
9
OUTER JOINs

“The only difference between a problem and a
solution is people understand the solution.”

—Charles Franklin Kettering
Inventor, 1876–1958

Topics Covered in This Chapter

What Is an OUTER JOIN?

The LEFT/RIGHT OUTER JOIN

The FULL OUTER JOIN

Uses for OUTER JOINs

Sample Statements

Summary

Problems for You to Solve

In the previous chapter, we covered all the “ins” of JOINs—linking two or
more tables or result sets using INNER JOIN to find all the rows that match.
Now it’s time to talk about the “outs”—linking tables and finding out not only
the rows that match but also the rows that don’t match.

What Is an OUTER JOIN?

As we explained in the previous chapter, the SQL Standard defines several
types of JOIN operations to link two or more tables or result sets. An OUTER
JOIN asks your database system to return not only the rows that match on the
criteria you specify but also the unmatched rows from either one or both of
the two sets you want to link.

293

6696ch09.qxd_lb 8/30/07 2:02 PM Page 293

Let’s suppose, for example, that you want to fetch information from the
School Scheduling database about students and the classes for which they’re
registered. As you learned in the previous chapter, an INNER JOIN returns
only students who have registered for a class and classes for which a student
has registered. It won’t return any students who have been accepted at the
school but haven’t signed up for any classes yet, nor will it return any classes
that are on the schedule but for which no student has yet shown an interest.

What if you want to list all students and the classes for which they are regis-
tered, if any? Conversely, suppose you want a list of all the classes and the stu-
dents who have registered for those classes, if any. To solve this sort of
problem, you need to ask for an OUTER JOIN.

Figure 9–1 uses a set diagram to show one possible relationship between stu-
dents and classes. As you can see, a few students haven’t registered for a class
yet, and a few classes do not yet have any students signed up to take the class.

294 Chapter 9

Figure 9–1 A possible relationship between students and classes

Students

Classes

Students and the
Classes for Which

They Are Registered

If you ask for all students and the classes for which they are registered, you’ll
get a result set resembling Figure 9–2.

You might ask,“What will I see for the students who haven’t registered for
any classes?” If you remember the concept of a Null or “nothing” value dis-
cussed in Chapter 5, Getting More Than Simple Columns, you know what
you’ll see: When you ask for all students joined with any classes, your data-
base system will return a Null value in all columns from the Classes table

6696ch09.qxd_lb 8/30/07 2:02 PM Page 294

when it finds a student who is not yet registered for any classes. If you think
about the concept of a difference between two sets (discussed in Chapter 7,
Thinking in Sets), the rows with a Null value in the columns from the Classes
table represent the difference between the set of all students and the set of
students who have registered for a class.

Likewise, if you ask for all classes and any students who registered for classes,
the rows with Null values in the columns from the Students table represent
the difference between the set of all classes and the set of classes for which
students have registered. As we promised, using an OUTER JOIN with a test
for Null values is an alternate way to discover the difference between two
sets. Unlike a true EXCEPT operation that matches on entire rows from the
two sets, you can specify the match in a JOIN operation on just a few specific
columns (usually the primary key and the foreign key).

The LEFT/RIGHT OUTER JOIN

You’ll generally use the OUTER JOIN form that asks for all the rows from one
table or result set and any matching rows from a second table or result set. To
do this, you specify either a LEFT OUTER JOIN or a RIGHT OUTER JOIN.

What’s the difference between LEFT and RIGHT? Remember from the previ-
ous chapter that to specify an INNER JOIN on two tables, you name the first
table, include the JOIN keyword, and then name the second table. When you
begin building queries using OUTER JOIN, the SQL Standard considers the

OUTER JOINs 295

Figure 9–2 All students and the classes for which they are registered

Students

Students and the
Classes for Which

They Are Registered
Students Not

Yet Registered

6696ch09.qxd_lb 8/30/07 2:02 PM Page 295

first table you name as the one on the “left,” and the second table as the one
on the “right.” So, if you want all the rows from the first table and any match-
ing rows from the second table, you’ll use a LEFT OUTER JOIN. Conversely, if
you want all the rows from the second table and any matching rows from the
first table, you’ll specify a RIGHT OUTER JOIN.

Syntax

Let’s examine the syntax needed to build either a LEFT or RIGHT OUTER
JOIN.

Using Tables
We’ll start simply with defining an OUTER JOIN using tables. Figure 9–3
shows the syntax diagram for creating a query with an OUTER JOIN on two
tables.

296 Chapter 9

Figure 9–3 Defining an OUTER JOIN on two tables

SELECT Value Expression

JOIN

FROM

DISTINCT

table_name

table_name

ON Search Condition

USING
,

column_name

AS
correlation_name

LEFT
RIGHT

,

AS
correlation_name

OUTER

Just like INNER JOIN (covered in Chapter 8), all the action happens in the
FROM clause. (We left out the WHERE and ORDER BY clauses for now to sim-
plify things.) Instead of specifying a single table name, you specify two table
names and link them with the JOIN keyword. If you do not specify the type
of JOIN you want,your database system assumes you want an INNER JOIN. In

6696ch09.qxd_lb 8/30/07 2:02 PM Page 296

this case,because you want an OUTER JOIN,you must explicitly state that you
want either a LEFT JOIN or a RIGHT JOIN. The OUTER keyword is optional.

❖ Note For those of you following along with the complete syntax dia-
grams in Appendix A, SQL Standard Diagrams, note that we’ve pulled
together the applicable parts (from Select Statement, Table Reference, and
Joined Table) into simpler diagrams that explain the specific syntax we’re
discussing.

The critical part of any JOIN is the ON or USING clause that follows the sec-
ond table and tells your database system how to perform the JOIN. To solve
the JOIN,your database system logically combines every row in the first table
with every row in the second table. (This combination of all rows from one
table with all rows from a second table is called a Cartesian product.) It then
applies the criteria in the ON or USING clause to find the matching rows to
be returned. Because you asked for an OUTER JOIN, your database system
also returns the unmatched rows from either the “left”or “right” table.

You learned about using a search condition to form a WHERE clause in Chap-
ter 6, Filtering Your Data. You can use a search condition in the ON clause
within a JOIN to specify a logical test that must be true in order to return any
two linked rows. It only makes sense to write a search condition that com-
pares at least one column from the first table with at least one column from
the second table. Although you can write a very complex search condition,
you can usually specify a simple equals comparison test on the primary key
columns from one table with the foreign key columns from the other table.

To keep things simple, let’s start with the same recipe classes and recipes
example we used in the last chapter. Remember that in a well-designed data-
base, you should break out complex classification names into a second table
and then link the names back to the primary subject table via a simple key
value. In the Recipes sample database, recipe classes appear in a table sepa-
rate from recipes. Figure 9–4 shows the relationship between the
Recipe_Classes and Recipes tables.

When you originally set up the kinds of recipes to save in your database, you
might have started by entering all the recipe classes that came to mind. Now
that you’ve entered a number of recipes, you might be interested in finding

OUTER JOINs 297

6696ch09.qxd_lb 8/30/07 2:02 PM Page 297

out which classes don’t have any recipes entered yet. You might also be inter-
ested in listing all the recipe classes along with the names of recipes entered
so far for each class. You can solve either problem with an OUTER JOIN.

❖ Note Throughout this chapter, we use the “Request/Translation/Clean
Up/SQL” technique introduced in Chapter 4, Creating a Simple Query.

“Show me all the recipe types and any matching recipes in my database.”

Translation Select recipe class description and recipe title from the recipe
classes table left outer joined with the recipes table on recipe class
ID in the recipe classes table matching recipe class ID in the
recipes table

Clean Up Select recipe class description and recipe title
from the recipe classes table
left outer joined with the recipes table
on recipe_ classes.recipe class ID in the recipe classes table
matching = recipes.recipe class ID in the recipes table

SQL SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle

FROM Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID

When using multiple tables in your FROM clause, remember to qualify fully
each column name with the table name wherever you use it so that it’s
absolutely clear which column from which table you want. Note that we had

to qualify the name of RecipeClassID in the ON clause because there are two
columns named RecipeClassID—one in the Recipes table and one in the
Recipe_Classes table.

298 Chapter 9

Figure 9–4 Recipe classes are in a separate table from recipes.

