
INSIDE

�

SQL Server  
Insider
Tips for SQL Server pros� July 2007

Brought to you by

Designing databases for
performance

Take time to plan  
when developing your  
SQL Server databases for 
high performing applications  
from the start.

• 04 �Indexing 
strategies

• 06 �Code 
modules

• 07 �HA options

• 11 �article 1: 
Speed up 
SQL Server 
backup and 
restore time

• 14 �article 2:  
T-SQL in SSIS: 
The power 
and the 
weaknesses



SearchSQLServer.com       Designing databases for performance

�

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

eveloping databases 
might seem relatively 
simple. However,  
Microsoft SQL Server 
database architects 
and administrators 

have many choices to make if 
they want their applications 
to perform well right from the 
start.

Many attempt to use the 
“rapid development” approach 
by jumping straight to coding. 
Unfortunately, taking shortcuts 
often leads to performance 
problems that are consider-

D ably more difficult and costly 
to overcome once the applica-
tion is deployed in a production 
environment.

Thinking through all the  
options during database  
development might increase 
the time it takes to complete 
your project, but it will pay off 
in performance dividends.  
Taking the time to choose ap-
propriate data models, data 
types, indexing strategies and 
code modules can save a lot of 
time and effort tuning the  
database down the road.

��

Designing databases for 						   
			      performance

By Baya Pavliashvili

Baya Pavliashvili 
is a 
database 
consultant 
helping his 
customers 

develop highly avail-
able and scalable 
applications with SQL 
Server and Analysis 
Services. Throughout 
his career he has 
managed database 
administrator teams 
and databases of 
terabyte caliber. 
Baya’s primary areas 
of expertise are 
performance tuning, 
replication and data 
warehousing. He can 
be reached at baya@
bayasqlconsulting.
com. 

mailto: baya@bayasqlconsulting.com
mailto: baya@bayasqlconsulting.com
mailto: baya@bayasqlconsulting.com
http://www.searchsqlserver.com


SearchSQLServer.com       Designing databases for performance

�

Indexing  
strategies

Code 
modules 

HA 
options

Speed up SQL 
Server backup

T-SQL 
in SSIS 

What’s the purpose of your database?
The first step in database development is to con-
sider the type of application you’re about to build. 
There is a right tool for each job, and using the 
wrong tool can have unpleasant side effects. Keep-
ing that in mind, databases generally have one of 
the following three purposes:

1 online transaction processing (oltp) sys-
tems are used to collect the data. For example, you 
could build an OLTP system so your customers can 
order items from an online bookstore.

Data models for OLTP systems are highly nor-
malized. Each data element is recorded only in one 
place. By eliminating or at least minimizing data 
duplication, you can make transactions faster and 
reduce the amount of storage space needed.

2 decision support system (dss) applications 
are used to generate detailed, transaction-level 
reports about data collected by OLTP systems. 
Because OLTP systems attempt to minimize data 
duplication, creating reports against such systems 
requires joining numerous tables, and it generally 
does not perform well. 

DSS applications mold the OLTP model into one 
that is much easier to report against by de-normal-
izing tables and introducing data duplication. Each 

DSS application is usually built to report on data 
collected by a single OLTP application.

3 data warehouse systems are used to con-
solidate all enterprise data into a single data store 
and make it possible to correlate data from mul-
tiple OLTP systems. Data warehouses allow senior 
executives to examine a global picture of business 
performance and to detect areas of weakness for 
making strategic decisions.

Data warehouses are built using star or snow-
flake schema data models, which consist of fact 
and dimension tables. These models are best suit-
ed for pre-aggregating data and for examining the 
business from various perspectives. For example, 
an executive could review car rental history based 
on date, make or model of a vehicle, customer de-
mographics or store location.

Although you can use an OLTP system for re-
porting or a data warehouse for collecting data, 
you’re bound to encounter performance problems 
if you do so.

