
C H A P T E R 3

PHYSICAL ELEMENTS
OF DATA MODELS

Now that you have a grasp of the logical elements used to construct a data
model, let’s look at the physical elements. These are the objects that you
use to build the database. Most of the objects you build into your physical
model are based on objects you created in the logical model. Many physi-
cal elements are the same no matter which RDBMS you are using, but we
look at all the elements available in SQL Server 2008. It is important to
know SQL Server’s capabilities so that you can build your model with them
in mind.

In this chapter, we cover all the physical SQL Server objects in detail
and walk you through how to use each type of object in your physical
model. You will use these elements later in Chapter 9.

Physical Storage

First, we’ll start with the objects that allow you to store data in your data-
base. You’ll build everything else on these objects. Specifically, these are
tables, views, and data types.

Tables
Tables are the building blocks on which relational databases are built.
Underneath everything else, all data in your database ends up in a table.
Tables are made up of rows and columns. Like a single instance in an en-
tity, each row stores information pertaining to a single record. For exam-
ple, in an employee table, each row would store the information for a
single employee.

The columns in the table store information about the rows in the table.
The FirstName column in the Employee table would store the first names

45

of all the employees. Columns map to attributes from your logical model,
and, like the logical model, each column has a data type assigned. Later in
this chapter we look at the SQL Server data types in detail.

When you add data to a table, each column must either contain data
(even if it is an empty string) or specify a NULL value, NULL being the
complete absence of data. Additionally, you can specify that each column
have a default value. The default value is used if you add data without
specifying a value for that column. A default can be a fixed value, such as
always setting a numeric column to the value of 12, or it can be a function
that returns a value of the appropriate data type. If you do not have a de-
fault value specified and you insert data without specifying a value for a
column, SQL Server attempts to insert a NULL value. If the column does
not allow NULL values, your insert will fail.

You can think of a table as a single spreadsheet in an application such
as Microsoft Excel. In fact, an Excel spreadsheet is a table, but Excel is not
a relational database management system. A database is really nothing
more than a collection of tables that store information. Sure, there are
many other objects in a database, but without tables you would not have
any data. Using Transact-SQL, also known as T-SQL, you can manipulate
the data in a table. The four basic Data Manipulation Language (DML)
statements are defined as follows:

■ SELECT: Allows users to retrieve data in a table or tables
■ INSERT: Allows users to add data to a table
■ UPDATE: Allows users to change data in a table
■ DELETE: Allows users to remove data from a table

How SQL Server Stores Tables
In addition to understanding what tables are, it’s important that you un-
derstand how SQL Server stores them; the type of data your columns store
will dictate how the table is stored on disk, and this can directly affect the
performance of your database. Everything in SQL Server is stored on
pages. Pages are 8K contiguous allocations of information on the disk, and
there are different kinds of pages depending on what is on the page. For
our purposes, we will focus on data pages: pages that store table data.
Each row you add to a table is stored on a page, and depending on the size
of the data in the row, the row can be stored either on a page with other
rows, or on its own page or pages.

46 Chapter 3 Physical Elements of Data Models

Before SQL Server 2005, data and overhead for a single row could not
exceed 8,060 bytes (8K). This was a hard limit that you had to account for
when designing tables. In SQL Server 2005, this limit has been overcome,
in a manner of speaking. Now, if your row exceeds 8,060 bytes, SQL Server
moves one or more of your variable-length columns onto a new page and
leaves a 24-byte pointer in its place. This does not mean that you have an
unlimited row size, nor should you make all your rows bigger than 8,060
bytes. Why not? First, notice that we said SQL Server will move variable-
length columns. This means that you are still limited to 8,060 bytes of
fixed-length columns. Additionally, you are still limited to 8K on your pri-
mary data page for the row. Remember the 24-byte pointer we mentioned?
In theory you are limited to around 335 pointers on the main page. As
ridiculous as a 336-column varchar(8000) table may sound, we have seen
far stranger.

If SQL Server manages all this behind the scenes, why should you
care? Here’s why. Although SQL Server moves the variable-length fields to
new pages after you exceed the 8K limit, the result is akin to a fragmented
hard drive. You now have chunks of data that need to be assembled when
accessed, and this adds processing time. As a data modeler you should al-
ways try to keep your rows smaller than the 8K limit for performance rea-
sons. There are a few exceptions to this rule, and we look at them more
closely later in this chapter when we discuss data types. Keep in mind that
there is a lot more complexity in the way SQL Server handles storage and
pages than we cover here, but your data model can’t affect the other vari-
ables as much as it can affect table size.

Views
Views are simply stored T-SQL that uses SELECT statements to display
data from one or more tables. The tables referenced by views are often re-
ferred to as the view’s base tables. Views, as the name implies, allow you
to create various pictures of the underlying information. You can reference
as many or as few columns from each base table as you need to make your
views. This capability allows you to slice up data and display only relevant
information.

You access views in almost the same way that you access tables. All the
basic DML statements work against views in the same way they do on tables,
with a few exceptions. If you have a view that references more than one base
table, you can use only INSERT, UPDATE, or DELETE statements that

Physical Storage 47

reference columns from one base table. For example, let’s assume that we
have a view that returns customer data from two tables. One table stores
the customer’s information, and the other holds the address data for that
customer. The definition of the customer_address view is as follows:

CREATE VIEW customer_address

AS

SELECT customer.first_name,

customer.last_name,

customer.phone,

address.address_line1,

address.city,

address.state,

address.zip

FROM customer

JOIN address

ON address.customer_id = customer.customer_id

WHERE address.type = 'home'

You can perform INSERT, UPDATE, and DELETE operations against
the customer_address view as long as you reference only the customer
table or the address table.

You may be asking yourself, “Why would I use a view instead of just
referencing the tables directly?” There are several reasons to use views in
your database. First, you can use a view to obscure the complexity of the
underlying tables. If you have a single view that displays customer and ad-
dress information, developers or end users can access the information they
need from the view instead of needing to go to both tables. This technique
eliminates the need for users to understand the entire database; they can
focus on a single object. You gain an exponential benefit when you start
working with many base tables in a single view.

Using views also allows you to change the tables or the location where
the data is stored without affecting users. In the end, as long as you update
the view definition so that it accommodates the table changes you made,
your users will never need to know that there was a change. You can also
use views to better manage security. If you have users who need to see
some employee data but not sensitive data such as social security numbers
or salary, you can build a view that displays only the information they need.

Finally, consider how using views can save you time when querying
your database. Every time you run T-SQL code, SQL Server must first

48 Chapter 3 Physical Elements of Data Models

compile the code. This transforms the human-readable SELECT state-
ment into a form that the SQL Server engine can understand, and the re-
sulting code is an execution plan. Execution plans for running views are
stored in SQL Server, and the T-SQL code behind them is compiled. This
process takes time, but with views, the compilation is done only when the
view is created. This saves you processing each time you call the view. The
first time a view is called, SQL Server figures out the best way to retrieve
the data from the base tables, given the table structure and the indexes in
place. This execution plan is cached and reused the next time the view is
called.

In our humble opinion, views are probably the most underused feature
in SQL Server. For some reason, people tend to avoid the use of views or
use them in inefficient ways. In Chapter 11 we look at some of the most
beneficial uses for views.

Data Types
As mentioned earlier, every column in each of your tables must be config-
ured to store a specific type of data. You do this by associating a data type
with the column. Data types are what you use to specify the type, length,
precision, and scale of data that can be stored in the column. SQL Server
2008 gives you several general categories of data types, with each category
containing specific data types. Many of these data types are similar to the
types we looked at in Chapter 2. In this section, we look at each of the SQL
Server data types and talk about how the SQL Server engine handles and
stores them.

