract. Finally, you printed out the message to the screen. In this example, you only
loaded extensions contained within the project itself, which isn’t too useful. Luckily MEF allows you to
load extensions declared outside the project.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

30

MEF Catalogs
MEF uses a concept called catalogs to contain extensions. Catalogs come in three different flavors:

• Assembly: Extensions are contained in a .NET assembly.

• Directory: Extensions are in a physical directory.

• Aggregate: This is a catalog type that contains both assembly and directory
extensions.

In this example you will use a directory catalog to load an extension defined outside the main
project. Directory catalogs scan the target directory for compatible extensions when first created. You
can rescan the directory by calling the Refresh() method.

1. It is a good idea to declare MEF interfaces in a separate project to avoid circular reference
issues and facilitate reuse, so open the existing Chapter2.HelloMEF project and add a new
class library project called Chapter2.MEFInterfaces.

2. Inside this project, create an interface called ILogger.

3. Replace the existing code in ILogger.cs with the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Chapter2.MEFInterfaces
{
 public interface ILogger
 {
 string WriteToLog(string Message);
 }

}

4. In the Chapter2.HelloMEF project, add a reference to the Chapter2.MEFInterfaces project.

5. In the Chapter2.HelloMEF project, create a class called MoreUsefulMEF and enter the
following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Reflection;
using System.IO;
namespace Chapter2.HelloMEF
{

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

31

 class MoreUsefulMEF
 {
 [Import]
 private Chapter2.MEFInterfaces.ILogger Logger;

 public void TestLoggers()
 {
 CompositionContainer container;
 DirectoryCatalog directoryCatalog =
 new DirectoryCatalog(
 (Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location))
);

 container = new CompositionContainer(directoryCatalog);
 CompositionBatch batch = new CompositionBatch();
 batch.AddPart(this);
 container.Compose(batch);
 Console.Write(Logger.WriteToLog("test"));
 Console.ReadKey();
 }
 }
}

6. Open Program.cs and amend the Main() method to the following:

MoreUsefulMEF MoreUsefulMEF = new MoreUsefulMEF();
MoreUsefulMEF.TestLoggers();

7. You will now create a logging extension, so add a new class library project to the solution
called Chapter2.EmailLogger.

8. Add a reference to the Chapter2.MEFInterfaces project.

9. Add a reference to System.ComponentModel.Composition.

10. Add a new class called EmailLogger.

11. Amend the code to the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ComponentModel.Composition;

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

32

namespace Chapter2.EmailLogger
{
 [Export(typeof(Chapter2.MEFInterfaces.ILogger))]
 public class EmailLogger : MEFInterfaces.ILogger
 {
 public string WriteToLog(string Message)
 {
 //Simulate email logging
 return "Email Logger Called";
 }
 }

}

12. When you use a directory catalog to load MEF components, you can either compile the
Chapter2.EmailLogger project and copy the built assembly to Chapter2.HelloMEF’s bin folder,
or add a project reference in Chapter2.HelloMEF to the Chapter2.EmailLogger project.

13. Once you have done this, press F5 to run the HelloMEF project. The Email Logger extension
should then be loaded and “Email Logger Called” outputted to the screen.

Metadata
An important feature of MEF is that you can provide additional information about an extension's
capabilities with metadata. MEF can then utilize this information to determine the most appropriate
extension to load and query its capabilities. For example, in the previous logging example, you might
specify whether the logging method is secure, and then in high-security environments only load
extensions that communicated securely. Metadata can be defined at a class or method level.

To add metadata to a class, use the [PartMetaData] attribute:

[PartMetadata("secure", "false")]
[Export(typeof(Chapter2.MEFInterfaces.ILogger))]
public class EmailLogger : MEFInterfaces.ILogger
{..}

You can add metadata to an individual method with the [ExportMetadata] attribute:

[ExportMetadata("timeout", "5000")]
public string WriteToLog(string Message)
{..}

Metadata can then be retrieved using a part’s Metadata property. The following code
demonstrates retrieving metadata from a directory catalog:

CompositionContainer container;
DirectoryCatalog directoryCatalog =
 New DirectoryCatalog((Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location)));

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

33

foreach (var Part in directoryCatalog.Parts)
{
 Console.WriteLine(Part.Metadata["secure"]);
}

Note that querying a method’s metadata is slightly different and that you must instead use the
Part.ExportDefinitions property.

What’s This All Got to Do with Visual Studio Extensibility?
Visual Studio utilizes MEF in an almost identical way to the previous examples when it loads Visual
Studio extensions. When Visual Studio first loads, it examines the extensions directory and loads
available extensions. Let’s now look into how these extensions are created.

Visual Studio Extensibility
After you install the Visual Studio customization SDK, a number of new extensibility projects are
available for you to create. These projects are templates that demonstrate how to perform various Hello
World-type customizations that you can then build on. Figure 2-15 shows these new project types.

Figure 2-15. New extensibility projects are available after installing customization SDK.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

34

The following extensibility projects are available:

• VSIX Project: This is an empty extension that contains just the minimum
references needed and a manifest file that describes the extension.