øCreating reports against OLTP systems usually 
makes for poor performance because it requires 
joining numerous tables. Instead, incorporate 
DSS applications to produce reports with data 
collected by OLTP systems.

http://www.searchsqlserver.com


SearchSQLServer.com       Designing databases for performance

�

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

Choose appropriate  
data types
Here is a simple yet often ne-
glected principle: Use the small-
est and most appropriate data 
type for each column. For exam-
ple, you could use about a dozen 
different data types for storing 
a person’s age, such as BIGINT, 
INT, SMALLINT, TINYINT, DECI-
MAL, FLOAT, CHAR(3), VAR-
CHAR(3) and others.

Because most of us won’t 
live more than 255 years, it is 
safe to use the data type that 
requires the least overhead and 
still supports the necessary 
range of values — TINYINT, 
which supports whole numbers 
between 0 and 255. Similarly, 
in a data warehousing sce-
nario, you could use a character 
identifier for a vehicle rental 
instance to join this dimension 
to the rental fact. However, for 
best performance, you should 
create a surrogate key with an 
integer data type to make joins 

between fact and dimension 
tables as fast as possible.

Using inappropriate data 
types can also affect your in-
dexing strategies. SQL Server 
indexes are limited to 900 
characters. If you create a VAR-
CHAR column with more than 
900 characters, you cannot 
index such columns. Further-
more, if your columns are wider 
than necessary, the indexes 
created on such columns will 
also be wider than necessary. 
SQL Server can scan —  or seek 
through —  lean indexes faster 
than fat indexes.

Decide on the best  
indexing strategies
Appropriate indexes can make 
a world of difference in perfor-

mance. SQL Server supports 
only two index types for most 
data types — clustered and 
non-clustered. SQL Server also 
supports full-text indexes and 
XML indexes, but those are 
relevant only for specific data 
types.

It is crucial to choose the 
appropriate column or set of 
columns for your clustered 
index. The reason is that the 
table’s data is physically sorted 
by the values in the clustered 
index column or columns. You 
can create only a single clus-
tered index on each table. Non-
clustered indexes reference 
the clustered index keys (data 
values) to determine the physi-
cal location of each record.

It is recommended that you 

Use the appropriate data types to stay  
away from unnecessarily wide indexes when 
possible. SQL Server scans lean indexes  
faster than fat indexes.

http://www.searchsqlserver.com


SearchSQLServer.com       Designing databases for performance

�

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

create the clustered index on 
the columns that do not change 
often, are highly selective and 
have lean data types. In many 
cases, the clustered index on 
an identity column is the best 
choice because identity values 
are highly selective —  each re-
cord has a unique identity value 
—  and they are never updated 
and are built using SMALLINT, 
INT or BIGINT data types.

However, it is not uncom-
mon to find a table that is never 
queried based on its identity 
column. If so, carefully consider 
how the data is commonly 
retrieved, perhaps by a foreign 
key to another table or by a 
character column. Often, you 
can improve performance by 
creating the clustered index on 
the column or set of columns 
that is most frequently used for 
retrieving the data.

Some developers like to 
create composite clustered 
indexes. These span several 

columns, a combination of 
which uniquely identifies each 
record. This might sound like 
a good practice because the 
identity column has no busi-
ness meaning, whereas other 
columns —  such as hire date, 
department name and vehicle 
identification number —  defi-
nitely translate into something 
immediately known by appli-
cation users. However, from a 
performance perspective, you 
should avoid composite clus-
tered indexes.

Once again, the leaner the 
index, the faster SQL Server 
can scan or seek through it. You 
might find that for a small data 
set, composite indexes per-
form relatively well. But as the 
number of users grows, you’re 
bound to encounter problems.

After you see performance 
benefits from building ap-
propriate indexes, you might 
think your work is finished. 
But as data is added, modi-

fied and removed from tables, 
the respective indexes become 
fragmented. The higher the 
fragmentation, the less effec-
tive your indexes become. Now 
you’ll need to implement a plan 
for removing fragmentation 
from your indexes to ensure 
they remain effective.

With prior versions of SQL 
Server, removing fragmentation 
from large indexes (tables with 
many millions of rows) often 
required downtime. Fortunately, 
SQL Server 2005 supports 
online index rebuilds that make 
your life considerably easier. 
Keep in mind, however, that 
rebuilding indexes still requires 
system resources and space in 
a tempdb database. If possible, 
schedule index maintenance 
during periods of minimum user 
activity.