When you build your model, it is important to understand how much
space each data type requires. The difference between a data type that
needs 2 bytes versus one that requires 4 bytes may seem insignificant, but
when you multiply the extra 2 bytes over millions or billions of rows, you
could end up needing tens or hundreds of gigabytes of additional storage.

SQL Server 2008 has functionality (parts of which were introduced in
SQL Server 2005 Service Pack 2) that allows the SQL Server storage en-
gine to compress data at the row and page levels. However, this function-
ality is limited to the Enterprise Edition and is, in general, more of an
administrative concern. Your estimate of data storage requirements, which
is based on the numbers we talk about here, should be limited to the un-
compressed storage requirements. Enabling data compression in a data-
base is something that a database administrator will work on with the

Physical Storage 49

database developer after the database has been built. With that said, let’s
look at the data types available in SQL Server 2008.

Numeric Data Types
Our databases need to store many kinds of numbers that we use day to day.
Each of these numbers is unique and requires us to store varying pieces of
data. These differences in numbers and requirements dictate that SQL
Server be able to support 11 numeric data types. Following is a review of
all the numeric data types available in SQL Server. Also, Table 3.1 shows
the specifications on each numeric data type.

Table 3.1 Numeric Data Type Specifications

Data Type Value Range Storage

bigint –9,223,372,036,854,775,808 through 9,223,372,036,854,775,807 8 bytes

bit 0 or 1 1 byte (minimum)

decimal Depends on precision and scale 5–17 bytes

float –1.79E+308 through –2.23E–308, 0, 4 or 8 bytes
and 2.23E–308 through 1.79E+308

int –2,147,483,648 to 2,147,483,647 4 bytes

money –922,337,203,685,477.5808 to 922,337,203,685,477.5807 8 bytes

numeric Depends on precision and scale 5–17 bytes

real –3.40E+38 to –1.18E–38, 0, and 1.18E–38 to 3.40E+38 4 bytes

smallint –32,768 to 32,767 2 bytes

smallmoney –214,748.3648 to 214,748.3647 4 bytes

tinyint 0 to 255 1 byte

Int
The int data type is used to store whole integer numbers. Int does not store
any detail to the right of the decimal point, and any number with decimal
data is rounded off to a whole number. Numbers stored in this type must
be in the range of –2,147,483,648 through 2,147,483,647, and each piece
of int data requires 4 bytes to store on disk.

Bigint
Bigint is just what it sounds like: a big integer number. When you need
larger numbers than supported by the int data type, you can use bigint.
Using bigint expands your range from the paltry 2 billion of an int and al-

50 Chapter 3 Physical Elements of Data Models

lows you to store numbers from approximately negative 9 quintillion all the
way to 9 quintillion. (A quintillion is a 1 followed by 18 zeros.) Bigger num-
bers require more storage; bigint data requires 8 bytes.

Smallint
On the other side of the int data type, we have smallint. Smallint can hold
numbers from –32,768 through 32,767 and requires only 2 bytes of storage.

Tinyint
Rounding out the int family of data types is the tinyint. Requiring only
1 byte of storage and capable of storing numbers from 0 through 255, tinyint
is perfect for status columns. Note that tinyint is the only int data type that
cannot store negative numbers.

Bit
The bit data type is the SQL Server equivalent of a flag or a Boolean. The
only valid values are 0, 1, or NULL, making the bit data type perfect for
storing on or off, yes or no, or true or false. Bit storage is a bit more com-
plex (pardon the pun). Storing a 1 or a 0 requires only 1 bit on disk, but the
minimum storage for bit data is 1 byte. For any given table, the bit columns
are lumped together for storage. This means that when you have 1-bit to
8-bit columns they collectively take up 1 byte. When you have 9- to 16-bit
columns, they take up 2 bytes, and so on. SQL Server implicitly converts
the strings TRUE and FALSE to bit data of 1 and 0, respectively.

Decimal and Numeric
In SQL Server 2008, the decimal and numeric data types are exactly the
same. Previous versions of SQL Server do not have a numeric data type; it
was added in SQL Server 2005 so that the terminology would fall in line
with other RDBMS software. Both these data types hold numbers com-
plete with detail to the right of the decimal. When using decimal or nu-
meric, you can specify a precision and a scale. Precision sets the total
number of digits that can be stored in the number. Precision can be set to
any value from 1 through 38, allowing decimal numbers to contain 1
through 38 digits. Scale specifies how many of the total digits can be stored
to the right of the decimal point. Scale can be any number from 0 to the
precision you have set. For example, the number 234.67 has a precision of
5 and a scale of 2. The storage requirements for decimal and numeric vary
depending on the precision. Table 3.2 shows the storage requirements
based on precision.

Physical Storage 51

Money and Smallmoney
Both the money and the smallmoney data types store monetary values to
four decimal places. The only difference in these two types is that money
can store values from about –922 trillion through 922 trillion and requires
8 bytes of storage, whereas smallmoney holds only values of –214,748.3648
through 214,748.3647 and requires only 4 bytes of storage. Functionally,
these types are similar to decimal and numeric, but money and smallmoney
also store a currency symbol such as $ (dollar), ¥ (yen), or £ (pound).

Float and Real
Both float and real fall into the category of approximate numbers. Each
holds values in scientific notation, which inherently causes data loss be-
cause of a lack of precision. If you don’t remember your high school chem-
istry class, we briefly explain scientific notation. You basically store a small
subset of the value, followed by a designation of how many decimal places
should precede or follow the value. So instead of storing 1,234,467,890 you
can store it as 1.23E+9. This says that the decimal in 1.23 should be moved
9 places to the right to determine the actual number. As you can see, you
lose a lot of detail when you store the number in this way. The original
number (1,234,467,890) becomes 1,230,000,000 when converted to scien-
tific notation and back.

Now back to the data types. Float and real store numbers in scientific
notation; the only difference is the range of values and storage require-
ments for each. See Table 3.1 for the range of values for these types. Real
requires 4 bytes of storage and has a fixed precision of 7. With float data,
you can specify the precision or the total number of digits, from 1 through
53. The storage requirement varies from 4 bytes (when the precision is less
than 25) to 8 bytes (when the precision is 25 through 53).

52 Chapter 3 Physical Elements of Data Models

Table 3.2 Decimal and Numeric Storage Requirements

Precision Storage

1 through 9 5 bytes

10 through 19 9 bytes

20 through 28 13 bytes

29 through 38 17 bytes

Date and Time Data Types
When you need to store a date or time value, SQL Server provides you
with six data types. Knowing which type to use is important, because each
date and time data type provides a slightly different level of accuracy, and
that can make a huge difference when you’re calculating exact times, as
well as durations. Let’s look at each in turn.

Datetime and Smalldatetime
The datetime and smalldatetime data types can store date and time data in
a variety of formats; the difference is the range of values that each can
store. Datetime can hold values from January 1, 1753, through December
31, 9999, and can be accurate to 3.33 milliseconds. In contrast, smalldate-
time can store dates only from January 01, 1900, through June 6, 2079, and
is accurate only to 1 minute. For storage, datetime requires 8 bytes, and
smalldatetime needs only 4 bytes.

Date and Time
New in SQL Server 2008 are data types that split out the date portion and
the time portion of a traditional date and time data type. Literally, as the
names imply, these two data types account for either the date portion
(month, day, and year), or the time portion (hours, minutes, seconds, and
nanoseconds). Thus, if needed, you can store only one portion or the other
in a column.

The range of valid values for the date data type are the same as for the
datetime data type, meaning that date can hold values from January 1,
1753, through December 31, 9999. From a storage standpoint, date re-
quires only 3 bytes of space, with a character length of 10.