• Editor Margin: This creates a green box down the bottom of code editor frame.

• Editor Classifier: This formats certain types of text a blue color.

• Editor Text Adornment: This is a template that highlights all instances of the
letter a.

• Editor Viewport Adornment: This template creates a purple box in the top-right
corner of IDE and a Windows Forms toolbox control.

Let’s take a look at the Editor Margin extensibility project.

Editor Margin
Open up Visual Studio and create a new Editor Margin project called Chapter2.EditorMargin.

1. Open MarginFactory.cs and note how it utilizes the MEF [Export] attribute (the other
attributes contain various bits of metadata utilized by the IDE):

[Export(typeof(IWpfTextViewMarginProvider))]
[Name("GreenBar")]
//Ensure that the margin occurs below the horizontal scrollbar
 [Order(After = PredefinedMarginNames.HorizontalScrollBar)]
//Set the container to the bottom of the editor window
 [MarginContainer(MarginContainerAttribute.Bottom)]
//Do this for all content types
 [ContentType("text")]
 [TextViewRole(PredefinedTextViewRoles.Interactive)]
internal sealed class MarginFactory : IWpfTextViewMarginProvider
{
 public IWpfTextViewMargin CreateMargin(IWpfTextViewHost textViewHost,
 IWpfTextViewMargin containerMargin)
 {
 return new GreenMargin(textViewHost.TextView);
 }
}

2. Let’s do something a bit crazy and tell Visual Studio to rotate the text editor 245 degrees. Open
MarginFactory.cs and add the following using statement:

using System.Windows.Media;

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

35

3. Inside the CreateMargin constructor, above the line that reads return new
GreenMargin(textViewHost.TextView);, add the following code:

textViewHost.TextView.VisualElement.LayoutTransform = new RotateTransform(245);

4. Build and run this project, and the IDE will launch a special test instance containing your
extension (this may take a bit of time, so be patient).

5. Once the test instance has loaded, create a new console project. Voila! As you can see, the text
editor is rotated and a green “Hello world!” box is created at the base of the editor (Figure 2-16).

Figure 2-16. This may not be the most useful of extensions, but it demonstrates the control you
now have.

Note how the text editor still works just as you would expect with syntax checking, IntelliSense, and
so on (although the scrollbars behave a little strangely).

Distributing Extensions
Now that you have created a useful extension for rotating a text editor, what if you want to share it with
your friends/victims? When extensions are compiled, they are built as .vsix files that you can install
by double-clicking them or copying them to the extensions directory at C:\Program Files\Microsoft
Visual Studio 10.0\Common7\IDE\Extensions.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

36

Extension Gallery
The Extension Gallery (see Figure 2-17) allows you to download a number of additions from new
project templates to make IDE customizations. A number of extensions for VS2010 are available
already, some with source code. To open the Extension Gallery, select Extension Manager on the Tools
menu and then select the Online Gallery option.

Figure 2-17. Extension Gallery

WHAT ABOUT EXISTING EXTENSIONS CREATED WITH THE PREVIOUS API?

Microsoft says that more than 80 percent of existing IDE customization will be supported through the use of
shims (code that maps the old API methods to the new). It is important to note, however, that Microsoft plans
to remove these shims in the next version of Visual Studio after VS2010.

CHAPTER 2 ■ THE VISUAL STUDIO IDE AND MEF

37

Visual Studio Shell
It is worth noting that starting with VS2008, Microsoft opened up the ability to make use of the IDE for
your own applications. This is called the Visual Studio Shell. A popular project using the Visual Studio
Shell is the add-on studio for the online game World of Warcraft (http://addonstudio.codeplex.com).

For more information on the Visual Studio Shell, please refer to http://msdn.microsoft.com/
en-us/vsx2008/products/bb933751.aspx.

Dotfuscator Changes
Dotfuscator is a post-build .NET hardening and instrumentation platform for protecting, measuring,
and managing .NET applications. Traditionally, a reduced-functionality version of Dotfuscator has
been bundled with Visual Studio, and VS2010 is no exception. However, the new version of Dotfuscator
Software Services CE contains runtime intelligence functionality and some great added features,
including the following:

• Tamper defense, which detects application modifications

• Application expiration, such after a 30-day trial period

• Session and feature usage tracking, which allows you to track what the user was
actually doing within your application

• The ability to send tamper and tracking usage to an endpoint of your choice for
later analysis

To access Dotfuscator functionality within Visual Studio on the main menu, go to Tools and select
Dotfuscator Software Services. For more information on Dotfuscator, please refer to www.preemptive.com/
dotfuscator.html, and for more information on runtime intelligence, see http://en.wikipedia.org/
wiki/Runtime_Intelligence.

Summary
Many developers were concerned at the prospect of Visual Studio’s IDE being built using WPF—
specifically that it would be slow and clunky. Microsoft has without a doubt demonstrated the flexibility
and power of WPF and proved these doubters wrong! VS2010 has some great productivity
enhancements in this release, and with the improved multitargeting support, even if you are not ready
to move your code base to .NET 4.0, you can make use of many of these features today.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Malloy'] [Based on 'Malloy'] [Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