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

6696ch09.qxd_lb 8/30/07 2:02 PM Page 298

❖ Note Although most commercial implementations of SQL support
OUTER JOIN, some do not. If your database does not support OUTER JOIN,
you can still solve the problem by listing all the tables you need in the
FROM clause, then moving your search condition from the ON clause to the
WHERE clause. You must consult your database documentation to learn
the specific nonstandard syntax that your database requires to define the
OUTER JOIN. For example, earlier versions of Microsoft SQL Server support
this syntax. (Notice the asterisk in the WHERE clause.)

SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle

FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID *=

Recipes.RecipeClassID

If you’re using Oracle, the optional syntax is as follows. (Notice the plus sign
in the WHERE clause.)

SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle

FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID(+)

Quite frankly, these strange syntaxes were invented by database vendors that
wanted to provide this feature long before a clearer syntax was defined in
the SQL Standard. Thankfully, the SQL Standard syntax allows you to fully
define the source for the final result set entirely within the FROM clause.
Think of the FROM clause as fully defining a linked result set from which
the database system obtains your answer. In the SQL Standard, you use the
WHERE clause only to filter rows out of the result set defined by the FROM
clause. Also, because the specific syntax for defining an OUTER JOIN via the
WHERE clause varies by product, you might have to learn several different
syntaxes if you work with multiple nonstandard products.

If you execute our example query in the Recipes sample database,you should
see 16 rows returned. Because we didn’t enter any soup recipes in the data-
base, you’ll get a Null value for RecipeTitle in the row where RecipeClass-
Description is ‘Soup’. To find only this one row, use this approach.

OUTER JOINs 299

6696ch09.qxd_lb 8/30/07 2:02 PM Page 299

“List the recipe classes that do not yet have any recipes.”

Translation Select recipe class description from the recipe classes table
left outer joined with the recipes table on recipe class ID where
recipe ID is empty

Clean Up Select recipe class description
from the recipe classes table
left outer joined with the recipes table
on recipe_classes.recipe class ID in the recipes table matches
= recipes.recipe class ID in the recipes table
where recipe ID is empty NULL

SQL SELECT Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID
WHERE Recipes.RecipeID IS NULL

If you think about it, we’ve just done a difference or EXCEPT operation (see
Chapter 7) using a JOIN. It’s somewhat like saying, “Show me all the recipe

classes except the ones that already appear in the recipes table.” The set diagram
in Figure 9–5 should help you visualize what’s going on.

300 Chapter 9

Figure 9–5 A possible relationship between recipe classes and recipes

Recipe
Classes

Recipes

In Figure 9–5, all recipes have a recipe class, but some recipe classes exist for
which no recipe has yet been defined. When we add the IS NULL test, we’re
asking for all the rows in the lighter outer circle that don’t have any matches
in the set of recipes represented by the darker inner circle.

Notice that the diagram for an OUTER JOIN on tables in Figure 9–3 also has
the optional USING clause. If the matching columns in the two tables have
the same name and you want to join only on equal values, you can use the
USING clause and list the column names. Let’s do the previous problem again
with USING.

6696ch09.qxd_lb 8/30/07 2:02 PM Page 300

“Display the recipe classes that do not yet have any recipes.”

Translation Select recipe class description from the recipe classes table
left outer joined with the recipes table using recipe class ID where
recipe ID is empty

Clean Up Select recipe class description
from the recipe classes table
left outer joined with the recipes table using recipe class ID
where recipe ID is empty NULL

SQL SELECT Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
LEFT OUTER JOIN Recipes
USING (RecipeClassID)
WHERE Recipes.RecipeID IS NULL

The USING syntax is a lot simpler, isn’t it? There’s one small catch: Any col-
umn in the USING clause loses its table identity because the SQL Standard dic-
tates that the database system must “coalesce” the two columns into a single
column. In this example, there’s only one RecipeClassID column as a result, so
you can’t reference Recipes.RecipeClassID or Recipe_Classes.RecipeClassID
in the SELECT clause or any other clause.

Be aware that some database systems do not yet support USING. If you find
that you can’t use USING with your database, you can always get the same
result with an ON clause and an equals comparison.

❖ Note The SQL Standard also defines a type of JOIN operation called a
NATURAL JOIN. A NATURAL JOIN links the two specified tables by match-
ing all the columns with the same name. If the only common columns are
the linking columns and your database supports NATURAL JOIN, you can
solve the example problem like this:

SELECT Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
NATURAL LEFT OUTER JOIN Recipes
WHERE Recipes.RecipeID IS NULL

Do not specify an ON or USING clause if you use the NATURAL keyword.

Embedding a SELECT Statement
As you recall from Chapter 8,most SQL implementations let you substitute an
entire SELECT statement for any table name in your FROM clause. Of course,
you must then assign a correlation name (see the section on assigning alias

OUTER JOINs 301

6696ch09.qxd_lb 8/30/07 2:02 PM Page 301

names in Chapter 8) so that the result of evaluating your embedded query has
a name. Figure 9–6 shows how to assemble an OUTER JOIN clause using
embedded SELECT statements.

302 Chapter 9

Figure 9–6 An OUTER JOIN using SELECT statements

SELECT Value Expression

JOIN

FROM

DISTINCT

ON Search Condition

USING
,

column_name

AS
correlation_nameSELECT Statement

AS
correlation_nameSELECT Statement

LEFT
RIGHT

,

OUTER

Note that a SELECT statement can include all query clauses except an ORDER
BY clause. Also, you can mix and match SELECT statements with table names
on either side of the OUTER JOIN keywords.

Let’s look at the Recipes and Recipe_Classes tables again. For this example,
let’s also assume that you are interested only in classes Salads,Soups,and Main
courses. Here’s the query with the Recipe_Classes table filtered in a SELECT
statement that participates in a LEFT OUTER JOIN with the Recipes table.

SQL SELECT RCFiltered.ClassName, R.RecipeTitle
FROM

(SELECT RecipeClassID,
RecipeClassDescription AS ClassName

FROM Recipe_Classes AS RC
WHERE RC.ClassName = 'Salads'

OR RC.ClassName = 'Soup'
OR RC.ClassName = 'Main Course')

AS RCFiltered
LEFT OUTER JOIN Recipes AS R
ON RCFiltered.RecipeClassID = R.RecipeClassID

6696ch09.qxd_lb 8/30/07 2:02 PM Page 302

You must be careful when using a SELECT statement in a FROM clause. First,
when you decide to substitute a SELECT statement for a table name,you must
be sure to include not only the columns you want to appear in the final result
but also any linking columns you need to perform the JOIN. That’s why you
see both RecipeClassID and RecipeClassDescription in the embedded state-
ment. Just for fun, we gave RecipeClassDescription an alias name of Class-
Name in the embedded statement. As a result, the SELECT clause asks for
ClassName rather than RecipeClassDescription. Note that the ON clause now
references the correlation name (RCFiltered) of the embedded SELECT state-
ment rather than the original name of the table or the correlation name we
assigned the table inside the embedded SELECT statement.

As the query is stated for the actual Recipes sample database,you see one row
with RecipeClassDescription of Soup with a Null value returned for Recipe-
Title because there are no soup recipes in the sample database. We could just
as easily have built a SELECT statement on the Recipes table on the right side
of the OUTER JOIN. For example, we could have asked for recipes that con-
tain the word “beef” in their titles, as in the following statement.

SQL SELECT RCFiltered.ClassName, R.RecipeTitle
FROM

(SELECT RecipeClassID,
RecipeClassDescription AS ClassName

FROM Recipe_Classes AS RC
WHERE RC.ClassName = 'Salads'

OR RC.ClassName = 'Soup'
OR RC.ClassName = 'Main Course')

AS RCFiltered
LEFT OUTER JOIN

(SELECT Recipes.RecipeClassID, Recipes.Recipe
Title

FROM Recipes
WHERE Recipes.RecipeTitle LIKE '%beef%')

AS R
ON RCFiltered.RecipeClassID = R.RecipeClassID

Keep in mind that the LEFT OUTER JOIN asks for all rows from the result set
or table on the left side of the JOIN, regardless of whether any matching rows
exist on the right side. The previous query not only returns a Soup row with
a Null RecipeTitle (because there are no soups in the database at all) but also
a Salad row with a Null.You might conclude that there are no salad recipes in
the database. Actually, there are salads in the database but no salads with
“beef” in the title of the recipe!