The time data type holds values 00:00:00.0000000 through
23:59:59.9999999 and can hold from 8 characters (hh:mm:ss) to 16 char-
acters (hh:mm:ss:nnnnnnn), where n represents fractional seconds. For ex-
ample, 13:45:25.5 literally means that it is 1:45:25 and one-half second
p.m. You can specify the scale of the time data type from 0 to 7 to desig-
nate how many digits you can use for fractional seconds. At its maximum,
the time data type requires 5 bytes of storage.

Datetime2
Another new data type in SQL Server 2008 is the datetime2 data type. This
is very similar to the original datetime data type, except that datetime2 in-
corporates the precision and scale options of the time data type. You can

Physical Storage 53

specify the scale from 0 to 7, depending on how you want to divide and
store the seconds. Storage for this data type is fixed at 8 bytes, assuming a
precision of 7.

Datetimeoffset
The final SQL Server 2008 date and time data type addition is datetime-
offset. This is a standard date and time data type, similar to datetime2 (be-
cause it can store the precision). Additionally, datetimeoffset can store a
plus or minus 14-hour offset. It is useful in applications where you want to
store a date and a time along with a relative offset, such as when you’re
working with multiple time zones. The storage requirement for datetime-
offset is 10 bytes.

String Data Types
When it comes to storing string or character data, the choice and variations
are complex. Whether you need to store a single letter or the entire text of
War and Peace, SQL Server has a string data type for you. Fortunately,
once you understand the difference between the available string data
types, choosing the correct one is straightforward.

Char and Varchar
Char and varchar are probably the most used of the string data types. Each
stores standard, non-Unicode text data. The differences between the two
lie mostly in the storage of the data. In each case, you must specify a length
when defining a column as char or varchar. The length sets the limit on the
number of characters the column can hold.

Here’s the kicker: The char data type always requires the same num-
ber of bytes for storage as you have specified for the length. If you have a
char(20), it will always require 20 bytes of storage, even if you store only a
5-character word in the column. With a varchar, the storage is always the
actual number of characters you have stored plus 2 bytes. So a varchar(20)
with a 5-character word will take up 7 bytes, with the extra 2 bytes holding
a size reference for SQL Server. Each type can have a length of as many as
8,000 characters.

When do you use one over the other? The rule of thumb is to use char
when all the data will be close to the same length, and use varchar when
the data will vary a great deal. Following this rule should make for opti-
mum storage.

54 Chapter 3 Physical Elements of Data Models

Another tip is to avoid using varchar for short columns. We have seen
databases use varchar(2) columns, and the result is wasted space. Let’s as-
sume you have 100 rows in your table and the table contains a varchar(2)
column. Assuming all the columns are NULL, you still need to store the
2 bytes of overhead, so without storing any data you have already taken up
as much space as you would using char(2).

One other special function of varchar is the max length option. When
you specify max as the length, your varchar column can store as much as
2^31–1 bytes of data, which is about 2 trillion bytes, or approximately 2GB
of string data. If you don’t think that’s a lot, open your favorite text editor
and start typing until you reach a 2GB file. Go on, we’ll wait. It’s a lot of in-
formation to cram into a single column. Varchar(max) was added to SQL
Server in the 2005 release and was meant to replace the text data type from
previous versions of SQL Server.

Nchar and Nvarchar
The nchar and nvarchar data types work in much the same way as the char
and varchar data types, except that the n versions store Unicode data.
Unicode is most often used when you need to store non-English language
strings that require special characters such as the Greek letter beta (�).
Because Unicode data is a bit more complex, it requires 2 bytes for each
character, and thus an nchar requires double the length in bytes for stor-
age, and nvarchar requires double the actual number of characters plus the
obligatory 2 bytes of overhead.

From our earlier discussion, recall that SQL Server stores tables in
8,060-byte pages. Well, a single column cannot span a page, so some sim-
ple math tells us that when using these Unicode data types, you will reach
8,000 bytes when you have a length of 4,000. In fact, that is the limit for
the nchar and nvarchar data types. Again, you can specify nvarchar(max),
which in SQL Server 2005 replaced the old ntext data type.

Binary and Varbinary
Binary and varbinary function in exactly the same way as char and varchar.
The only difference is that these data types hold binary information such
as files or images. As before, varbinary(max) replaces the old image data
type. In addition, SQL Server 2008 allows you to specify the filestream at-
tribute of a varbinary(max) column, which switches the storage of the
BLOB. Instead of being stored as a separate file on the file system, it is
stored in SQL Server pages on disk.

Physical Storage 55

Text, Ntext, and Image
As mentioned earlier, the text, ntext, and image data types have been
replaced with the max length functionality of varchar, nvarchar, and
varbinary, respectively. However, if you are running on an older version or
upgrading to SQL Server 2005 or SQL Server 2008, you may still need
these data types. The text data type holds about 2GB of string data, and
ntext holds about 1GB of Unicode string data. Image is a variable-length
binary field and can hold any binary data, up to about 2GB. When using
these data types, you must use certain functions to write, update, and read
to the columns; you cannot just do a simple update. Keep in mind that
these three data types have been replaced, and Microsoft will likely re-
move them from future releases of SQL Server.

Other Data Types
In addition to the standard numeric and string data types, SQL Server
2008 provides several other useful data types. These additional types allow
you to store XML data, globally unique identifiers (GUIDs), hierarchical
identities, and spatial data types. There is also a new file storage data type
that we’ll talk about shortly.

Sql_variant
A column defined as sql_variant can store most any data that can be stored
in the other SQL Server data types. The only data you cannot put into a
sql_variant are text, ntext, image, xml, timestamp, or the max length data
types. Using sql_variant you can store various data types in the same col-
umn of a table. As you will read in Chapter 4, this is not the best practice
from a modeling standpoint. That said, there are some good uses for
sql_variant, such as building a staging table when you’re loading less-than-
perfect data from other sources. The storage requirement for a sql_variant
depends on the type of data you put in the column.

Timestamp
This data type has a somewhat misleading name. In fact timestamp does
not store any sort of time or date information. Instead, timestamp is a bi-
nary number that is automatically incremented each time an insert or up-
date happens to a table containing the timestamp column. The counter for
the timestamp column is stored for the entire database, and each table is
allowed to have only a single timestamp column. In this way, you can tell
in what order various operations have happened in your database, or you
can implement row versioning.

56 Chapter 3 Physical Elements of Data Models

We once used timestamp to archive a large database. Each night we
would run a job to grab all the rows from all the tables where the time-
stamp was greater than the last row copied the night before. Timestamps
require 8 bytes of storage, and remember, 8 bytes can add up fast if you
add timestamps to all your tables.

Uniqueidentifier
The uniqueidentifier data type is probably one of the most interesting data
types available, and it is the topic of much debate. Basically, a uniqueiden-
tifier column holds a GUID—a string of 32 random characters in blocks
separated by hyphens. For example, the following is a valid GUID:

45E8F437-670D-4409-93CB-F9424A40D6EE

Why would you use a uniqueidentifier column? First, when you gen-
erate a GUID, it will be a completely unique value and no other GUID in
the world will share the same string. This means that you can use GUIDs
as PKs on your tables if you will be moving data between databases. This
technique prevents duplicate PKs when you actually copy data.

When you’re using uniqueidentifier columns, keep in mind a couple of
things. First, they are pretty big, requiring 16 bytes of storage. Second, un-
like timestamps or identity columns (see the section on primary keys later
in this chapter), a uniqueidentifier does not automatically have a new
GUID assigned when data is inserted. You must use the NEWID function
to generate a new GUID when you insert data. You can also make the de-
fault value for the column NEWID(). In this way, you need not specify
anything for the uniqueidentifier column; SQL Server will insert the
GUID for you.