øFrom a performance 
perspective, you should avoid 
composite clustered indexes.

http://www.searchsqlserver.com


SearchSQLServer.com       Designing databases for performance

�

Indexing  
strategies

Code 
modules 

HA 
options

Speed up SQL 
Server backup

T-SQL 
in SSIS 

Use the most appropriate code modules
SQL Server supports a number of ways to accom-
plish the same task, but not all of the methods 
are appropriate for each task. For example, just 
because SQL Server supports Common Language 
Runtime (CLR) stored procedures, doesn’t mean 
you should implement simple data retrieval and 
update operations using CLR.

SQL Server supports the following classes of 
code modules:

views are simply queries that are stored on the 
server. Views typically have no performance 
advantage over an ad-hoc set of SQL state-
ments. A view with a nine-table join will not 
perform any better than the same nine-table join 
submitted through an ad-hoc SQL statement. 
Exceptions to this rule include indexed views and 
distributed partitioned views that, in some cases, 
can offer significant performance benefits.

scalar user-defined functions allow you to 
extend the existing arsenal of built-in functions 
by performing some operation specific to your 
business. Be careful when using scalar UDFs 
against large tables. Scalar UDFs get compiled 
once per execution. Furthermore, if you call a 
scalar UDF against a column in a table with a 

„

„

million rows, the UDF code will be executed a 
million times. Scalar UDFs should be short and 
used only when the same functionality cannot 
be accomplished through built-in functions.

table-valued user-defined functions come 
in single statement and multi-statement. They 
both accept parameters and are sometimes used 
for implementing business logic. Single-state-
ment UDFs are similar to views, but because 
they accept parameters, they’re more powerful 
and often faster. If you have a join that involves a 
number of tables, you can often break it up into 
multiple statements, each performing a much 
smaller number of joins to speed up the query 
through a multi-statement UDF. Table-valued 
UDFs have many limitations. For instance, they 
disallow the use of nondeterministic built-in 
functions. Most business logic implemented in 
database code should be reserved for stored 
procedures.

transact-sql stored procedures should be 
used for all data retrieval, addition, modification 
and removal of records from tables. Although 
you could implement complex business rules 
with stored procedures, those are best suited 
for middle-tier code. For two-tiered applications, 

„

„

http://www.searchsqlserver.com


SearchSQLServer.com       Designing databases for performance

�

Indexing  
strategies

Code 
modules 

HA 
options

Speed up SQL 
Server backup

T-SQL 
in SSIS 

though, try implementing business rules with 
stored procedures rather than any other Trans-
act-SQL code module. 

extended stored procedures (xps) are writ-
ten using C++ language. XPs are necessary only 
for implementing functionality that is not directly 
available with SQL Server, such as querying reg-
istry or accessing file systems. SQL Server must 
use a relatively small area of memory called 
“MemToLeave” for XPs. If you use XPs heavily, 
your server is likely to experience memory pres-
sures. You could adjust the amount memory left 
for “MemToLeave,” but then you’ll effectively 
reduce the amount of memory in the other area 
—  buffer pool, or BPool —  and can, therefore, 
hurt performance of Transact-SQL code mod-
ules. Modifying registry values and compressing 
files isn’t part of SQL Server functionality and 
should normally be implemented elsewhere. SQL 
Server includes built-in extended stored proce-
dures that are thoroughly tested and appropriate 
for use by database administrators. Developers 
should be strongly discouraged from using XPs.

clr procedures are new with SQL Server 2005 
and allow implementing heavy computational 
logic that normally performs poorly in T-SQL 

„

„

routines. CLR procedures supplement T-SQL 
code —  they don’t replace it. As such, CLR pro-
cedures should be used sparingly. Don’t forget 
that T-SQL has been around for more than 15 
years, and most people have much more experi-
ence with tuning T-SQL code rather than CLR 
code.

Picking high-availability options
With SQL Server, several options exist for ensur-
ing the continuous availability of your applications 
in the event of hardware failure. Some options can 
provide better performance by using resources on 
multiple servers to separate transaction process-
ing and reporting activities. Just as you did when 
designing data models, think of high-availability 
architecture at project inception rather than after 
deployment.