OUTER JOINs 303

6696ch09.qxd_lb 8/30/07 2:02 PM Page 303

❖ Note You might have noticed that you can enter a full search condition
as part of the ON clause in a JOIN. This is absolutely true, so it is perfectly
legal in the SQL Standard to solve the example problem as follows.

SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle

FROM Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID
AND

(Recipe_Classes.RecipeClassDescription = 'Salads'
OR Recipe_Classes.RecipeClassDescription = 'Soup'
OR Recipe_Classes.RecipeClassDescription =

'Main Course')
AND Recipes.RecipeTitle LIKE '%beef%'

Unfortunately, we have discovered that some major implementations of SQL
solve this problem incorrectly or do not accept this syntax at all! Therefore,
we recommend that you always enter in the search condition in the ON
clause only criteria that compare columns from the two tables or result sets.
If you want to filter the rows from the underlying tables, do so with a sepa-
rate search condition in a WHERE clause in an embedded SELECT statement.

Embedding JOINs within JOINs
Although you can solve many problems by linking just two tables,many times
you’ll need to link three, four, or more tables to get all the data to solve your
request. For example, you might want to fetch all the relevant information
about recipes—the type of recipe, the recipe name,and all the ingredients for
the recipe—in one query. Now that you understand what you can do with an
OUTER JOIN, you might also want to list all recipe classes—even those that
have no recipes defined yet—and all the details about recipes and their ingre-
dients. Figure 9–7 shows all the tables needed to answer this request.

Looks like you need data from five different tables! Just as in Chapter 8, you
can do this by constructing a more complex FROM clause, embedding JOIN
clauses within JOIN clauses. Here’s the trick: Everywhere you can specify a
table name,you can also specify an entire JOIN clause surrounded with paren-
theses. Figure 9–8 shows a simplified version of joining two tables. (We’ve left
off the correlation name clauses and chosen the ON clause to form a simple
INNER or OUTER JOIN of two tables.)

304 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 304

To add a third table to the mix, just place an open parenthesis before the first
table name,add a close parenthesis after the search condition, and then insert
another JOIN, a table name, the ON keyword, and another search condition.
Figure 9–9 (on page 306) shows how to do this.

If you think about it, the JOIN of two tables inside the parentheses forms a
logical table,or inner result set. This result set now takes the place of the first
simple table name in Figure 9–8. You can continue this process of enclosing
an entire JOIN clause in parentheses and then adding another JOIN keyword,
table name, ON keyword, and search condition until you have all the result
sets you need. Let’s make a request that needs data from all the tables shown
in Figure 9–7 and see how it turns out. (You might use this type of request for
a report that lists all recipe types with details about the recipes in each type.)

OUTER JOINs 305

Figure 9–7 The tables you need from the Recipes sample database to fetch all
the information about recipes

RECIPE_INGREDIENTS

RecipeID CPK
RecipeSeqNo CPK
IngredientID FK
MeasureAmountID FK
Amount

MEASUREMENTS

MeasureAmountID PK
MeasurementDescription

INGREDIENTS

IngredientID PK
IngredientName
IngredientClassID FK
MeasureAmountID FK

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

Figure 9–8 A simple JOIN of two tables

SELECT Value Expression

JOINFROM

DISTINCT

table_name table_name

ON Search Condition

INNER

,

OUTERRIGHT

LEFT

6696ch09.qxd_lb 8/30/07 2:02 PM Page 305

“I need all the recipe types, and then the matching recipe names, prepara-
tion instructions, ingredient names, ingredient step numbers, ingredient
quantities, and ingredient measurements from my recipes database,
sorted in recipe title and step number sequence.”

Translation Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe classes
table left outer joined with the recipes table on recipe class ID
in the recipe classes table matching recipe ID in the recipes table,
then joined with the recipe ingredients table on recipe ID
in the recipes table matching recipe ID in the recipe ingredients
table, then joined with the ingredients table on ingredient ID
in the ingredients table matching ingredient ID in the recipe
ingredients table, and then finally joined with the measurements
table on measurement amount ID in the measurements table
matching measurement amount ID in the recipe ingredients
table, order by recipe title and recipe sequence number

Clean Up Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description
from the recipe classes table
left outer joined with the recipes table

306 Chapter 9

Figure 9–9 A simple JOIN of three tables

SELECT Value Expression

JOIN

FROM

DISTINCT

table_name

table_name ON Search Condition

JOIN table_name ON Search Condition

,

INNER

OUTERRIGHT

LEFT

INNER

OUTERRIGHT

LEFT

6696ch09.qxd_lb 8/30/07 2:02 PM Page 306

on recipe_classes .recipe class ID in the recipe classes table
matching = recipes .recipe class ID in the recipes table,
then inner joined with the recipe ingredients table
on recipes.recipe ID in the recipes table matching
= recipe_ingredients.recipe ID in the recipe ingredients table, then
inner joined with the ingredients table
on ingredients.ingredient ID in the ingredients table matching
= recipe_ingredients.ingredient ID
in the recipe ingredients table, and then
finally inner joined with the measurements table
on measurements.measurement amount ID in the
measurements table matching
= recipe_ingredients.measurement amount ID
in the recipe ingredients table,
order by recipe title, and recipe sequence number

SQL SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle, Recipes.Preparation,
Ingredients.IngredientName,
Recipe_Ingredients.RecipeSeqNo,
Recipe_Ingredients.Amount,
Measurements.MeasurementDescription

FROM (((Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID)
INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID =

Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =

Recipe_Ingredients.IngredientID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =

Recipe_Ingredients.MeasureAmountID
ORDER BY RecipeTitle, RecipeSeqNo

In truth, you can substitute an entire JOIN of two tables anywhere you might
otherwise place only a table name. In Figure 9–9, we implied that you must
first join the first table with the second table and then join that result with the
third table.You could also join the second and third tables first (as long as the
third table is, in fact, related to the second table and not the first one) and
then perform the final JOIN with the first table. Figure 9–10 (on page 308)
shows you this alternate method.

OUTER JOINs 307

6696ch09.qxd_lb 8/30/07 2:02 PM Page 307

To solve the request we just showed you using five tables, we could have also
stated the SQL as follows.

SQL SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle, Recipes.Preparation,
Ingredients.IngredientName,
Recipe_Ingredients.RecipeSeqNo,
Recipe_Ingredients.Amount,
Measurements.MeasurementDescription

FROM Recipe_Classes
LEFT OUTER JOIN

(((Recipes
INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID = Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =

Recipe_Ingredients.IngredientID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =

Recipe_Ingredients.MeasureAmountID)
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID
ORDER BY RecipeTitle, RecipeSeqNo

Remember that the optimizers in some database systems are sensitive to the
sequence of the JOIN definitions. If your query with many JOINs is taking a

308 Chapter 9

Figure 9–10 Joining more than two tables in an alternate sequence

SELECT Value Expression

JOINFROM

DISTINCT

table_name

table_name

ON Search Condition

JOIN table_name

ON Search Condition

,

INNER

OUTERRIGHT

LEFT

INNER

OUTERRIGHT

LEFT

6696ch09.qxd_lb 8/30/07 2:02 PM Page 308

long time to execute on a large database, it might run faster if you change the
sequence of JOINs in your SQL statement.

You might have noticed that we used only one OUTER JOIN in the previous
multiple-JOIN examples. You’re probably wondering whether it’s possible or
even makes sense to use more than one OUTER JOIN in a complex JOIN. Let’s
assume that there are not only some recipe classes that don’t have matching
recipe rows but also some recipes that don’t have any ingredients defined yet.
In the previous example, you won’t see any rows from the Recipes table that
do not have any matching rows in the Recipe_Ingredients table because the
INNER JOIN eliminates them. Let’s ask for all recipes as well.

“I need all the recipe types, and then all the recipe names and preparation
instructions, and then any matching ingredient names, ingredient step
numbers, ingredient quantities, and ingredient measurements from my
recipes database, sorted in recipe title and step number sequence.”