Xml
The xml data type is a bit outside the scope of this book, but we’ll say a few
words about it. Using the xml data type, SQL Server can hold Extensible
Markup Language (XML) data in a column. Additionally, you can bind an
XML schema to the column to constrain the XML data being stored. Like
the max data types, the xml data type is limited to 2GB of storage.

Table
A table data type can store the result set of T-SQL statements for process-
ing later. The data is stored in a similar fashion to the way an entire table
is stored. It is important to note that the table data type cannot be used on

Physical Storage 57

columns; it can be used only in variables in T-SQL code. Programming in
SQL Server is beyond the scope of this book, but the table data type plays
an important role in user-defined functions, which we discuss shortly.

Table variables behave in the same way as base tables. They contain
columns and can have check constraints, unique constraints, and primary
keys. As with base tables, a table variable can be used in SELECT, IN-
SERT, UPDATE, and DELETE statements. Like other local variables,
table variables exist in the scope of the calling function and are cleaned up
when the calling module finishes executing. To use table variables, you de-
clare them like any other variable and provide a standard table definition
to the declaration.

Hierarchyid
The hierarchyid data type is a system-provided data type that allows you to
store hierarchical data, such as organizational data, project tasks, or file sys-
tem–style data in a relational database table. Whenever you have self-
referencing data in a tiered format, hierarchyid allows you to store and
query the data more efficiently. The actual data in a hierarchyid is repre-
sented as a series of slashes and numerical designations. This is a special-
ized data type and is used only in very specific instances.

Spatial Data Types
SQL Server 2008 also introduces the spatial data types for relational stor-
age. The first of the two new data types is geometry, which allows you to
store planar data about physical locations (distances, vectors, etc.). The
other data type, geography, allows you to store round earth data such as lat-
itude and longitude coordinates. Although this is oversimplifying, these
data types allow you to store information that can help you determine the
distance between locations and ways to navigate between them.

User-Defined Data Types
In addition to the data types we have described, SQL Server allows you to
create user-defined data types. With user-defined data types, you can
create standard columns for use in your tables. When defining user-
defined data types, you still must use the standard data types that we have
described here as a base. A user-defined data type is really a fixed defini-
tion of a data type, complete with length, precision, or scale as applicable.

For example, if you need to store phone numbers in various tables in
your database, you can create a phone number data type. If you create the

58 Chapter 3 Physical Elements of Data Models

phone number data type as a varchar(25), then every column that you de-
fine as a phone number will be exactly the same, a varchar(25). As you re-
call from the discussion of domains in Chapter 2, user-defined data types
are the physical implementation of domains in SQL Server. We highly rec-
ommend using user-defined data types for consistency, both during the ini-
tial development and later during possible additions to your data model.

Referential Integrity

We discussed referential integrity (RI) in Chapter 2. Now we look specifi-
cally at how you implement referential integrity in a physical database.

In general, data integrity is the concept of keeping your data consistent
and helping to ensure that your data is an accurate representation of the
real world and that it is easy to retrieve. There are various kinds of in-
tegrity; referential integrity ensures that the relationships between tables
are adhered to when you insert or update data. For example, suppose you
have two tables: one called Employee and one called Vehicle. You require
that each vehicle be assigned to an employee; this is done via a relation-
ship, and the rule is maintained with RI. You physically implement this re-
lationship using primary and foreign keys.

Primary Keys
A primary key constraint in SQL Server works in the same way as a primary
key does in your logical model. A primary key is made up of the column or
columns that uniquely identify the row in any given table.

The first step in creating a PK is to identify the columns on which to
create the key; most of the time this is decided during logical modeling.
What makes a good primary key in SQL Server, and, more importantly,
what makes a poor key? Any column or combination of columns in your
table that can uniquely identify the row are known as candidate keys.
Often there are multiple candidate keys in a table. Our first tip for PK se-
lection is to avoid string columns. When you join two tables, SQL Server
must compare the data in the primary key to the data in the other table’s
foreign key. By their nature, strings take more time and processing power
to compare than do numeric data types.

That leaves us with numeric data. But what kind of numeric should you
use? Integers are always good candidates, so you could use any of the int

Referential Integrity 59

data types as long as they are large enough to be unique given the table’s
potential row count. Also, you can create a composite PK (a PK that uses
more than one column), but we do not recommend using composite PKs
if you can avoid it. The reason? If you have four columns in your PK, then
each table that references this table will require the same four columns.
Not only does it take longer to build a join on four columns, but also you
have a lot of duplicate data storage that would otherwise be avoided.

To recap, here are the rules you should follow when choosing a PK
from your candidate keys.

■ Avoid using string columns.
■ Use integer data when possible.
■ Avoid composite primary keys.

Given these rules, let’s look at a table and decide which columns to use
as our PK. Figure 3.1 shows a table called Products. This table has a cou-
ple of candidate keys, the first being the model number. However, model
numbers are unique only to a specific manufacturer. So the best option
here would be a composite key containing both Model Number and
Manufacturer. The other candidate key in this table is the SKU. An
SKU (stock-keeping unit) number is usually an internal number that can
uniquely identify any product a company buys and sells regardless of
manufacturer.

60 Chapter 3 Physical Elements of Data Models

FIGURE 3.1 A Products table in need of a primary key

Let’s look at each of the candidates and see whether it violates a rule.
The first candidate (Model Number and Manufacturer) violates all the
rules; the data is a string, and it would be a composite key. So that leaves
us with SKU, which is perfect; it identifies the row, it’s an integer, and it is
a single column.

Now that we have identified our PK, how do we go about configuring
it in SQL Server? There are several ways to make PKs, and the method you
use depends on the state of the table. First, let’s see how to do it at the
same time you create the table. Here is the script to create the table, com-
plete with the PK.

CREATE TABLE Products(

sku int NOT NULL PRIMARY KEY,

modelnumber varchar(25) NOT NULL,

name varchar(100) NOT NULL,

manufacturer varchar(25) NOT NULL,

description varchar(255) NOT NULL,

warrantydetails varchar(500) NOT NULL,

price money NOT NULL,

weight decimal(5, 2) NOT NULL,

shippingweight decimal(5, 2) NOT NULL,

height decimal(4, 2) NOT NULL,

width decimal(4, 2) NOT NULL,

depth decimal(4, 2) NOT NULL,

isserialized bit NOT NULL,

status tinyint NOT NULL

)

You will notice the PRIMARY KEY statement following the definition of
the sku column. That statement adds a PK to the table on the sku column,
something that is simple and quick.

However, this method has one inherent problem. When SQL Server
creates a PK in the database, every PK has a name associated with it. Using
this method, we don’t specify a name, so SQL Server makes one up. In this
case it was PK_Products_30242045. The name is based on the table name
and some random numbers. On the surface, this doesn’t seem to be a big
problem, but what if you later need to delete the PK from this table? If you
have proper change control in your environment, then you will create a
script to drop the key and you will drop the key from a quality assurance
server first. Once tests confirm that nothing else will break when this key

Referential Integrity 61

is dropped, you go ahead and run the script in production. The problem is
that if you create the table using the script shown here, the PK will have a
different name on each server and your script will fail.

How do you name the key when you create it? What you name your
keys is mostly up to you, but we provide some naming guidelines in
Chapter 7. In this case we use pk_product_sku as the name of our PK. As
a best practice, we suggest that you always explicitly name all your primary
keys in this manner. In the following script we removed the PRIMARY KEY
statement from the sku column definition and added a CONSTRAINT state-
ment at the end of the table definition.

