Information Security Decisions

Cloud Security: Evaluating Risks within IAAS/PAAS/SAAS

Char Sample Security Engineer, Carnegie Mellon University CERT

Information Security Decisions | © TechTarget

Disclaimer

- Standard Disclaimer
 - This talk represents the opinions and research of the presenter only and not those of her employer. This talk is NOT a CERT sanctioned talk.

Is Your Data In The Cloud @ Risk? Introduction

- Credentials etc.
- Acknowledgement

Agenda

- Defining the Cloud
 - General Overview
 - Specific Areas
- Security Implications
 - IaaS
 - PaaS
 - SaaS
- Data Loss Prevention (DLP)
- What You Can Do
- Conclusion & Wrap-up

- What is the Cloud?
 - Difficult to define, no agreement on definition.
 - One definition "The provision of dynamically scalable and often virtualized resources as a service over the Internet on a utility basis. Users need not have knowledge of, expertise in, or control over the technology infrastructure in the 'cloud' that supports them."
 - NIST 800-145 also attempted to define the cloud.

- NIST Standard 800-145 defines 3 Cloud Service Areas.
 - Infrastructure as a Service (laaS)
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)

- According to Mather, Kumaraswamy and Latif, common characteristics of Cloud Computing include:
 - Shared resources
 - Massive scalability
 - Elasticity

7

- "Pay as you go"
- Self-provisioning of resources

- Not a model, a combination of models.
- A type of abstraction.
- Another step (not sure if forward) in the technology arena.
 - Mainframe -> PCs -> client server -> Internet -> Cloud computing
 - Considered a strategic technology

- Cloud Server characteristics:
 - Widely distributed across wide geographic range.
 - Virtualized environments (Amazon EC2), virtualized data centers.
 - Diverse access mechanisms
 - Desktop clients.
 - Mobile clients.
 - Single tenant or multi-tenant apps
 - Single tenant better for security.
 - Multi-tenant more cost effective.

- Public
 - Multi-tenant.
 - CSP provides security.
- Private
 - Owner responsible for security.
 - SLAs (vendor owned and operated)
 - Managed (owner and vendor have different roles)
- Hybrid
 - Mixes both, data sensitivity determines what goes where.
 - Sensitive data and apps: private cloud
 - Public data and apps: public cloud

Defining The Cloud - Specifics

- laaS
 - Virtual environment
 - Examples: Amazon EC2, Verizon, IBM
 - Management and provisioning
 - Internet connectivity
 - Desktop virtualization
 - AKA Hardware as a Service (HaaS)
 - Servers in the virtualized environment

Defining The Cloud - Specifics

- PaaS
 - Examples: Google App Engine, RedHat
 - Thought of as an outgrowth of SaaS. Where SaaS does processing, background functions such as storage, integration etc. comprise PaaS.
 - Disks in the virtualized environment.
 - The foundation for the development environment.

Defining The Cloud - Specifics

- SaaS
 - Examples: Google Apps, Oracle SaaS, NetSuite
 - Common applications and libraries for customized development.
 - Both disks and servers in the virtualized environment.

- First the good:
 - Cost savings.
 - Improved performance.
 - Better reliability.
 - Scalability as needed.
 - Personnel cost savings.
 - Reduced ownership costs.

- Next the not as good
 - Cloud providers are expected to consolidate.
 - Consolidation means that there will be winners and losers.
 - Also means procedures will migrate to the most common, or most cost effective. Not necessarily the most secure.
 - Increases likelihood of some providers not surviving, what happens to data when that occurs?

- Not as good
 - International issues
 - Transborder data flow
 - How do agreements get enforced.
 - Should some data stay out of the cloud?
 - Cross tenant hacking?
 - Mapping of virtual environments to physical servers.
 - How are the paths between servers managed?
 - How are the different servers and libraries managed?

- Risks
 - DoS attacks.
 - Custom security features unavailable.
 - Legal risks and costs.
 - Excessive trust in CSP.
 - Potential for "fast flux" hacking points.
 - Concerns about data location, ownership, and more.
 - Co-mingled data, even if not co-mingled may use shared memory.

- Risks (continued)
 - Will data be encrypted?
 - When at rest or in motion or both?
 - Encryption adds significant overhead.
 - Key management?
 - Exploitation of hypervisor vulnerabilities.
 - Are CSP data elements really deleted?

- Risks (continued)
 - Insider threat at CSP is much more costly, than at individual sites.
 - Inconsistent security profiles between CSPs and between tenants.
 - Because of the nature of the cloud, threats and vulnerabilities must be dealt with more aggressively than in conventional environments.

Security Implications: IaaS

- IaaS: Platform Virtualization
 - Consider that paths for configurable files are likely to be the same across each virtual environment.
 - Private key paths
 - DNS zone files, and DNSSEC key files.
 - Virtual hosts will still map to physical IP addresses.
 - The hypervisor is under the control of the ISP. A single vulnerability to the hypervisor provides direct and trusted access to all tenants environments.
 - "Client" hosts will need to protect themselves from servers, even if all the hosts belong to the same organization.

