
Internet NailsInternet Nails

Marcus J. Ranum
Chief of SecurityChief of Security

mjr@tenablesecurity.com

For want of a nail….

…the shoe was lost
• For want of a shoe the horse was lost

• For want of a horse, the knight was lost
• For want of a knight the battle was lost

• I want to illustrate how software’s • I want to illustrate how software s
tendency to accrete can have
interesting side effectsinteresting side-effects
• Can cost huge amounts of time and money
• Potentially become the “achilles’ heel” of entire • Potentially become the achilles heel of entire

culture?

In the beginning there was…

• Circa 1971 FTP used for file • Circa 1971 - FTP - used for file
transfer between early ARPANet

dnodes
• Early versions of Email were carried over

FTP

• Circa 1976 - host-to-host protocol / p
NCP
• The protocol before what became TCP (of e p otoco be o e at beca e C (o

TCP/IP) the network layer that drives
today’s Internet

Network Sockets

Local Internet
ServerClient

Local
Network

1. Server
listens on
socket port

Network Sockets

Local Internet
ServerClient

Local
Network 2. Client

connectsconnects
to socket

Network Sockets

Local Internet
ServerClient

Local
Network

3. Transmit data

Network Sockets

Local Internet
ServerClient

Local
Network

4. Disconnect

FTP: How it Works

Local Internet
ServerClient

Local
Network

1. Server
listens on
socket port

FTP: How it Works

Local Internet
ServerClient

Local
Network 2. Client

connectsconnects
to socket

FTP: How it Works

Local Internet
ServerClient

Local
Network 3. Client

sends USERsends USER
“log in”
command to
serverserver

FTP: How it Works

Local Internet
ServerClient

Local
Network 4. Server

asks forasks for
“PASSword”

FTP: How it Works

Local Internet
ServerClient

Local
Network 5. Client

sends user’ssends user s
password to server

FTP: How it Works

Local Internet
ServerClient

Local
Network

6. Client
creates and
listens to a
port chosenp
at random

FTP: How it Works

Local Internet
ServerClient

Local
Network 7. Client sends

server “transferserver transfer
file XXXX to
the port I just
created”created

FTP: How it Works

Local Internet
ServerClient

Local
Network

8. Server
connects backconnects back
to client on chosen
port and transfers
data

FTP: How it Works

Local Internet
ServerClient

Local
Network

9. Server tells
client “done!”client “done!”

FTP: How it Works

Local Internet
ServerClient

Local
Network

10. Client drops
connection to server

Why that Matters

• In a word: firewalls
• Existing router technology allowed

basic blocking traffic based on origin
and destination

… But the “call back” where the remote
server connects back into the
originating client was outside of what originating client was outside of what
the routers’ simple abilities could
handlehandle

Firewalls In The Middle

Local Internet
ServerClient

Firewall
Local

Network

Firewalls: There’s a Market

• 1991 First commercial firewall: • 1991 First commercial firewall:
$175,000
1994 Fi ll i d t 3 d $12 • 1994 Firewall industry: 3 vendors $12
million combined sales

• 1997 Firewall industry: 15 vendors
$100 million

• 2009 Network Edge defense
technologies: $1+billion (hard to even g $ (
count)

What Is The Cost of a Nail?

• It would have taken a good
programmer two hours to fix programmer two hours to fix
FTP in 1975
H d d f illi f $ • Hundred of millions of $
spent on firewalls between
1991 and 2009

• The problem is still thereThe problem is still there
… and so is FTP

More about Sockets

B th l 90’ th I t t • By the early 90’s the Internet
implementation was largely
dominated by bsd/UNIX
operating system and its p g y
derivatives
• The network software layer in UNIX The network software layer in UNIX

(aka: “the TCP/IP stack”) is all
basically the same code-base

Incoming Connection Limits

Server

Partial
socket

blServer table
(12 entries)

1. Server
listens on

k Systemsocket port System
socket
table

(2048 entries)

Incoming Connection Limits

Server

Partial
socket

blServer table
(12 entries)

2. Incoming
socket connection
f li Systemfrom remote client System

socket
table

(2048 entries)

Incoming Connection Limits
3 Connection

Server

Partial
socket
table

3. Connection
request is
temporarily

k d iServer table
(12 entries)

11 left

marked in
partial
socket table

SystemSystem
socket
table

(2048 entries)

Incoming Connection Limits
4 Once

Server

Partial
socket

bl

4. Once
connection is
active it is

d tServer table
(12 entries)

moved to
system socket
table

SystemSystem
socket
table

(2048 entries)

What Does it Mean?