Replication moves transactions and data from 
the primary server to other servers. Separate 
transaction processing and reporting functionality 
by replicating transactions from an OLTP to DSS 
server. You could physically partition your data 
across multiple servers and direct a subset of users 
to each OLTP server. Then transactions from OLTP 
servers could be combined on the reporting server 
or servers.

Be sure to replicate only those data and trans-

http://www.searchsqlserver.com


SearchSQLServer.com       Designing databases for performance

�

Indexing  
strategies

Code 
modules 

HA 
options

Speed up SQL 
Server backup

T-SQL 
in SSIS 

actions that are necessary for each application. 
Transactional databases can have many tables and 
columns that are never used for reporting.

 Many DBAs fall into the trap of thinking it’s 
easier to replicate all data as often as possible. Al-
though that might be easier for developers, it’s cer-
tainly not easier on your servers or your network. 
Know your limits. Consider network bandwidth, 
your available disk space, the number and type of 
scheduled jobs and their effect on the replicated 
transactions.

Log shipping can back up transaction logs on 
the primary server and restore these backups to 
secondary servers. Log shipping can help perfor-
mance by offloading reporting or ad-hoc querying 
functionality to secondary servers, but databases 
on a secondary server will not be available while 
you restore transaction log backups. Log shipping 
is easy to implement as long as you have the right 
hardware. Don’t try using your old desktop for log 
shipping. The standby server should be as power-
ful as your primary server —  after all, if the prima-
ry server fails, your stand-by server must become 
the primary server.

Contrary to popular belief, clustering offers no 
performance benefit. It is intended solely for au-
tomatically bringing the secondary server online 
when your primary server fails.

Database mirroring is the newest kid on the 
high-availability block. It is somewhat similar to log 
shipping because the same transactions are ap-
plied to two identical databases on different serv-
ers. Unlike log shipping, mirroring offers automatic 
failover. Unlike clustering, you must set up sepa-
rate mirrors for each database. 

You can use mirroring to separate transactional 
and read-only activity. Databases on the second-
ary server must remain offline until the failover 
occurs. However, you can take snapshots of the 
mirror databases on a secondary server and make 
them available for reporting purposes. Once you 
have a database snapshot, you could also use 
integration services to transport the data to a data 
warehouse and correlate it with data from other 
transactional systems.

Many options must be carefully considered when 
developing SQL Server applications. To ensure suc-
cess, take the time to make the best choices during 
development rather than after deployment. 

Choosing the most appropriate data model, data 
types, indexing strategies and code modules are 
essential steps for developing an application that 
satisfies your needs. Consider some of the high-
availability options for separating transactional 
and reporting activities to keep your application 
performing at its peak.ø

http://www.searchsqlserver.com


�

Advertorial

ServiceU gains 99.999% uptime, more 
than $900,000 in benefits, and 595% 
return on investment thanks to Dell 
PowerEdge Servers and Microsoft SQL 
Server 2005
Memphis-based ServiceU, in business since 1997, is an on-demand service provider 
which delivers Web-based software for event management. It serves more than 1,000 
organizations worldwide, ranging from Fortune 500 companies to public universities 
and small, nonprofit institutions. The company’s software has been used to handle 
scheduling for more than 12 million events. 

The always-on availability of ServiceU’s databases and Web-based software is the 
key to the company’s success. “The entirety of our business is done online,” explains 
ServiceU Chief Technology Officer, David P. Smith. “It accounts for all of our revenue, 
so uptime is crucial to us.”

— David P. Smith,
Chief Technology Officer, 

ServiceU

ServiceUTicket to Growth     



10

Advertorial

ServiceU faces some unique challenges in maintaining such high levels of availability. 
Payment Card Industry (PCI) standards mandate that level-one PCI service providers 
like ServiceU meet a rigorous set of disaster recovery (DR) requirements. In addition, 
the company’s Memphis offices sit atop an active fault. Says Smith, “according to 
seismologists, we are within 40 years of another major earthquake, so we have to 
be prepared.”