CREATE TABLE Products(

sku int NOT NULL,

modelnumber varchar(25) NOT NULL,

name varchar(100) NOT NULL,

manufacturer varchar(25) NOT NULL,

description varchar(255) NOT NULL,

price money NOT NULL,

weight decimal(5, 2) NOT NULL,

shippingweight decimal(5, 2) NOT NULL,

height decimal(4, 2) NOT NULL,

width decimal(4, 2) NOT NULL,

depth decimal(4, 2) NOT NULL,

isserialized bit NOT NULL,

status tinyint NOT NULL,

CONSTRAINT pk_product_sku PRIMARY KEY (sku)

)

Last, but certainly not least, what if the table already exists and you
want to add a primary key? First, you must make sure that any data already
in the column conforms to the rules of a primary key. It cannot contain
NULLs, and each row must be unique. After that, another simple script
will do the trick.

ALTER TABLE Products

ADD CONSTRAINT pk_product_sku PRIMARY KEY (sku)

But wait—there’s more. Using the sku column as we have done here is
fine, but there are other PK options we need to discuss. If you were to go
through your entire database and define PKs as we have done on the
Products table, you would likely end up with a different column name in

62 Chapter 3 Physical Elements of Data Models

each table that holds the primary key. This is not necessarily a bad thing,
but it means that you must look up the data type and column name when-
ever you want to add another column with a foreign key or you need to
write a piece of code to join tables.

Wouldn’t it be nice if all your tables had their PKs in columns having
the same name? For example, every table in your database could be given
a column named objectid and that column could simply have an arbitrary
unique integer. In this case, you can use an identity column in SQL Server
to manage your integer PK value. An identity column is one that auto-
matically increments a number with each insert into the table. When you
make a column an identity, you specify a seed, or starting value, and an in-
crement, which is the number to add each time a new record is added.
Most commonly, the seed and increment are both set to 1, meaning that
each new row will be given an identity value that is 1 higher than the pre-
ceding row.

Another option for an arbitrary PK is a GUID. GUIDs are most often
used as PKs when you need to copy data between databases and you need
to be sure that data copied from another database does not conflict with
existing data. If you were instead to use identities, you would have to play
with the seed values to avoid conflicts; for example, the number 1,000,454
could easily have been used in two databases, creating a conflict when the
data is copied. The disadvantages of GUIDs are that they are larger than
integers and they are not easily readable for humans. Also, PKs are often
clustered, meaning that they are stored in order. Because GUIDs are ran-
dom, each time you add data it ends up getting inserted into the middle of
the PK, and this adds overhead to the operation. In Chapter 10 we talk
more about clustered versus nonclustered PKs.

Of all the PK options we have discussed, we most often use identity
columns. They are easy to set up and they provide consistency across ta-
bles. No matter what method you use, carefully consider the pros and cons.
Implementing a PK in the wrong way not only will make it difficult to write
code against your database but also could lead to degraded performance.

Foreign Keys
As with primary keys, foreign keys in SQL Server work in the same way as
they do in logical design. A foreign key is the column or columns that cor-
respond to a primary key and establish a relationship. Exactly the same
columns with the same data as the primary key exist in the foreign key. It

Referential Integrity 63

is for this reason that we strongly advise against using composite primary
keys; not only does it mean a lot of data duplication, but also it adds over-
head when you join tables. Going back to our employee and vehicle exam-
ple, take a look at Figure 3.2, which shows the tables with some sample
data.

64 Chapter 3 Physical Elements of Data Models

FIGURE 3.2 Data from the employee and vehicle tables showing the
relationship between the tables

As you can see, both tables have objid columns. These are identity
columns and serve as our primary key. Additionally, notice that the vehicle
table has an employee_objid column. This column holds the objid of the
employee to whom the car is assigned. In SQL Server, the foreign key is
set up on the vehicle table, and its job is to ensure that the value you enter
in the employee_objid column is in fact a valid value that has a correspon-
ding record in the employee table.

The following script creates the vehicle table. You will notice a few
things that are different from the earlier table creation script. First, when
we set up the objid column, we use the IDENTITY(1,1)statement to cre-
ate an identity, with a seed and increment of 1 on the column. Second, we
have a second CONSTRAINT statement to add the foreign key relationship.
When creating a foreign key, you specify the column or columns in the ref-
erencing table that contain the foreign key as well as the referenced table
and columns that contain the primary key.

CREATE TABLE dbo.vehicle(

objid int IDENTITY(1,1) NOT NULL,

make varchar(50) NOT NULL,

model varchar(50)NOT NULL,

year char(4) NOT NULL,

employee_objid int NOT NULL,

CONSTRAINT PK_vehicle PRIMARY KEY (objid),

CONSTRAINT FK_vehicle_employee
FOREIGN KEY(employee_objid)
REFERENCES employee (objid)

)

Once your primary keys are in place, the creation of the foreign keys is
academic. You simply create the appropriate columns on the referencing
table and add the foreign key. As stated in Chapter 2, if your design re-
quires it, the same column in a table can be in both the primary key and a
foreign key.

When you create foreign keys, you can also specify what to do if an up-
date or delete is issued on the parent table. By default, if you attempt to
delete a record in the parent table, the delete will fail because it would re-
sult in orphaned rows in the referencing table. An orphaned row is a row
that exists in a child table that has no corresponding parent. This can cause
problems in some data models. In our employee and vehicle tables, a
NULL in the vehicle table means that the vehicle has not been assigned to
an employee. However, consider a table that stores orders and order de-
tails; in this case, an orphaned record in the order detail table would be
useless. You would have no idea which order the detail line belonged to.

Instead of allowing a delete to fail, you have options. First, you can
have the delete operation cascade, meaning that SQL Server will delete
all the child rows along with the parent row you are deleting. Be very care-
ful when using this option. If you have several levels of relationships with
cascading delete enabled, you could wipe out a large chunk of data by is-
suing a delete on a single record.

Your second option is to have SQL Server set the foreign key column
to NULL in the referencing table. This option creates orphaned records,
as discussed. Third, you can have SQL Server set the foreign key column
back to the default value of the column, if it has one. Similar options are
also available if you try to update the primary key value itself. Again, SQL
Server can either (1) cascade the update so that the child rows still point to
the correct parent rows with the new key, (2) set the foreign key to NULL,
or (3) set the foreign key back to its default value.

Referential Integrity 65

Changing the values of primary keys isn’t something we recommend
you do often, but in some situations you may find yourself needing to do
just that. If you find yourself in that situation often, you might consider set-
ting up an update rule on your foreign keys.

Constraints
SQL Server contains several types of constraints to enforce data integrity.
Constraints, as the name implies, are used to constrain the values that can
be entered into columns. We have talked about two of the constraints in
SQL Server: primary keys and foreign keys. Primary keys constrain the
data so that duplicates and NULLs cannot exist in the columns, and for-
eign keys ensure that the entered value exists in the referenced table.
There are several other constraints you can implement to ensure data in-
tegrity or enforce business rules.

Unique Constraints
Unique constraints are similar to primary keys; they ensure that no du-
plicates exist in a column or collection of columns. They are configured on
columns that do not participate in the primary key. How does a unique con-
straint differ from a primary key? From a technical standpoint, the only dif-
ference is that a unique constraint allows you to enter NULL values;
however, because the values must be unique, you can enter only one NULL
value for the entire column. When we talked about identifying primary
keys, we talked about candidate keys. Because candidate keys should also
be able to uniquely identify the row, you should probably place unique con-
straints on your candidate keys. You add a unique constraint in much the
same way as you add a foreign key, using a constraint statement such as

CONSTRAINT UNQ_vehicle_vin UNIQUE NONCLUSTERED (vin_number)

Check Constraints
Check constraints limit the values that can be entered into a column by
using a logical expression. A logical expression is any SQL expression
that can evaluate to TRUE or FALSE. The expression can be any valid
SQL expression, from simple comparisons to something more complex
such as calling a function. For example, say we want to limit the values that
can be entered for salary in our employee table. The expression we would
use to evaluate the data would be something like this:

66 Chapter 3 Physical Elements of Data Models

salary >= 10000 and salary <=150000

This line rejects any value less than 10,000 or greater than 150,000.
Each column can have multiple check constraints, or you can refer-

ence multiple columns with a single check. When it comes to NULL val-
ues, check constraints can be overridden. When a check constraint does its
evaluation, it allows any value that does not evaluate to false. This means
that if your check evaluates to NULL, the value will be accepted. Thus, if
you enter NULL into the salary column, the check constraint returns un-
known and the value is inserted. This feature is by design, but it can lead
to unexpected results, so we want you to be aware of this.