Translation Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe classes
table left outer joined with the recipes table on recipe class ID
in the recipe classes table matching recipe class ID in the recipes
table, then left outer joined with the recipe ingredients table on
recipe ID in the recipes table matching recipe ID in the recipe
ingredients table, then joined with the ingredients table on
ingredient ID in the ingredients table matching ingredient ID
in the recipe ingredients table, and then finally joined with the
measurements table on measurement amount ID in the
measurements table matching measurement amount ID in the
recipe ingredients table, order by recipe title and recipe
sequence number

Clean Up Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description
from the recipe classes table
left outer joined with the recipes table
on recipe_classes.recipe class ID in the recipe classes table
matching = recipes.recipe class ID in the recipes table,
then left outer joined with the recipe ingredients table

OUTER JOINs 309

6696ch09.qxd_lb 8/30/07 2:02 PM Page 309

on recipes.recipe ID in the recipes table matching
= recipe_ingredients.recipe ID in the recipe ingredients table, then
inner joined with the ingredients table
on ingredients.ingredient ID in the ingredients table matching
= recipe_ingredients.ingredient ID in the recipe ingredients table,
and then finally inner joined with the measurements table
on measurement.measurement amount ID
in the measurements table matching
= recipe_ingredients.measurement amount ID
in the recipe ingredients table,
order by recipe title and recipe sequence number

SQL SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle, Recipes.Preparation,
Ingredients.IngredientName,
Recipe_Ingredients.RecipeSeqNo,
Recipe_Ingredients.Amount,
Measurements.MeasurementDescription

FROM (((Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID)
LEFT OUTER JOIN Recipe_Ingredients
ON Recipes.RecipeID =

Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =

Recipe_Ingredients.IngredientID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =

Recipe_Ingredients.MeasureAmountID
ORDER BY RecipeTitle, RecipeSeqNo

Be careful! This sort of multiple OUTER JOIN works as expected only if you’re fol-
lowing a path of one-to-many relationships. Let’s look at the relationships between
Recipe_Classes,Recipes,and Recipe_Ingredients again,as shown in Figure 9–11.

310 Chapter 9

Figure 9–11 The relationships between the Recipe_Classes, Recipes, and
Recipe_Ingredients tables

RECIPE_INGREDIENTS

RecipeID CPK
RecipeSeqNo CPK
IngredientID FK
MeasureAmountID FK
Amount

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

6696ch09.qxd_lb 8/30/07 2:02 PM Page 310

You might see a one-to-many relationship sometimes called a parent-child rela-

tionship. Each parent row (on the “one” side of the relationship) might have
zero or more children rows (on the “many” side of the relationship). Unless
you have orphaned rows on the “many” side (for example, a row in Recipes
that has a Null in its RecipeClassID column), every row in the child table
should have a matching row in the parent table. So it makes sense to say
Recipe_Classes LEFT JOIN Recipes to pick up any parent rows in
Recipe_Classes that don’t have any children yet in Recipes. Recipe_Classes
RIGHT JOIN Recipes should (barring any orphaned rows) give you the
same result as an INNER JOIN.

Likewise, it makes sense to ask for Recipes LEFT JOIN Recipe_
Ingredients because you might have some recipes for which no ingredients
have yet been entered. Recipes RIGHT JOIN Recipe_Ingredients doesn’t
work because the linking column (RecipeID) in Recipe_Ingredients is also
part of that table’s compound primary key. Therefore, you are guaranteed to
have no orphaned rows in Recipe_Ingredients because no column in a pri-
mary key can contain a Null value.

Now, let’s take it one step further and ask for all ingredients, including those
not yet included in any recipes. First, take a close look at the relationships
between the tables, including the Ingredients table, as shown in Figure 9–12.

OUTER JOINs 311

Figure 9–12 The relationships between the Recipe_Classes, Recipes, Recipe_
Ingredients, and Ingredients tables

RECIPE_INGREDIENTS

RecipeID CPK
RecipeSeqNo CPK
IngredientID FK
MeasureAmountID FK
Amount

INGREDIENTS

IngredientID PK
IngredientName
IngredientClassID FK
MeasureAmountID FK

RECIPES

RecipeID PK
RecipeTitle
RecipeClassID FK
Preparation
Notes

RECIPE_CLASSES

RecipeClassID PK
RecipeClassDescription

Let’s try this request. (Caution: There’s a trap here!)

“I need all the recipe types, and then all the recipe names and prepara-
tion instructions, and then any matching ingredient step numbers, ingre-
dient quantities, and ingredient measurements, and finally all ingredient
names from my recipes database, sorted in recipe title and step number
sequence.”

6696ch09.qxd_lb 8/30/07 2:02 PM Page 311

Translation Select the recipe class description,recipe title,preparation
instructions, ingredient name,recipe sequence number,
amount,and measurement description from the recipe classes
table left outer joined with the recipes table on recipe class ID
in the recipe classes table matches class ID in the recipes table,
then left outer joined with the recipe ingredients table on recipe ID
in the recipes table matches recipe ID in the recipe ingredients table,
then joined with the measurements table on measurement amount ID
in the measurements table matches measurement amount ID
in the measurements table,and then finally right outer joined
with the ingredients table on ingredient ID in the ingredients table
matches ingredient ID in the recipe ingredients table,
order by recipe title and recipe sequence number

Clean Up Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description
from the recipe classes table left outer joined with the recipes table
on recipe_classes .recipe class ID in the recipe classes table matches
= recipes .class ID in the recipes table,
then left outer joined with the recipe ingredients table
on recipes.recipe ID in the recipes table matches
= recipe_ingredients.recipe ID in the recipe ingredients table,
then inner joined with the measurements table
on measurements.measurement amount ID
in the measurements table matches
= measurements.measurement amount ID
in the measurements table,
and then finally right outer joined with the ingredients table
on ingredients.ingredient ID in the ingredients table matches
= recipe_ingredients.ingredient ID in the recipe ingredients table,
order by recipe title, and recipe sequence number

SQL SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle, Recipes.Preparation,
Ingredients.IngredientName,
Recipe_Ingredients.RecipeSeqNo,
Recipe_Ingredients.Amount,
Measurements.MeasurementDescription

FROM (((Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID)
LEFT OUTER JOIN Recipe_Ingredients
ON Recipes.RecipeID =

Recipe_Ingredients.RecipeID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =

Recipe_Ingredients.MeasureAmountID)

312 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 312

RIGHT OUTER JOIN Ingredients
ON Ingredients.IngredientID =

Recipe_Ingredients.IngredientID
ORDER BY RecipeTitle, RecipeSeqNo

Do you think this will work? Actually, the answer is a resounding NO! Most
database systems analyze the entire FROM clause and then try to determine
the most efficient way to assemble the table links. Let’s assume, however, that
the database decides to fully honor how we’ve grouped the JOINs within
parentheses. This means that the database system will work from the inner-
most JOIN first (Recipe_Classes joined with Recipes) and then work outward.

Because some rows in Recipe_Classes might not have any matching rows in
Recipes, this first JOIN returns rows that have a Null value in RecipeClassID.
Looking back at Figure 9–12, you can see that there’s a one-to-many relation-
ship between Recipe_Classes and Recipes. Unless some recipes exist that
haven’t been assigned a recipe class, we should get all the rows from the
Recipes table anyway! The next JOIN with the Recipe_Ingredients table also
asks for a LEFT OUTER JOIN. We want all the rows, regardless of any Null val-
ues, from the previous JOIN (of Recipe_Classes with Recipes) and any match-
ing rows in Recipe_Ingredients. Again, because some rows in Recipe_Classes
might not have matching rows in Recipes or some rows in Recipes might not
have matching rows in Recipe_Ingredients, several of the rows might have a
Null in the IngredientID column from the Recipe_Ingredients table. What
we’re doing with both JOINs is “walking down” the one-to-many relationships
from Recipe_Classes to Recipes and then from Recipes to Recipe_Ingredients.
So far, so good. (By the way, the final INNER JOIN with Measurements is incon-
sequential—we know that all Ingredients have a valid MeasureAmountID.)

Now the trouble starts. The final RIGHT OUTER JOIN asks for all the rows
from Ingredients and any matching rows from the result of the previous
JOINs. Remember from Chapter 5 that a Null is a very special value—it can-
not be equal to any other value, not even another Null. When we ask for all

the rows in Ingredients, the IngredientID in all these rows has a non-Null
value. None of the rows from the previous JOIN that have a Null in Ingredi-
entID will match at all, so the final JOIN throws them away! You will see any
ingredient that isn’t used yet in any recipe, but you won’t see recipe classes
that have no recipes or recipes that have no ingredients.