Faced with the requirement of always-on availability, quick disaster recovery (DR), 
and compliance with PCI standards, ServiceU realized that it needed to improve on 
a DR plan that called for physical tapes to be sent by helicopter between facilities. 
After a detailed analysis, ServiceU turned to Dell and Microsoft SQL Server 2005 
with Database Mirroring, to mirror the databases from its main facility in Memphis 
to its disaster recovery facility in Atlanta. 

“Database mirroring allows us to have the Atlanta facility functional, compliant, and 
ready to use at a moment’s notice,” says Smith. “Additionally, the Dell and SQL Server 
2005 database mirroring solution allows us to eliminate risks from natural disasters, 
such as earthquakes, and assure our customers that they will always have the same 
level of service that they rely on.”

Thanks to the mirroring solution, ServiceU can guarantee high availability that will 
help it expand into new markets. ServiceU expects to realize a cumulative, projected, 
three-year net benefit of US$908,985 which will result in an ROI of 595 percent and a 
payback period of five months.

To view the entire story, click here.

Ticket to Growth  ServiceU

http://www.dell.com/content/topics/global.aspx/casestudies/en/us/us/fy2008_q2_id539?c=us&cs=555&l=en&s=biz%20


11

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

perhaps the most important task that occurs on every SQL Server system 
is running backups and restores. Backup copies of your database give you 
the security of having a complete copy to fall back on if any issues surface 
with your production database. In most cases the restore process is done for 
non-production critical means such as refreshing development\test environ-
ments or refreshing a reporting environment. But in the most critical mode, 
you are restoring these backup copies to replace or fix a production environ-
ment.

Based on the importance of creating backups and the critical need for 
restoring backups to correct a production problem, time is of the essence. 
Backups are an online operation, but they do use system resources. Restores, 
however, require exclusive access to the database, so in a failure state this is 
an even more critical task.

Speed up SQL
Server backup and

      restore time 

SQLServer Insider Backup and recovery

by Greg Robidoux

Greg Robidoux 
is the 
president 
and 
founder 

of Edgewood 
Solutions LLC, a 
technology services 
company delivering 
professional services 
and product solutions 
for Microsoft 
SQL Server. He 
has authored 
numerous articles 
and has delivered 
presentations at 
regional SQL Server 
users groups and 
national SQL Server 
events. Robidoux 
also serves as the 
SearchSQLServer.com 
Backup and Recovery 
expert.

SearchSQLServer.com       Speed up SQL Server backup and restore time

http://www.searchsqlserver.com


12

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

In light of the time factor to 
complete these tasks, there are 
several things that can be done 
on both the backup side and 
the restore side to improve the 
speed of these operations. 

Hardware backup and 
restore time is affected by 
your hardware as well as the 
configuration of that hardware. 
From a hardware perspective, 
here are a few things you 
should consider doing to 
improve performance:

Spread the disk I/O. By 
using as many drives as 
possible, you can make 
sure the disk I/O is not the 
bottleneck. Also make sure 
you are not using the same 
drives for both reading and 
writing.
Employ the newest 
hardware technology.
Use the fastest RAID 
configurations: RAID 0, 
RAID1, RAID10 and then 
RAID 5.

„

„

„

Use the fastest drives.
Use the fastest controllers, 
and separate disk activity 
onto different controllers or 
different channels.
Use locally attached disks 
instead of backing up across 
the network.
Backup to disk and then 
archive to tape.
Use SAN technologies for 
snapshot and split mirror 
backups.
If you do need to back up 
to other machines, use the 
fastest network cards and 
switches possible. And if 
you can segment this traffic 
from normal traffic, you’ll 
reduce the network I/O 
bottleneck.

Native backups
Another area that affects 
the time it takes to complete 
backups is when and how the 
backups are run.

Execute during low server 

„

„

„

„

„

„

„

usage times.
Don’t run all of your backups 
at the same time.
Don’t run batch processing 
at the same time as large 
backups.
Use backup options to write 
to multiple files. This will 
spread your I/O as well 
as increase the number of 
threads.
Use a combination of back-
up techniques: full, differen-
tial and log.