Check constraints are created in much the same way as keys or unique
constraints; the only caveat is that they tend to contain a bit more meat.
That is, the expression used to evaluate the check can be lengthy and
therefore hard to read when viewed in T-SQL. We recommend you create
your tables first and then issue ALTER statements to add your check con-
straints. The following sample code adds a constraint to the Products table
to ensure that certain columns do not contain negative values.

ALTER TABLE dbo.Products

ADD CONSTRAINT chk_non_negative_values

CHECK

(

weight >= 0

AND (shippingweight >= 0 AND shippingweight >= weight)

AND height >= 0

AND width >= 0

AND depth >= 0

)

Because it doesn’t make sense for any of these columns to contain neg-
ative numbers (items cannot have negative weights or heights), we add this
constraint to ensure data integrity. Now when you attempt to insert data
with negative numbers, SQL Server simply returns the following error and
the insert is denied. This constraint also prevents a shipping weight from
being less than the product’s actual weight.

The INSERT statement conflicted with the CHECK constraint

"chk_non_negative_values"

As you can see, we created one constraint that looks at all the columns
that must contain non-negative values. The only downfall to this method is

Referential Integrity 67

that it can be hard to find the data that violated the constraint. In this case,
it’s pretty easy to spot a negative number, but imagine if the constraint were
more complex and contained more columns. You would know only that
some column in the constraint was in violation, and you would have to go
over your data to find the problem. On the other hand, we could have cre-
ated a constraint for each column, making it easier to track down problems.
Which method you use depends on complexity and personal preference.

Implementing Referential Integrity
Now that we have covered PKs, FKs, and constraints, the final thing we
need to discuss is how to use them to implement referential integrity.
Luckily it’s straightforward once you understand how to create each of the
objects we’ve discussed.

One-to-Many Relationships
One-to-many relationships are the most common kind of relationship you
will use in a database, and they are also what you get with very little addi-
tional work when you create a foreign key on a table. To make the rela-
tionship required, you must make sure that the column that contains your
foreign key is set to not allow NULLs. Not allowing NULLs requires that
a value be entered in the column, and adding the foreign key requires that
the value be in the related table’s primary key. This type of relationship im-
plements a cardinality of “one or more to one.” In other words, you can
have a single row but you are not limited to the total number of rows you
can have. (Later in this chapter we look at ways to implement advanced
cardinality.) Allowing NULL in the foreign key column makes the rela-
tionship optional—that is, the data is not required to be related to the
reference table. If you were tracking computers in a table and using
a relationship to define which person was using the computer, a NULL
in your foreign key would denote a computer that is not in use by an
employee.

One-to-One Relationships
One-to-one relationships are implemented in exactly the same way as one-
to-many relationships—sort of. You still create a primary key and a foreign
key; the problem is that at this point SQL Server still allows users to insert
many rows into the foreign key table that reference the primary key table.

68 Chapter 3 Physical Elements of Data Models

There is no way, by default, to constrain the data to one-to-one. To imple-
ment a one-to-one relationship that is enforced, you must get a little
creative.

The first option is to write a stored procedure (more on stored proce-
dures later in this chapter) to do all your inserting, and then add logic to
prevent a second row from being added to the table. This method works in
most cases, but what if you need to load data directly to tables without a
stored procedure? Another option to implement one-to-one relationships
is to use a trigger, which we also look at shortly. Basically, a trigger is a
piece of code that can be executed after or instead of the actual insert
statement. Using this method, you could roll back any insert that would vi-
olate the one-to-one relationship.

Additionally—and this is probably the easiest method—you can add a
unique constraint on the foreign key columns. This would mean that the
data in the foreign key would have to be a value from the primary key, and
each value could appear only once in the referencing table. This approach
effectively creates a one-to-one relationship that is managed and enforced
by SQL Server.

Many-to-Many Relationships
One of the most complex relationships when it comes to implementation
is the many-to-many relationship. Even though you can have a many-to-
many relationship between two entities, you cannot create a many-to-many
relationship between only two tables. To implement this relationship, you
must create a third table, called a junction table, and two one-to-many
relationships.

Let’s walk through an example to see how it works. You have two ta-
bles—one called Student and one called Class—and both contain an iden-
tity called objid as their PK. In this situation you need a many-to-many
relationship, because each student can be in more than one class and each
class will have more than one student. To implement the relationship, you
create a junction table that has only two columns: one containing the
student_objid, and the other containing the class_objid. You then create a
one-to-many relationship from this junction table to the Student table, and
another to the Class table. Figure 3.3 shows how this relationship looks.

You will notice a few things about this configuration. First, in addition
to being foreign keys, these columns are used together as the primary key
for the Student_Class junction table. How does this implement a many-to-
many relationship? The junction table can contain rows as long as they do

Referential Integrity 69

not violate the primary key. This means that you can relate each student to
all the classes he attends, and you can relate all the students in a particular
class to that class. This gives you a many-to-many relationship.

It may sound complex, but once you create a many-to-many relation-
ship and add some data to the tables, it becomes pretty clear. The best way
to really understand it is to do it. When we build our physical model in
Chapter 9, we look more closely at many-to-many relationships, including
ways to make them most useful.

Implementing Advanced Cardinality
In Chapter 2, we talk about cardinality. Cardinality simply describes the
number of rows in a table that can relate to rows in another table.
Cardinality is often derived from your customer’s business rules. As with
one-to-one relationships, SQL Server does not have a native method to
support advanced cardinality. Using primary and foreign keys, you can eas-
ily enforce one-or-more-to-many, zero-or-more-to-many, or one-to-one
cardinality as we have described previously.

What if you want to create a relationship whereby each parent can con-
tain only a limited number of child records? For example, using our em-
ployee and vehicle tables, you might want to limit your data so that each
employee can have no more than five cars assigned. Additionally, employ-
ees are not required to have a car at all. The cardinality of this relationship
is said to be zero-to-five-to-many. To enforce this requirement, you need
to be creative. In this scenario you could use a trigger that counts the num-
ber of cars assigned to an employee. If the additional car would put the
employee over five, the insert could be reversed or rolled back.

Each situation is unique. In some cases you might be able to use check
constraints or another combination of PKs, FKs, and constraints to imple-
ment your cardinality. You need to examine your requirements closely to
decide on the best approach.

70 Chapter 3 Physical Elements of Data Models

FIGURE 3.3 Many-to-many relationship between a Student and a Class table

Programming

In addition to the objects that are used to store data and implement data
integrity, SQL Server provides several objects that allow you to write code
to manipulate your data. These objects can be used to insert, update,
delete, or read data stored in your database, or to implement business rules
and advanced data integrity. You can even build “applications” completely
contained in SQL Server. Typically, these applications are very small and
usually manipulate the data in some way to serve a function or for some
larger application.

Stored Procedures
Most commonly, when working with code in SQL Server you will work
with a stored procedure (SP). SPs are simply compiled and stored T-SQL
code. SPs are similar to views in that they are compiled and they generate
an execution plan when called the first time. The difference is that SPs, in
addition to selecting data, can execute any T-SQL code and can work with
parameters. SPs are very similar to modules in other programming lan-
guages. You can call a procedure and allow it to perform its operation, or
you can pass parameters and get return parameters from the SP.