• 1995: Some versions of UNIX
would crash and burn if they
got too many connections at got too a y co ect o s at
once

• Question: What else started • Question: What else started
happening in a big way around
1995?1995?

World Wide Web

• In order to avoid the overloaded
socket table problem, Tim Berners-p
Lee et al make HTTP protocol
“stateless”state ess
• Each request is a separate connection
• Accessing one web page might trigger 5 Accessing one web page might trigger 5,

10, 20 individual short-lived connections
• The browser assembles all the responses The browser assembles all the responses

into a coherent-looking document

Performance Hacks

• It turns out that making lots of
short-lived connections is slowshort lived connections is slow
• So: browser coders hit on the clever

idea: make 4 or 5 short-lived idea: make 4 or 5 short lived
connections in parallel!

• Browsing gets much faster in return
for higher load on the server and g
network

Incoming Connection Limits - 2

• Because of the load from many many
short-lived connections hitting the g
servers, the socket management code
is improved in IP stacksp
• Systems can now handle much larger

(tens of thousands) of sockets, much () ,
faster
I.e.: the original reason for doing short-
lived connections is solved

1997: La E-Deluge1997: La E Deluge

• Internet commerce works!

… Now, happens a very
strange thing:strange thing:
• It turns out that “stateless” is not

really so goodreally so good

The State of StatelessNessThe State of StatelessNess

• Things that hold state:
• Secure Sockets Layer (SSL)y ()
• Shopping carts
• Website loginsg
• Websites that keep track of what

you’ve seeny

L’Etat, C’est Moi!

• Software frameworks (PHP,
Ruby, AJAX, .NET et al) all y)
support models to re-introduce
state in the form of “session state t e o o sess o
management”
• Uses a variety of cookies tracking in • Uses a variety of cookies, tracking in

the servers, etc
• Programmers have to correctly code Programmers have to correctly code

session management into their
applications

State in a Box

Server

Local
Internet

Client

LoadLocal
Network

Load
Balancer Server

When client connects to a
server “farm” behind a load balancer,
the load balancer must always directt e oad ba a ce ust a ays d ect
the traffic to the same server to prevent
breaking session state

The Bottom Line

I d t hi bilit • In order to re-achieve a capability
that the underlying TCP/IP protocol
already has:
• Hundreds of thousands of coder-hours will

be spent by programmers who now have to
deal with session management

• Millions of dollars are being spent on load
balancers and infrastructure that has extra
“smarts” to handle state management“smarts” to handle state management

Failed States

• Some of those hundreds of
thousands of coder-hours will thousands of coder-hours will
be mis-spent

Th k t fl i th i • Thanks to flaws in the session
management model we now have:
• Session hijacking attacks• Session hijacking attacks
• cross-site scripting
• html injection attackshtml injection attacks

ReminderReminder

• The bug Berners-Lee et al went
stateless to code around was
fixed before the web went
bigtimebigtime

Things You May Have Learned

• Software is a hugely connected
enterprise: small mistakes over here enterprise: small mistakes over here
can have huge impact elsewhere

• Software evolves: intelligent design • Software evolves: intelligent design
by an omniscient overseer - would
be nicebe nice

• Laziness + Genius + Momentum =
di t bl b tunpredictably baroque systems

What Matters

• Software is now becoming a
major cost driver in most of the major cost driver in most of the
things humans build
• We need to do better
• We need to be much less concerned

h “b k d b l ”with “backwards compatibility”
• We need to be much more aware of

d t f ‘ ll’ downstream consequences of ‘small’
design decisions