Security Implications: IaaS

IaaS: Platform virtualization

- Running multiple copies of software platforms (most often OSs) on a single piece of hardware
- A quick analysis revealed 20 environments per server.
- Each piece of software behaves as if there is a oneto-one relationship between it and the hardware.
- No awareness whatsoever of the other VMs that run on the same physical hardware.
- VMs can all have the same MAC address.
- Ability to remove the entire environment.
- Myth of virtualization improving security

Security Implications: PaaS

PaaS: Virtual Environments

- Provides dynamic load balancing capacity across multiple file systems and machines.
- Provides ability to pool computing resources (e.g., Linux clustering).
- Provides convenience for users in accessing different OSs (as opposed to systems with multiple boot capability).
- Allows custom VMs, each of which can serve as a container for delivery of applications.

Security Implications: PaaS

- PaaS: Virtual Environments
 - Can be implemented through software apps or hardware and software hybrid appliances.
 - Can utilize storage area networks (SANs)
 - Hides complexity of SAN functions.

Security Implications: SaaS

- SaaS: Virtual Environments
 - Application security is not easy nor cheap.
 - Apps, especially client apps, are being developed for a variety of platforms. Each interface represents a potential attack vector.
 - Lack of standards.
 - Software
 - Developers
 - Rush to market.

Security Implications: SaaS

- SaaS: Virtual Environments
 - Even if the app is secure, that may not be enough.
 - Libraries
 - Environment or "sand box".
 - CSPs are largely in control of application security
 - In IaaS, should provide at least a minimum set of security controls
 - In PaaS, should provide sufficiently secure development tools
 - Customers can control access & authentication into their network.
 - SLAs can be written to further tighten controls and determine roles and responsibilities.

DLP

- There are many concerns about data safety with the cloud.
 - Data in motion.
 - Data at rest.
- Depending on your security posture there are ways to navigate DLP issues.
 - Some encrypt objects before they go to the cloud.
 - Encrypt the path (SSL)
 - Encrypt objects when they are stored.
 - Policy: No sensitive data in the cloud (processed or stored)...ever.
 - Auditing of the CSP's cloud.

DLP

- Consider confidentiality of data in motion.
- Consider integrity of data in motion.
- Consider availability of data in motion.
- Consider the integrity of audit logs and "permanence".
- Consider the impact of IP address re-cycling on access control devices.

DLP

- End user issues
 - Acceptable use policy
 - Training and awareness

Other

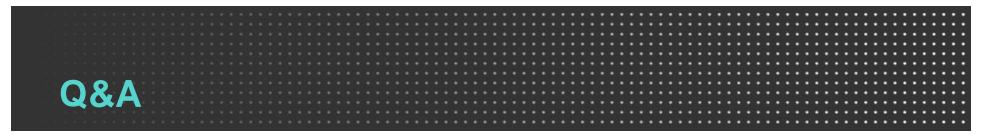
- How to secure the transition to the cloud.
- Who owns what in the cloud?
- How does clustering and back-ups work?
- How will identity management be supported? How will tokens or other related software be secured in the cloud?
- How will the cloud be audited?

What Can You Do?

- First determine what is of value.
 - Not everything needs to be migrated to the cloud.
 - Determine the various levels of security to associate with the data.
- Develop cloud policies and procedures.
- Avoid over trusting, minimal trust and verify that!

What Can You Do?

- Create SLAs/SOWs for your CSP. Do not accept the CSP SLA/SOW.
 - Determine how breaches will be handled.
 - Determine if foreign servers will be used for backups.
 - Data destruction.
 - If you like your present security posture insist on re-creating it in the cloud.
 - Audit
 - Monitor


- Cloud rhetoric is starting to quiet down.
- The "cloud" means different things to different people.
 When embarking on a migration be sure to find out which cloud areas your organization plans to utilize.
- CSPs are getting to work on answering many of the early security questions.
- CSPs are also consolidating.

- Each layer has it's own unique security challenges.
 - Software poorly written code.
 - Platform weak access controls, cross tenant target.
 - Infrastructure vulnerabilities in this environment can expand dramatically across tenants and go undetected.
 - Hypervisor Vulnerabilities at this layer provide trusted access to each environment.

- Threat detection in the cloud will improve.
- Cloud audits will become part of the landscape.
- Trust assurance or certification will be used as a differentiator.
- Cloud Security Standard are being developed.
 - Implementation
 - Adherence

- SLAs and SOWs will need to be carefully written.
- Ultimately the customer owns the data; therefore, great care and planning is required for DIT and DAR.
- The black hat community is focusing on creating tools to exploit virtual environments, eventually something will work, be prepared.

- Securing the data against DLP requires:
 - Careful planning.
 - Understanding of security implications for your data and connections.
 - Determining via cost benefit analysis which data should migrate to the cloud.
 - Creating and enforcing policies that enforce your goals.
 - Use of technology to ensure: confidentiality, integrity and availability.

• Questions and answers

Char Sample Security Engineer, Carnegie Mellon University CERT char_sample@yahoo.com

Featured Member of the TechTarget Editorial Speaker Bureau