Like columns, parameters are configured to allow a specific data
type. All the same data types are used for parameters, and they limit the
kind of data you can pass to SPs. Parameters come in two types: input and
output. Input parameters provide data to the SP to use during their ex-
ecution, and output parameters return data to the calling process. In ad-
dition to retrieving data, output parameters can be used to provide data to
SPs. You might do this when an SP is designed to take employee data and
update a record if the employee exists or insert a new record if the em-
ployee does not exist. In this case, you might have an EmployeeID param-
eter that maps to the employee primary key. This parameter would accept
the ID of the employee you intend to update as well as return the new em-
ployee ID that is generated when you insert a new employee.

SPs also have a return value that can return an integer to the calling
process. Return values are often used to give the calling process infor-
mation about the success of the stored procedure. Return values differ
from output parameters in that return values do not have names and you
get only one per SP. Additionally, SPs always return an integer in the re-
turn value, even if you don’t specify that one be returned. By default, an
SP returns 0 (zero) unless you specify something else. For this reason, 0 is

Programming 71

often used to designate success and nonzero values specify return error
conditions.

SPs have many uses; the most common is to manage the input and re-
trieval of your data. Often SPs are mapped to the entities you are storing.
If you have student data in your database, you may well have SPs named
sp_add_student, sp_update_student, and sp_retrieve_student_data. These
SPs would have parameters allowing you to specify all the student data that
ultimately needs to be written to your tables.

Like views, SPs reduce your database’s complexity for users and are
more efficient than simply running T-SQL repeatedly. Again, SPs remove
the need to update application code if you need to change your database.
As long as the SP accepts the same parameters and returns the same data
after you make changes, your application code does not have to change. In
Chapter 11 we talk in great detail about using stored procedures.

User-Defined Functions
Like any programming language, T-SQL offers functions in the form of
user-defined functions (UDFs). UDFs take input parameters, perform
an action, and return the results to the calling process. Sound similar to a
stored procedure? They are, but there are some important differences.
The first thing you will notice is a difference in the way UDFs are called.
Take a look at the following code for calling an SP.

DECLARE @num_in_stock int

EXEC sp_check_product_stock @sku = 4587353,

@stock_level = @num_in_stock OUTPUT

PRINT @num_in_stock

You will notice a few things here. First, you must declare a variable to store
the return of the stored procedure. If you want to use this value later, you
need to use the variable; that’s pretty simple.

Now let’s look at calling a UDF that returns the same information.

DECLARE @num_in_stock int

SET @num_in_stock = dbo.CheckProductStock (4587353)

PRINT @num_in_stock

72 Chapter 3 Physical Elements of Data Models

The code looks similar, but the function is called more like a function call
in other programming languages. You are probably still asking yourself,
“What’s the difference?” Well, in addition to calling a function and putting
its return into a variable, you can call UDFs inline with other code.
Consider the following example of a UDF that returns a new employee ID.
This function is being called inline with the insert statement for the em-
ployee table. Calling UDFs in this way prevents you from writing extra
code to store a return variable for later use.

INSERT INTO employee (employeeid, firstname, lastname)

VALUES (dbo.GetNewEmployeeID(), 'Eric', 'Johnson')

The next big difference in UDFs is the type of data they return. UDFs
that can return single values are known as scalar functions. The data the
function returns can be defined as any data type except for text, ntext,
image, and timestamp. To this point, all the examples we have looked at
have been scalar values.

UDFs can also be defined as table-valued functions: functions that
return a table data type. Again, table-valued functions can be called inline
with other T-SQL code and can be treated just like tables. Using the fol-
lowing code, we can pass the employee ID into the function and treat the
return as a table.

SELECT * FROM dbo.EmployeeData(8765448)

You can also use table-valued functions in joins with other functions or
with base tables. UDFs are used primarily by developers who write T-SQL
code against your database, but you can use UDFs to implement business
rules in your model. UDFs also can be used in check constraints or trig-
gers to help you maintain data integrity.

Triggers
Triggers and constraints are the two most common ways to enforce data in-
tegrity and business rules in your physical database. Triggers are stored
T-SQL scripts, similar to stored procedures, that run when a DML state-
ment (other than SELECT) is issued against a table or view. There are two
types of DML triggers available in SQL Server.

With an AFTER trigger, which can exist only on tables, the DML
statement is processed, and after that operation completes, the trigger

Programming 73

code is run. For example, if a process issues an insert to add a new em-
ployee to a table, the insert triggers the trigger. The code in the trigger is
run after the insert as part of the same transaction that issued the insert.
Managing transactions is a bit beyond the scope of this book, but you
should know that because the trigger is run in the same context as the
DML statement, you can make changes to the affected data, up to and in-
cluding rolling back the statement. AFTER triggers are very useful for ver-
ifying business rules and then canceling the modification if the business
rule is not met.

During the execution of an AFTER trigger, you have access to two vir-
tual tables—one called Inserted and one called Deleted. The Deleted
table holds a copy of the modified row or rows as they existed before a
delete or update statement. The Inserted table has the same data as the
base table has after an insert or update. This arrangement allows you to
modify data in the base table while still having a reference to the data as it
looked before and after the DML statement.

These special temporary tables are available only during the execution
of the trigger code and only by the trigger’s process. When creating
AFTER triggers, you can have a single trigger fire on any combination of
insert, update, or delete. In other words, one trigger can be set up to run
on both insert and update, and a different trigger could be configured to
run on delete. Additionally, you can have multiple triggers fire on the same
statement; for example, two triggers can run on an update. If you have
multiple triggers for a single statement type, the ordering of such triggers
is limited. Using a system stored procedure, sp_settriggerorder, you can
specify which trigger fires first and which trigger fires last. Otherwise, they
are fired in the middle somewhere. In reality, this isn’t a big problem. We
have seen very few tables that had more than two triggers for any given
DML statement.

INSTEAD OF triggers are a whole different animal. These triggers
perform in the way you would expect: The code in an INSTEAD OF trigger
fires in place of the DML statement that caused the trigger to fire. Unlike
AFTER triggers, INSTEAD OF triggers can be defined on views as well as
tables. Using them, you can overcome the limitation of views that have mul-
tiple base tables. As mentioned earlier, you can update a view only if you
limit your update to affecting only a single base table. Using an INSTEAD
OF trigger, you can update all the columns of a view and use the trigger to
issue the appropriate update against the appropriate base table. You can also
use INSTEAD OF triggers to implement advanced data integrity or busi-
ness rules by completely changing the action of a DML statement.

74 Chapter 3 Physical Elements of Data Models

You can also control trigger nesting and recursion behavior. With
nested triggers turned on, one trigger firing can perform a DML and cause
another trigger to fire. For example, inserting a row into TableA causes
TableA’s insert trigger to fire. TableA’s insert trigger in turn updates a
record in TableB, causing TableB’s update trigger to fire. That is trigger
nesting—one trigger causing another to fire—and this is the default be-
havior. With nested triggers turned on, SQL Server allows as many as 32
triggers to be nested. The INSTEAD OF trigger can nest regardless of the
setting of the nested triggers option.

Server trigger recursion specifies whether or not a trigger can per-
form a DML statement that would cause the same trigger to fire again. For
example, an update trigger on TableA issues an additional update on
TableA. With recursive triggers turned on, it causes the same trigger to fire
again. This setting affects only direct recursion; that is, a trigger directly
causes itself to fire again. Even with recursion off, a trigger could cause an-
other trigger to fire, which in turn could cause the original trigger to fire
again. Be very careful when you use recursive triggers. They can run over
and over again, causing a performance hit to your server.