Native restores
From a restore perspective, 
most of the items mentioned 
above apply to restores as well. 
Here are a few additional tips:

Use a staging area so 
backups are partially 
restored, instead of having 
to restore all backups at the 
same time.
Use a restore process such 
as log shipping.
Use other technologies 

„

„

„

„

„

„

„

SearchSQLServer.com       Speed up SQL Server backup and restore time

http://www.searchsqlserver.com


13

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

besides backup and restore 
for data recovery, such as 
clustering, replication, CDP, 
etc.

Third-party software
One key time-saving function 
is using a backup compression 
tool built specifically for SQL 
Server. There are several on the 
market, and these tools provide 
the biggest gains with the least 
amount of effort. Use compres-
sion software such as Idera’s 
SQLsafe, Quest Software Inc.’s 
LiteSpeed, and Red-Gate’s SQL 
Backup.

Based on a test by Idera and 
various hardware vendors, Idera 
was able to achieve backup 
rates of 4.5 terabytes per hour 
and restore rates in excess of 
2.3 terabytes per hour by us-
ing SQLsafe. Take a look at this 
link for additional info on set-
ting new performance records. 
This is probably the extreme for 
most SQL environments, both 

from the cost to configure the 
hardware to the need to back 
up a 4.5 terabyte database. But 
the fact is that it is possible by 
configuring the total solution in 
both hardware and software. ø

Summary There are several things you can do to increase 
the throughput of your backup and restore processing. Some of 
them are pretty simple fixes while others require reconfiguring 
your hardware, purchasing new hardware or purchasing tools that 
can help increase the speed.

Based on the speed of the Idera tests to achieve 4.5 terabytes in 
an hour, using a third-party backup compression tool seems like 
the simplest and easiest way to go. I don’t think there are many 
databases that fall into this realm of database size, so, based on 
the test, most full backups could be completed in under an hour. 
In a report of the largest SQL Server databases, you can see there 
are still not many databases that cross the terabyte threshold. 
From the report, the number almost tripled in two years, and I 
am sure the number will triple again —  if not by even more in the 
next two years.

By using a combination of all these options, you will be able 
to achieve faster backup and restore times; but like most things, 
there will always be some kind of limitation.

You must be prepared 
to efficiently manage 
growing SQL Server 
databases.

SearchSQLServer.com       Speed up SQL Server backup and restore time

http://www.idera.com/News/Archive/February06NL.html#L3 
http://www.idera.com/News/Archive/February06NL.html#L3 
http://www.searchsqlserver.com


14

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

sql server integration services, or SSIS, provides a number of dif-
ferent mechanisms to create and pull data from a data source. One 
is the ExecuteSQL task, which lets you use a T-SQL statement, much 
as you might pass a bit of T-SQL from a front-end application to SQL 
Server on the back end. The T-SQL in question can be a full statement 
or a reference to an existing stored procedure.

T-SQL, however, is not the only way to get data into SSIS. There’s 
also the Data Flow task, which leads people to ask: Why use T-SQL in 
SSIS? Why not just use data flows? What’s the advantage to T-SQL, 
if any? I went searching for a response to those questions and found 
a number of very well-explained answers at Jamie Thomson’s SSIS 
Junkie blog at Conchango. I’ll rephrase a few of them here, along with 
some of my own commentary gleaned from personal experience.

T-SQL in SSIS:  
		   The power and
	 the weaknesses

SQLServer Insider Development

by Serdar Yegulalp

Serdar Yegulalp has 
been writing 
about 
Windows 
and related 
technologies 

for over 10 years and is 
a regular contributor 
to various sections of 
TechTarget, as well 
as other publications. 
He hosts the Web site 
WindowsInsider.com, 
where he posts regularly 
about Windows and has  
an ongoing feature 
guide to Vista for 
emigrants from 
Windows XP.