If your database system decides to solve the query by performing the JOINs in
a different order,you might see recipe classes that have no recipes and recipes
that have no ingredients, but you won’t see ingredients not yet used in any

OUTER JOINs 313

6696ch09.qxd_lb 8/30/07 2:02 PM Page 313

recipe because of the Null matching problem. Some database systems might
recognize this logic problem and refuse to solve your query at all—you’ll see
something like an “ambiguous OUTER JOINs” error message. The problem
we’re now experiencing results from trying to “walk back up” a many-to-one
relationship with an OUTER JOIN going in the other direction. Walking down
the hill is easy, but walking back up the other side requires special tools.
What’s the solution to this problem? Read on to the next section to find out!

The FULL OUTER JOIN

A FULL OUTER JOIN is neither “left”nor “right”—it’s both! It includes all the rows
from both of the tables or result sets participating in the JOIN.When no matching
rows exist for rows on the “left” side of the JOIN, you see Null values from the
result set on the “right.”Conversely,when no matching rows exist for rows on the
“right”side of the JOIN,you see Null values from the result set on the “left.”

Syntax

Now that you’ve been working with JOINs for a while, the syntax for a FULL
OUTER JOIN should be pretty obvious. You can study the syntax diagram for
a FULL OUTER JOIN in Figure 9–13.

314 Chapter 9

To simplify things,we’re now using the term table reference in place of a table
name, a SELECT statement, or the result of another JOIN. Let’s take another
look at the problem we introduced at the end of the previous section. We can
now solve it properly using a FULL OUTER JOIN.

Figure 9–13 The syntax diagram for a FULL OUTER JOIN

SELECT Value Expression

JOINFROM

DISTINCT

ON Search Condition

USING
,

column_name

OUTERTable Reference FULL

Table Reference

,

6696ch09.qxd_lb 8/30/07 2:02 PM Page 314

“I need all the recipe types, and then all the recipe names and preparation
instructions, and then any matching ingredient step numbers, ingredient
quantities, and ingredient measurements, and finally all ingredient names
from my recipes database, sorted in recipe title and step number sequence.”

Translation Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description from the recipe classes
table full outer joined with the recipes table on recipe class ID
in the recipe classes table matches recipe class ID in the recipes
table, then left outer joined with the recipe ingredients table on
recipe ID in the recipes table matches recipe ID in the recipe
ingredients table, then joined with the measurements table on
measurement amount ID in the measurements table matches
measurement amount ID in the recipe ingredients table,
and then finally full outer joined with the ingredients
table on ingredient ID in the ingredients table matches
ingredient ID in the recipe ingredients table,
order by recipe title and recipe sequence number

Clean Up Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number,
amount, and measurement description
from the recipe classes table
full outer joined with the recipes table
on recipe_classes .recipe class ID in the recipe classes table matches
= recipes .recipe class ID in the recipes table,
then left outer joined with the recipe ingredients table
on recipes.recipe ID in the recipes table matches
= recipe_ingredients.recipe ID in the recipe ingredients table,
then inner joined with the measurements table
on measurements.measurement amount ID
in the measurements table matches
= recipe_ingredients.measurement amount ID
in the recipe ingredients table,
and then finally full outer joined with the ingredients table
on ingredients.ingredient ID in the ingredients table matches
= recipe_ingredients .ingredient ID in the recipe ingredients table,
order by recipe title and recipe sequence number

SQL SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle, Recipes.Preparation,
Ingredients.IngredientName,
Recipe_Ingredients.RecipeSeqNo,

OUTER JOINs 315

6696ch09.qxd_lb 8/30/07 2:02 PM Page 315

Recipe_Ingredients.Amount,
Measurements.MeasurementDescription

FROM (((Recipe_Classes
FULL OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID)
LEFT OUTER JOIN Recipe_Ingredients
ON Recipes.RecipeID =

Recipe_Ingredients.RecipeID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =

Recipe_Ingredients.MeasureAmountID)
FULL OUTER JOIN Ingredients
ON Ingredients.IngredientID =

Recipe_Ingredients.IngredientID
ORDER BY RecipeTitle, RecipeSeqNo

The first and last JOINs now ask for all rows from both sides of the JOIN,so the
problem with Nulls not matching is solved.You should now see not only recipe
classes for which there are no recipes and recipes for which there are no ingre-
dients but also ingredients that haven’t been used in a recipe yet.You might get
away with using a LEFT OUTER JOIN for the first JOIN, but because you can’t
predict in advance how your database system decides to nest the JOINs, you
should ask for a FULL OUTER JOIN on both ends to ensure the right answer.

❖ Note As you might expect,database systems that do not support the SQL
Standard syntax for LEFT OUTER JOIN or RIGHT OUTER JOIN also have a spe-
cial syntax for FULL OUTER JOIN.You must consult your database documenta-
tion to learn the specific nonstandard syntax that your database requires to
define the OUTER JOIN. For example,earlier versions of Microsoft SQL Server
support the following syntax. (Notice the asterisks in the WHERE clause.)

SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle

FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID *=*

Recipes.RecipeClassID

Products that do not support any FULL OUTER JOIN syntax but do support
LEFT or RIGHT OUTER JOIN yield an equivalent result by performing a UNION
on a LEFT and RIGHT OUTER JOIN. We’ll discuss UNION in more detail in the
next chapter. Because the specific syntax for defining a FULL OUTER JOIN
using the WHERE clause varies by product,you might have to learn several dif-
ferent syntaxes if you work with multiple nonstandard products.

316 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 316

FULL OUTER JOIN on Non-Key Values

Thus far, we have been discussing using OUTER JOINs to link tables or result
sets on related key values. You can, however, solve some interesting problems
by using an OUTER JOIN on non-key values. For example, the previous chap-
ter showed how to find students and staff who have the same first name in
the School Scheduling database. Suppose you’re interested in listing all staff
members and all students and showing the ones who have the same first
name as well. You can do that with a FULL OUTER JOIN.

“Show me all the students and all the teachers and list together those who
have the same first name.”

Translation Select student full name and staff full name from the students
table full outer joined with the staff table
on first name in the students table matches
first name in the staff table

Clean Up Select student full name and staff full name
from the students table
full outer joined with the staff table
on students.first name in the students table matches
= staff.first name in the staff table

SQL SELECT (Students.StudFirstName || ' ' ||
Students.StudLastName) AS StudFullName,
(Staff.StfFirstName || ' ' ||
Staff.StfLastName) AS StfFullName

FROM Students
FULL OUTER JOIN Staff
ON Students.StudFirstName =

Staff.StfFirstName

UNION JOIN

No discussion of OUTER JOINs would be complete without at least an honor-
able mention to UNION JOIN. In the SQL Standard, a UNION JOIN is a FULL
OUTER JOIN with the matching rows removed. Figure 9–14 (on page 318)
shows the syntax.

As you might expect, not many commercial implementations support a
UNION JOIN. Quite frankly,we’re hard pressed to think of a good reason why
you would want to do a UNION JOIN.

OUTER JOINs 317

6696ch09.qxd_lb 8/30/07 2:02 PM Page 317

Uses for OUTER JOINs

Because an OUTER JOIN lets you see not only the matched rows but also the
unmatched ones, it’s great for finding out which, if any, rows in one table do
not have a matching related row in another table. It also helps you find rows
that have matches on a few rows but not on all. In addition, it’s useful for cre-
ating input to a report where you want to show all categories (regardless of
whether matching rows exist in other tables) or all customers (regardless of
whether a customer has placed an order). Following is a small sample of the
kinds of requests you can solve with an OUTER JOIN.

Find Missing Values

Sometimes you just want to find what’s missing. You do so by using an
OUTER JOIN with a test for Null. Here are some “missing value”problems you
can solve.

“What products have never been ordered?”

“Show me customers who have never ordered a helmet.”

“List entertainers who have never been booked.”

“Display agents who haven’t booked an entertainer.”

“Show me tournaments that haven’t been played yet.”

“List the faculty members not teaching a class.”

“Display students who have never withdrawn from a class.”

“Show me classes that have no students enrolled.”

318 Chapter 9

Figure 9–14 The SQL syntax for a UNION JOIN

SELECT Value Expression

JOINFROM

DISTINCT

ON Search Condition

USING
,

column_name

UNIONTable Reference

Table Reference

,

6696ch09.qxd_lb 8/30/07 2:02 PM Page 318

“List ingredients not used in any recipe yet.”

“Display missing types of recipes.”