CLR Integration
As of SQL Server 2005, we gained the ability to integrate with the .NET
Framework Common Language Runtime (CLR). Simply put, CLR inte-
gration allows you to use .NET programming languages within SQL Server
objects. You can create stored procedures, user-defined functions, triggers,
and CLR user-defined types using the more advanced languages available
in Microsoft .NET. This level of programming is beyond the scope of this
book, but you need to be aware of SQL Server’s ability to use CLR. You
will likely run into developers who want to use CLR, or you may find your-
self needing to implement a complex business rule that cannot easily be
implemented using standard SQL Server objects and T-SQL. So if you are
code savvy or have a code-savvy friend, you can create functions using CLR
to enforce complex rules.

Implementing Supertypes and Subtypes

We discuss supertypes and subtypes in Chapter 2. These are entities
that have several kinds of real-world objects being modeled. For example,
we might have a supertype called phone with subtypes for corded and

Implementing Supertypes and Subtypes 75

cordless phones. We separate objects into a subtype cluster because even
though a phone is a phone, different types will require that we track dif-
ferent attributes. For example, on a cordless phone, you need to know the
working range of the handset and the frequency on which it operates, and
with a corded phone, you could track something like cord length. These
differences are tracked in the subtypes, and all the common attributes of
phones are held in the supertype.

How do you go about physically implementing a subtype cluster in
SQL Server? You have three options. The first is to create a single table
that represents the attributes of the supertype and also contains the attri-
butes of all the subtypes. Your second option is to create tables for each of
the subtypes, adding the supertype attributes to each of these subtype ta-
bles. Third, you can create the supertype table and the subtype tables, ef-
fectively implementing the subtype cluster in the same way it was logically
modeled.

To determine which method is correct, you must look closely at the
data being stored. We will walk through each of these options and look at
the reasons you would use them, along with the pros and cons of each.

Supertype Table
You would choose this option when the subtypes contain few or no differ-
ences from the data stored in the supertype. For example, let’s look at a
cluster that stores employee data. While building a model, you discover
that the company has salaried as well as hourly employees, and you decide
to model this difference using subtypes and supertypes. After hashing out
all the requirements, you determine that the only real difference between
these types is that you store the annual salary for the salaried employees
and you need to store the hourly rate and the number of hours for an
hourly employee.

In this example, the subtypes contain very subtle differences, so you
could build this subtype cluster by using only the supertype table. For this
situation, you would likely create a single employee table that contains all
the attributes for employees, including all three of the subtype attributes
for salary, hourly rate, and hours. Whenever you insert an hourly em-
ployee, you would require that data be in the hourly rate and hour columns
and that the salary column be left NULL. For salaried employees, you
would do the exact opposite.

76 Chapter 3 Physical Elements of Data Models

Implementing the types in this way makes it easy to find the employee
data because all of it is in the same place. The only drawback is that you
must implement some logic to look at the columns that are appropriate to
the type of employee you are working with. This supertype-only imple-
mentation works well only because there are very few additional attributes
from the subtype’s entities. If there were a lot of differences, you would
end up with many of the columns being NULL for any given row, and it
would take a great deal of logic to pull the data together in a meaningful
way.

Subtype Tables
When the data contained in the subtypes is dissimilar and the number of
common attributes from the supertype is small, you would most likely im-
plement the subtype tables by themselves. This is effectively the opposite
data layout that would prompt you to use the supertype-only model.

Suppose you’re creating a system for a retail store that sells camera
equipment. You could build a subtype cluster for the products that the
store sells, because the products fall into distinct categories. If you look
only at cameras, lenses, and tripods, you have three very different types of
product. For each one, you need to store the model number, stock num-
ber, and the product’s availability, but that is where the similarities end. For
cameras you need to know the maximum shutter speed, frames per second,
viewfinder size, battery type, and so on. Lenses have a different set of at-
tributes, such as the focal length, focus type, minimum distance to subject,
and minimum aperture. And tripods offer a new host of data; you need to
store the minimum and maximum height, the planes on which it can pivot,
and the type of head. Anyone who has ever bought photography equip-
ment knows that the differences listed here barely scratch the surface; you
would need many other attributes on each type to accurately describe all
the options.

The sheer number of attributes that are unique for each subtype, and
the fact that they have only a few in common, will push you toward imple-
menting only the subtype tables. When you do this, each subtype table will
end up storing the common data on its own. In other words, the camera,
lens, and tripod tables would have columns to store model numbers, SKU
numbers, and availability. When you’re querying for data implemented in
this way, the logic needs to support looking at the appropriate table for the
type of product you need to find.

Implementing Supertypes and Subtypes 77

Supertype and Subtype Tables
You have probably guessed this: When there are a good number of shared
attributes and a good number of differences in the subtypes, you will
probably implement both the supertype and the subtype tables. A good ex-
ample is a subtype cluster that stores payment information for your cus-
tomers. Whether your customer pays with an electronic check, credit card,
gift certificate, or cash, you need to know a few things. For any payment,
you need to know who made it, the time the payment was received, the
amount, and the status of the payment. But each of these payment types
also requires you to know the details of the payment. For credit cards, you
need the card number, card type, security code, and expiration date. For
an electronic check, you need the bank account number, routing number,
check number, and maybe even a driver’s license number. Gift cards are
simple; you need only the card number and the balance. As for cash, you
probably don’t need to store any additional data.

This situation calls for implementing both the supertype and the sub-
type tables. A Payment table could contain all the high-level detail, and
individually credit card, gift card, and check tables would hold the infor-
mation pertinent to each payment type. We do not have a cash table, be-
cause we do not need to store any additional data on cash payments beyond
what we have in the Payment table.

When implementing a subtype cluster in this way, you also need to
store the subtype discrimination, usually a short code or a number that is
stored as a column in the supertype table to designate the appropriate sub-
type table. We recommend using a single character when possible, because
they are small and offer more meaning to a person than a number does. In
this example, you would store CC for credit card, G for a gift card, E for
electronic check, and C for cash. (Notice that we used CC for a credit card
to distinguish it from cash.) When querying a payment, you can join to the
appropriate payment type based on this discriminator.

If you need data only from either the supertype or the subtype, this
method offers two benefits: you need go to only one table, and you don’t
retrieve extraneous data. However, the flip side is that you must determine
which subtype table you need to query and then join both tables if you
need data from both the supertype and a subtype table. Additionally, you
may find yourself needing information from the supertype and multiple
subtypes; this will add overhead to your queries because you must join
multiple tables.

78 Chapter 3 Physical Elements of Data Models

Supertypes and Subtypes: A Final Word
Implementing supertypes and subtypes can, at times, be tricky. If you take
the time to fully understand the data and look at the implications of split-
ting the data into multiple tables versus keeping it tighter, you should be
able to determine the best course of action. Don’t be afraid to generate
some test data and run various options through performance tests to make
sure you make the correct choice. When we get to building the physical
model, we look at using subtype clusters as well as other alternatives for es-
pecially complex situations.

Summary

In this chapter, we have looked at the available objects inside SQL Server
that you will use when implementing your physical model. It’s important to
understand these objects for many reasons. You must keep all this in mind
when you design your logical model so that you design with SQL Server in
mind. This also plays a large part later when you build and implement your
physical model. You will probably not use every object in SQL Server for
every database you build, but you need to know your options. Later, we
walk through creating your physical model, and at that time we go over the
various ways you can use these physical objects to solve problems.

In the next chapter, we talk about normalization, and then we move on
to the meat and potatoes of this book by getting into our sample project
and digging into a lot of real-world issues.

Summary 79

This page intentionally left blank