SearchSQLServer.com       T-SQL in SSIS: The power and the weaknesses

http://blogs.conchango.com/jamiethomson/archive/2006/03/14/SSIS_3A00_-Data-flows-or-T_2D00_SQL.aspx
http://blogs.conchango.com/jamiethomson/archive/2006/03/14/SSIS_3A00_-Data-flows-or-T_2D00_SQL.aspx
http://www.WindowsInsider.com
http://www.searchsqlserver.com


15

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

using an existing piece of t-sql or stored 
procedure is a time-saver, rather than 
recreating the whole thing in a data flow. If you 
have an existing stored procedure that took a 
good deal of sweat and concentration to build, 
there’s no point in tearing it down and rebuild-
ing it; you can simply use it as is. There are 
some slight differences in the syntax for evok-
ing a stored procedure (mostly in the way pa-
rameters are passed), but very little that would 
prevent existing stored procedures from being 
reused in ExecuteSQL. There are, however, a 
couple of things that might cause problems. 

your sql server programmers don’t have 
to learn much of anything new to make 
their code work in SSIS. They can write T-SQL 
code, and it can simply be dropped into SSIS 
workflows, with relatively little modification. 
If you’re taking over someone else’s work and 
migrating it progressively into SSIS, you may 
be more inclined to reuse the existing work in-
stead of trying to re-engineer something from 
scratch.

the majority of work is done wherever 
your database is, instead of where SSIS 
itself is running (which may not be the same 

„

„

„

machine). This may not be an advantage, but it 
is a behavior worth noting. It can work for you 
or against you.

t-sql uses transactions within the data-
base itself instead of across MSDTC (as SSIS 
does).

Now, here are some reasons why T-SQL in a
SQL Server Integration Services data flow may
not be a good idea: 

some stored procedures do not expose 
data in a preview. The simple reason is that 
it’s not always possible to predict what col-
umns a given stored procedure will produce 
when it’s run. That said, some stored proce-
dures can’t be used in place of a data flow if 
you need a predictable “output contract” for 
that data flow. However, you can use a view to 
expose a data flow preview. The view is bound 

„

„

øThere’s no learning curve for SQL Server 
developers to experience in order to make 
their T-SQL code work in SSIS. With little 
modification, T-SQL code can be dropped 
into SSIS workflows.

SearchSQLServer.com       T-SQL in SSIS: The power and the weaknesses

http://www.searchsqlserver.com


16

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

tightly to the schema(s) it works with and 
doesn’t change, unless you explicitly recast 
it (i.e., you edit it). So if you have an existing 
view that you want to use as a data source in 
SSIS, you’ll have previewing as a bonus fea-
ture.

ssis data flows are better for more 
complex, multi-step operations, such as 
jobs that require:

a lot of programmatic work
aggregation from different data sources or 
type aggregation from different data sources 
or types
structured exception handling
additional transformation
jobs that can’t be accessed from SQL itself

These are things that are not always done 
elegantly or efficiently in the context of T-SQL:

ssis data flows are self-documenting, 
which is another possible advantage of SSIS 
data flows over T-SQL. But, it’s true only to 
a point. If you don’t have any understanding 
of the schema being accessed, you’re just as 
likely to be in the dark. On the other hand, 

„

„

„

„

„

„

„

stored procedures and T-SQL in general are 
not self-documenting at all —  unless whoever 
wrote them took the time to document each in 
detail (and how often does that happen?).

From all of this, we derive two simple rules about 
using T-SQL versus data flow:

1 t-sql is best suited for operations in which 
you’re simply gleaning data from an existing set, 
where the process for doing so is not likely to 
change soon and doesn’t involve a lot of additional 
transformation.

2 the data flow task works best when you’re 
devising an entirely new data transformation 
—  something where existing T-SQL (or T-SQL it-
self) won’t comfortably do the job. You can’t really 
gauge this unless you’ve worked a great deal with 
T-SQL and know its limitations. You need to know 
at least as much about T-SQL as you do about SSIS 
in order to take advantage of both. ø

SearchSQLServer.com       T-SQL in SSIS: The power and the weaknesses

http://www.searchsqlserver.com


SearchSQLServer.com       Designing databases for performance

17

Indexing  
strategies

Code 
modules

HA 
options

Speed up SQL 
Server backup

T-SQL  
in SSIS

editors 
Heidi Sweeney 
Christine Casatelli

copy editor
Martha Moore

design
Ronn Campisi
www.ronncampisi.com 
Heather Luipold

SQL Server  
Insider
is brought to you by
SearchSQLServer.com.
The articles “Speed up 
SQL Server backup and 
restore time” and “T-
SQL in SSIS: The power 
and the weaknesses” 
originally appeared on 
SearchSQLServer.com.