Find Partially Matched Information

Particularly for reports, it’s useful to be able to list all the rows from one or
more tables along with any matching rows from related tables. Here’s a sam-
ple of “partially matched”problems you can solve with an OUTER JOIN.

“List all products and the dates for any orders.”

“Display all customers and any orders for bicycles.”

“Show me all entertainment styles and the customers who prefer those
styles.”

“List all entertainers and any engagements they have booked.”

“List all bowlers and any games they bowled over 160.”

“Display all tournaments and any matches that have been played.”

“Show me all subject categories and any classes for all subjects.”

“List all students and the classes for which they are currently enrolled.”

“Display all faculty and the classes they are scheduled to teach.”

“List all recipe types, all recipes, and any ingredients involved.”

“Show me all ingredients and any recipes they’re used in.”

Sample Statements

You now know the mechanics of constructing queries using OUTER JOIN and
have seen some of the types of requests you can answer with an OUTER JOIN.
Let’s look at a fairly robust set of samples, all of which use OUTER JOIN. These
examples come from each of the sample databases, and they illustrate the use
of the OUTER JOIN to find either missing values or partially matched values.

We’ve also included sample result sets that would be returned by these oper-
ations and placed them immediately after the SQL syntax line. The name that
appears immediately above a result set is the name we gave each query in the
sample data on the companion CD you’ll find bound into the back of the
book. We stored each query in the appropriate sample database (as indicated
within the example) and prefixed the names of the queries relevant to this
chapter with “CH09.”You can follow the instructions in the Introduction of
this book to load the samples onto your computer and try them.

OUTER JOINs 319

6696ch09.qxd_lb 8/30/07 2:02 PM Page 319

❖ Note Because many of these examples use complex JOINs, the optimizer
for your database system might choose a different way to solve these
queries. For this reason, the first few rows might not exactly match the
result you obtain, but the total number of rows should be the same. To sim-
plify the process, we have combined the Translation and Clean Up steps for
all the following examples.

Sales Orders Database
“What products have never been ordered?”

Translation/ Select product number and product name from the products
Clean Up table left outer joined with the order details table

on products.product number in the products table matches
= order_details .product number in the order details table
where the order detail order number is null

SQL SELECT Products.ProductNumber,
Products.ProductName

FROM Products LEFT OUTER JOIN Order_Details
ON Products.ProductNumber =

Order_Details.ProductNumber
WHERE Order_Details.OrderNumber IS NULL

CH09_Products_Never_Ordered (2 rows)

ProductNumber ProductName

4 Victoria Pro All Weather Tires

23 Ultra-Pro Rain Jacket

“Display all customers and any orders for bicycles.”

Translation 1 Select customer full name,order date,product name,quantity
ordered,and quoted price from the customers table left outer
joined with the orders table on customer ID, then joined with
the order details table on order number, then joined with the
products table on product number, then finally joined with the
categories table on category ID where category description
is 'Bikes'

Translation 2/ Select customer full name,order date,product name,quantity
Clean Up ordered, and quoted price

from the customers table left outer joined with

320 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 320

(Select customer ID, order date, product name,
quantity ordered, and quoted price
from the orders table
inner joined with the order details table
on orders .order number in the orders table matches
= order_details .order number in the order details table,
then joined with the products table
on order_details.product number in the order details table
matches = products.product number in the products table,
then finally joined with the categories table
on categories.category ID in the categories table matches
= products.category ID in the products table
where category description is = 'Bikes') as rd
on customers.customer ID in the customers table matches
= rd.customerID in the embedded SELECT statement

❖ Note Because we’re looking for specific orders (bicycles), we split the
translation process into two steps to show that the orders need to be filtered
before applying an OUTER JOIN.

SQL SELECT Customers.CustFirstName || ' ' ||
Customers.CustLastName AS CustFullName,
RD.OrderDate, RD.ProductName,
RD.QuantityOrdered, RD.QuotedPrice

FROM Customers
LEFT OUTER JOIN
(SELECT Orders.CustomerID, Orders.OrderDate,

Products.ProductName,
Order_Details.QuantityOrdered,
Order_Details.QuotedPrice

FROM ((Orders
INNER JOIN Order_Details
ON Orders.OrderNumber =

Order_Details.OrderNumber)
INNER JOIN Products
ON Order_Details.ProductNumber =

Products.ProductNumber)
INNER JOIN Categories
ON Categories.CategoryID =

Products.CategoryID
WHERE Categories.CategoryDescription =

'Bikes')
AS RD

ON Customers.CustomerID = RD.CustomerID

OUTER JOINs 321

6696ch09.qxd_lb 8/30/07 2:02 PM Page 321

❖ Note This request is really tricky because you want to list all customers
OUTER JOINed with only the orders for bikes. If you turn Translation 1
directly into SQL, you won’t find any of the customers who have not
ordered a bike! An OUTER JOIN from Customers to Orders will return all
customers and any orders. When you add the filter to select only bike
orders, that’s all you will get—customers who ordered bikes.

Translation 2 shows you how to do it correctly—create an inner result set
that returns only orders for bikes, and then OUTER JOIN that with Customers
to get the final answer.

CH09_All_Customers_And_Any_Bike_Orders (913 rows)

CustFullName OrderDate ProductName QuantityOrdered QuotedPrice

Suzanne Viescas

William Thompson 2007-12-23 Trek 9000 5 $1,164.00
Mountain Bike

William Thompson 2008-01-15 Trek 9000 6 $1,164.00
Mountain Bike

William Thompson 2007-10-11 Viscount 2 $635.00
Mountain Bike

William Thompson 2007-10-05 Viscount 5 $615.95
Mountain Bike

William Thompson 2008-01-15 Trek 9000 4 $1,200.00
Mountain Bike

William Thompson 2007-10-11 Trek 9000 3 $1,200.00
Mountain Bike

William Thompson 2008-01-07 Trek 9000 2 $1,200.00
Mountain Bike

<< more rows here >>

(Looks like William Thompson is a really good customer!)

322 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 322

Entertainment Agency Database
“List entertainers who have never been booked.”

Translation/ Select entertainer ID and entertainer stage name
Clean Up from the entertainers table

left outer joined with the engagements table
on entertainers.entertainer ID in the entertainers table matches
= engagements.entertainer ID in the engagements table
where engagement number is null

SQL SELECT Entertainers.EntertainerID,
Entertainers.EntStageName

FROM Entertainers
LEFT OUTER JOIN Engagements
ON Entertainers.EntertainerID =

Engagements.EntertainerID
WHERE Engagements.EngagementNumber IS NULL

CH09_Entertainers_Never_Booked
(1 row)

EntertainerID EntStageName

1009 Katherine Ehrlich

OUTER JOINs 323

6696ch09.qxd_lb 8/30/07 2:02 PM Page 323

“Show me all musical styles and the customers who prefer those styles.”

Translation/ Select style ID, style name, customer ID, customer first name,
Clean Up and customer last name

from the musical styles table
left outer joined with
(the musical preferences table inner joined
with the customers table
on musical_preferences.customer ID
in the musical preferences table matches
= customers.customer ID in the customers table)
on musical_styles.style ID in the musical styles table matches
= musical_preferences.style ID in the musical preferences table

SQL SELECT Musical_Styles.StyleID,
Musical_Styles.StyleName,
Customers.CustomerID,
Customers.CustFirstName,
Customers.CustLastName

FROM Musical_Styles
LEFT OUTER JOIN (Musical_Preferences

INNER JOIN Customers
ON Musical_Preferences.CustomerID =

Customers.CustomerID)
ON Musical_Styles.StyleID =

Musical_Preferences.StyleID

CH09_All_Styles_And_Any_Customers (41 rows)

StyleID StyleName CustomerID CustFirstName CustLastName

1 40s Ballroom Music 10015 Carol Viescas

1 40s Ballroom Music 10011 Joyce Bonnicksen

2 50s Music

3 60s Music 10002 Deb Waldal

4 70s Music 10007 Liz Keyser

5 80s Music 10014 Mark Rosales

6 Country 10009 Sarah Thompson

7 Classical 10005 Elizabeth Hallmark

<< more rows here >>

324 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 324

(Looks like nobody likes 50s music!)

❖ Note We very carefully phrased the FROM clause to influence the data-
base system to first perform the INNER JOIN between Musical_Preferences
and Customers, and then OUTER JOINed that with Musical_Styles. If your
database tends to process JOINs from left to right, you might have to state
the FROM clause with the INNER JOIN first followed by a RIGHT OUTER
JOIN to Musical_Styles. In Microsoft Office Access, we had to state the
INNER JOIN as an embedded SELECT statement to get it to return the
correct answer.

School Scheduling Database
“List the faculty members not teaching a class.”

Translation/ Select staff first name and staff last name
Clean Up from the staff table left outer joined with the faculty classes table

on staff.staff ID in the staff table matches
= faculty_classes.staff ID in the faculty classes table
where class ID is null

SQL SELECT Staff.StfFirstName, Staff.StfLastName,
FROM Staff
LEFT OUTER JOIN Faculty_Classes
ON Staff.StaffID = Faculty_Classes.StaffID
WHERE Faculty_Classes.ClassID IS NULL

CH09_Staff_Not_Teaching (4 rows)

StfFirstName StfLastName

Jeffrey Smith

Tim Smith

Kathryn Patterson

Joe Rosales III

OUTER JOINs 325

6696ch09.qxd_lb 8/30/07 2:02 PM Page 325

“Display students who have never withdrawn from a class.”

Translation/ Select student full name
Clean Up from the students table left outer joined with

(Select student ID from the student schedules table
inner joined with the student class status table
on student_class_status.class status
in the student class status table matches
= student_schedules.class status in the student schedules table
where class status description is = 'withdrew') as withdrew
on students.student ID in the students table matches
= withdrew.student ID in the embedded SELECT statement
where the student_schedules.student ID in the
student schedules table is null

SQL SELECT Students.StudLastName || ', ' ||
Students.StudFirstName AS StudFullName

FROM Students
LEFT OUTER JOIN

(SELECT Student_Schedules.StudentID
FROM Student_Class_Status
INNER JOIN Student_Schedules
ON Student_Class_Status.ClassStatus =

Student_Schedules.ClassStatus
WHERE Student_Class_Status.ClassStatus

Description = 'withdrew')
AS Withdrew

ON Students.StudentID = Withdrew.StudentID
WHERE Withdrew.StudentID IS NULL

326 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 326

CH09_Students_Never_Withdrawn
(15 rows)

StudFullName

Hamilton, David

Stadick, Betsy

Galvin, Janice

Hartwig, Doris

Bishop, Scott

Hallmark, Elizabeth

Sheskey, Sara

Wier, Marianne

<< more rows here >>

“Show me all subject categories and any classes for all subjects.”

Translation/ Select category description, subject name, classroom ID,
Clean Up start time, and duration

from the categories table
left outer joined with the subjects table
on categories.category ID in the categories table matches
= subjects.category ID in the subjects table,
then left outer joined with the classes table
on subjects .subject ID in the subjects table matches
= classes.subject ID in the classes table

SQL SELECT Categories.CategoryDescription,
Subjects.SubjectName, Classes.ClassroomID,
Classes.StartTime, Classes.Duration

FROM (Categories
LEFT OUTER JOIN Subjects
ON Categories.CategoryID = Subjects.CategoryID)
LEFT OUTER JOIN Classes
ON Subjects.SubjectID = Classes.SubjectID

❖ Note We were very careful again to construct the sequence and nesting
of JOINs to be sure we got the answer we expected.

OUTER JOINs 327

6696ch09.qxd_lb 8/30/07 2:02 PM Page 327

CH09_All_Categories_All_Subjects_Any_Classes (82 rows)

CategoryDescription SubjectName ClassroomID StartTime Duration

Accounting Financial 3313 9:00 50
Accounting
Fundamentals I

Accounting Financial 3313 13:00 50
Accounting
Fundamentals I

Accounting Financial 3415 8:00 50
Accounting
Fundamentals II

Accounting Fundamentals 3415 10:00 50
of Managerial
Accounting

Accounting Intermediate 3315 11:00 50
Accounting

Accounting Business Tax 3313 14:00 50
Accounting

Art Introduction 1231 10:00 50
to Art

Art Design 1619 15:30 110

<< more rows here >>

Further down in the result set,you’ll find no classes scheduled for Developing
a Feasibility Plan, Computer Programming, and American Government. You’ll
also find no subjects scheduled for categories Psychology,French,or German.

328 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 328

Bowling League Database
“Show me tournaments that haven’t been played yet.”

Translation/ Select tourney ID, tourney date, and tourney location
Clean Up from the tournaments table

left outer joined with the tourney matches table
on tournaments.tourney ID in the tournaments table matches
= tourney_matches.tourney ID in the tourney matches table
where match ID is null

SQL SELECT Tournaments.TourneyID,
Tournaments.TourneyDate,
Tournaments.TourneyLocation

FROM Tournaments
LEFT OUTER JOIN Tourney_Matches
ON Tournaments.TourneyID =

Tourney_Matches.TourneyID
WHERE Tourney_Matches.MatchID IS NULL

CH09_Tourney_Not_Yet_Played (6 rows)

TourneyID TourneyDate TourneyLocation

15 2008-07-11 Red Rooster Lanes

16 2008-07-18 Thunderbird Lanes

17 2008-07-25 Bolero Lanes

18 2008-08-01 Sports World Lanes

19 2008-08-08 Imperial Lanes

20 2008-08-15 Totem Lanes

“List all bowlers and any games they bowled over 180.”

Translation 1 Select bowler name, tourney date, tourney location,match ID,
and raw score from the bowlers table left outer joined with
the bowler scores table on bowler ID, then inner joined with
the tourney matches table on match ID, then finally inner
joined with the tournaments table on tournament ID where
raw score in the bowler scores table is greater than 180

OUTER JOINs 329

6696ch09.qxd_lb 8/30/07 2:02 PM Page 329

Can you see why the above translation won’t work? You need a filter on one
of the tables that is on the right side of the left join, so you need to put the fil-
ter in an embedded SELECT statement. Let’s restate the Translation step,clean
it up, and solve the problem.

Translation 2/ Select bowler name, tourney date, tourney location,
Clean Up match ID, and raw score

from the bowlers table left outer joined with
(Select tourney date, tourney location, match ID,
bowler ID, and raw score
from the bowler scores table
inner joined with the tourney matches table
on bowler_scores .match ID in the bowler scores table matches
= tourney_ matches.match ID in the tourney matches table,
then inner joined with the tournaments table
on tournaments.tournament ID in the tournaments table matches
= tourney_ matches.tournament ID in the tourney matches table
where raw score is greater than > 180) as ti
on bowlers.bowler ID in the bowlers table matches
= ti.bowler ID in the embedded SELECT statement

SQL SELECT Bowlers.BowlerLastName || ', ' ||
Bowlers.BowlerFirstName AS BowlerName,
TI.TourneyDate, TI.TourneyLocation,
TI.MatchID, TI.RawScore

FROM Bowlers
LEFT OUTER JOIN

(SELECT Tournaments.TourneyDate,
Tournaments.TourneyLocation,
Bowler_Scores.MatchID,
Bowler_Scores.BowlerID,
Bowler_Scores.RawScore

FROM (Bowler_Scores
INNER JOIN Tourney_Matches
ON Bowler_Scores.MatchID =

Tourney_Matches.MatchID)
INNER JOIN Tournaments
ON Tournaments.TourneyID =

Tourney_Matches.TourneyID
WHERE Bowler_Scores.RawScore > 180)

AS TI
ON Bowlers.BowlerID = TI.BowlerID

330 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 330

CH09_All_Bowlers_And_Scores_Over_180 (106 rows)

BowlerName TourneyDate TourneyLocation MatchID RawScore

Black,Alastair

Cunningham, David

Ehrlich, Zachary

Fournier, Barbara

Fournier, David

Hallmark,Alaina

Hallmark, Bailey

Hallmark, Elizabeth

Hallmark, Gary

Hernandez, Kendra

Hernandez, Michael

Kennedy,Angel 2007-11-20 Sports World Lanes 46 185

Kennedy,Angel 2007-10-09 Totem Lanes 22 182

<< more rows here >>

❖ Note You guessed it! This is another example where you must build the
filtered INNER JOIN result set first and then OUTER JOIN that with the table
from which you want “all” rows.

OUTER JOINs 331

6696ch09.qxd_lb 8/30/07 2:02 PM Page 331

Recipes Database
“List ingredients not used in any recipe yet.”