Additional Resources from Dell
 
 

Ø �Dell’s SQL Server 2005 Tested & Validated Configurations  
http://www.dell.com/content/topics/global.aspx/sitelets/solutions/
software/db/microsoft_sql_2005_se?c=us&cs=555&l=en&s=biz

Ø ��Dell’s SQL Server 2005 Reference Architecture 
http://www.dell.com/downloads/global/solutions/sql_server_2005_
reference_architecture_w2k3_std.pdf?c=us&cs=555&l=en&s=biz    

Ø �Dell SQL Server 2005 Advisor Tool 
http://www.dell.com/content/topics/global.aspx/tools/advisors/sql_
advisor?c=us&cs=555&l=en&s=biz   

Ø �Dell Tech Center Wiki 
http://www.delltechcenter.com/  

Ø �Case Study: University of Mary Hardin - Baylor 
http://www.dell.com/downloads/global/casestudies/456_UMHB_
9.pdf  

Ø �Optimizing Microsoft SQL Server 2005 Environments with EMC 
Assessments and Quest Software 
http://www.dell.com/downloads/global/power/ps4q06-20070103-
EMC-Quest.pdf

http://www.searchsqlserver.com
http://www.dell.com/content/topics/global.aspx/sitelets/solutions/software/db/microsoft_sql_2005_se?c=us&cs=555&l=en&s=biz
http://www.dell.com/content/topics/global.aspx/sitelets/solutions/software/db/microsoft_sql_2005_se?c=us&cs=555&l=en&s=biz
http://www.dell.com/downloads/global/solutions/sql_server_2005_reference_architecture_w2k3_std.pdf?c=us&cs=555&l=en&s=biz
http://www.dell.com/downloads/global/solutions/sql_server_2005_reference_architecture_w2k3_std.pdf?c=us&cs=555&l=en&s=biz
http://www.dell.com/content/topics/global.aspx/tools/advisors/sql_advisor?c=us&cs=555&l=en&s=biz
http://www.dell.com/content/topics/global.aspx/tools/advisors/sql_advisor?c=us&cs=555&l=en&s=biz
http://www.delltechcenter.com/
http://www.dell.com/downloads/global/casestudies/456_UMHB_9.pdf
http://www.dell.com/downloads/global/casestudies/456_UMHB_9.pdf
http://www.dell.com/downloads/global/power/ps4q06-20070103-EMC-Quest.pdf
http://www.dell.com/downloads/global/power/ps4q06-20070103-EMC-Quest.pdf
http://www.searchsqlserver.com

	nextpage 8: 
	p1 tt sql 8: 
	prevpage: 
	Page 2: Off
	Page 4: 
	Page 5: 
	Page 11: 
	Page 12: 
	Page 13: 
	Page 14: 
	Page 15: 
	Page 16: 
	Page 17: 

	nextpage: 
	Page 2: Off
	Page 4: 
	Page 5: 
	Page 11: 
	Page 12: 
	Page 13: 
	Page 14: 
	Page 15: 
	Page 16: 
	Page 17: 

	Button 68: 
	Page 2: Off
	Page 4: 
	Page 5: 
	Page 11: 
	Page 12: 
	Page 13: 
	Page 14: 
	Page 15: 
	Page 16: 
	Page 17: 

	prevpage 4: 
	nextpage 6: 
	prevpage 2: 
	Page 3: Off
	Page 6: 
	Page 7: 
	Page 8: 

	nextpage 5: 
	Page 3: Off
	Page 6: 
	Page 7: 
	Page 8: 

	Button 73: 
	Page 3: Off
	Page 6: 
	Page 7: 
	Page 8: 

	prevpage 3: 
	Page 9: Off
	Page 10: 

	nextpage 3: 
	Page 9: Off
	Page 10: 

	nextpage 9: 