Translation/ Select ingredient name from the ingredients table
Clean Up left outer joined with the recipe ingredients table

on ingredients.ingredient ID in the ingredients table matches
= recipe_ingredients.ingredient ID in the recipe ingredients table
where recipe ID is null

SQL SELECT Ingredients.IngredientName
FROM Ingredients
LEFT OUTER JOIN Recipe_Ingredients
ON Ingredients.IngredientID =

Recipe_Ingredients.IngredientID
WHERE Recipe_Ingredients.RecipeID IS NULL

CH09_Ingredients_
Not_Used (20 rows)

IngredientName

Halibut

Chicken, Fryer

Bacon

Iceberg Lettuce

Butterhead Lettuce

Scallop

Vinegar

Red Wine

<< more rows here >>

332 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 332

“I need all the recipe types, and then all the recipe names, and then any
matching ingredient step numbers, ingredient quantities, and ingredient
measurements, and finally all ingredient names from my recipes database.”

Translation/ Select the recipe class description, recipe title,
Clean Up ingredient name, recipe sequence number,

amount, and measurement description
from the recipe classes table
full outer joined with the recipes table
on recipe_classes.recipe class ID in the recipe classes table matches
= recipes.recipe class ID in the recipes table,
then left outer joined with the recipe ingredients table
on recipes.recipe ID in the recipes table matches
= recipe_ingredients.recipe ID in the recipe ingredients table,
then inner joined with the measurements table
on measurements.measurement amount ID
in the measurements table matches
= recipe_ ingredients.measurement amount ID
in the recipe ingredients table,
and then finally full outer joined with the ingredients table
on ingredients.ingredient ID in the ingredients table matches
= recipe_ ingredients.ingredient ID in the recipe ingredients table,

SQL SELECT Recipe_Classes.RecipeClassDescription,
Recipes.RecipeTitle,
Ingredients.IngredientName,
Recipe_Ingredients.RecipeSeqNo,
Recipe_Ingredients.Amount,
Measurements.MeasurementDescription

FROM (((Recipe_Classes
FULL OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID)
LEFT OUTER JOIN Recipe_Ingredients
ON Recipes.RecipeID =

Recipe_Ingredients.RecipeID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =

Recipe_Ingredients.MeasureAmountID)
FULL OUTER JOIN Ingredients
ON Ingredients.IngredientID =

Recipe_Ingredients.IngredientID
ON Recipe_Classes.RecipeClassID =

Recipes.RecipeClassID

OUTER JOINs 333

6696ch09.qxd_lb 8/30/07 2:02 PM Page 333

❖ Note This sample is a request you saw us solve in the section on FULL
OUTER JOIN. We decided to include it here so that you can see the actual
result. You won’t find this query saved using this syntax in the Microsoft
Access or MySQL version of the sample database because neither product
supports a FULL OUTER JOIN. Instead, you can find this problem solved
with a UNION of two OUTER JOIN queries that achieves the same result.
You’ll learn about using UNION in the next chapter. The result shown here
is what you’ll see when you run the query in Microsoft SQL Server.

CH09_All_Recipe_Classes_All_Recipes (109 rows)

RecipeClass Ingredient RecipeSeq Measurement
Description RecipeTitle Name No Amount Description

Starch Yorkshire Flour 1 1.5 Cup
Pudding

Starch Yorkshire Water 2 1 Cup
Pudding

Starch Yorkshire Eggs 3 2 Piece
Pudding

Starch Yorkshire Salt 4 0.5 Teaspoon
Pudding

Starch Yorkshire Milk 5 0.5 Cup
Pudding

Starch Yorkshire Beef 6 4 Teaspoon
Pudding drippings

Dessert Trifle Sponge 1 1 Package
Cake

Dessert Trifle Raspberry 2 1 Package
Jello

Dessert Trifle Bird’s Custard 3 1 Package
Powder

Dessert Trifle Raspberry 4 1 Jar
Jam

<< more rows here >>

334 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 334

SUMMARY

In this chapter, we led you through the world of OUTER JOINs. We began by
defining an OUTER JOIN and comparing it to the INNER JOIN you learned
about in Chapter 8.

We next explained how to construct a LEFT or RIGHT OUTER JOIN, begin-
ning with simple examples using two tables, and then progressing to embed-
ding SELECT statements and constructing statements using multiple JOINs.
We showed how an OUTER JOIN combined with a Null test is equivalent
to the difference (EXCEPT) operation we covered in Chapter 7. We also
discussed some of the difficulties you might encounter when constructing
statements using multiple OUTER JOINs. We closed the discussion of the
LEFT and RIGHT OUTER JOIN with a problem requiring multiple OUTER
JOINs that can’t be solved with only LEFT or RIGHT.

In our discussion of FULL OUTER JOIN, we showed how you might need to
use this type of JOIN in combination with other INNER and OUTER JOINs to
get the correct answer. We also briefly explained a variant of the FULL OUTER
JOIN—the UNION JOIN.

We explained how OUTER JOINs are useful and listed a variety of requests
that you can solve using OUTER JOINs. The rest of the chapter showed nearly
a dozen examples of how to use OUTER JOIN. We provided several examples
for each of the sample databases and showed you the logic behind construct-
ing the solution statement for each request.

The following section presents a number of requests that you can work out
on your own.

Problems for You to Solve

Below,we show you the request statement and the name of the solution query
in the sample databases. If you want some practice, you can work out the SQL
you need for each request and then check your answer with the query we
saved in the samples. Don’t worry if your syntax doesn’t exactly match the syn-
tax of the queries we saved—as long as your result set is the same.

OUTER JOINs 335

6696ch09.qxd_lb 8/30/07 2:02 PM Page 335

Sales Orders Database

1. “Show me customers who have never ordered a helmet.”
(Hint: This is another request where you must first build an INNER JOIN to find
all orders containing helmets and then do an OUTER JOIN with Customers.)
You can find the solution in CH09_Customers_No_Helmets (2 rows).

2. “Display customers who have no sales rep (employees) in the same ZIP Code.”
You can find the solution in CH09_Customers_No_Rep_Same_Zip (18 rows).

3. “List all products and the dates for any orders.”
You can find the solution in CH09_All_Products_Any_Order_Dates (2,682 rows).

Entertainment Agency Database

1. “Display agents who haven’t booked an entertainer.”
You can find the solution in Agents_No_Contracts (1 row).

2. “List customers with no bookings.”
You can find the solution in CH09_Customers_No_Bookings (2 rows).

3. “List all entertainers and any engagements they have booked.”
You can find the solution in CH09_All_Entertainers_And_Any_Engagements (112
rows).

School Scheduling Database

1. “Show me classes that have no students enrolled.”
(Hint: You need only “enrolled” rows from Student_Classes, not “completed”or
“withdrew.”)
You can find the solution in CH09_Classes_No_Students_Enrolled (63 rows).

2. “Display subjects with no faculty assigned.”
You can find the solution in CH09_Subjects_No_Faculty (1 row).

3. “List students not currently enrolled in any classes.”
(Hint: You need to find which students have an “enrolled”class status in student
schedules and then find the students who are not in this set.)
You can find the solution in CH09_Students_Not_Currently_Enrolled (2 rows).

4. “Display all faculty and the classes they are scheduled to teach.”
You can find the solution in CH09_All_Faculty_And_Any_Classes (79 rows).

Bowling League Database

1. “Display matches with no game data.”
You can find the solution in CH09_Matches_Not_Played_Yet (1 row).

2. “Display all tournaments and any matches that have been played.”
You can find the solution in CH09_All_Tourneys_Match_Results (174 rows).

336 Chapter 9

6696ch09.qxd_lb 8/30/07 2:02 PM Page 336

Recipes Database

1. “Display missing types of recipes.”
You can find the solution in CH09_Recipe_Classes_No_Recipes (1 row).

2. “Show me all ingredients and any recipes they’re used in.”
You can find the solution in CH09_All_Ingredients_Any_Recipes (108 rows).

3. “List the salad, soup, and main course categories and any recipes.”
You can find the solution in CH09_Salad_Soup_Main_Courses (9 rows).

4. “Display all recipe classes and any recipes.”
You can find the solution in CH09_All_RecipesClasses_And_Matching_Recipes
(16 rows).

OUTER JOINs 337

6696ch09.qxd_lb 8/30/07 2:02 PM Page 337

6696ch09.qxd_lb 8/30/07 2:02 PM Page 338

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for submission to RR Donnelley Book plants. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

