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For want of a nail….

…the shoe was lost
• For want of a shoe the horse was lost

• For want of a horse, the knight was lost
• For want of a knight the battle was lost

• I want to illustrate how software’s • I want to illustrate how software s 
tendency to accrete can have 
interesting side effectsinteresting side-effects
• Can cost huge amounts of time and money
• Potentially  become the “achilles’ heel” of entire • Potentially  become the achilles heel  of entire 

culture?



In the beginning there was…

• Circa 1971 FTP used for file • Circa 1971 - FTP - used for file 
transfer between early ARPANet

dnodes
• Early versions of Email were carried over 

FTP

• Circa 1976 - host-to-host protocol / p
NCP
• The protocol before what became TCP (of e p otoco be o e at beca e C (o

TCP/IP) the network layer that drives 
today’s Internet
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FTP: How it Works
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FTP: How it Works
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Why that Matters

• In a word: firewalls
• Existing router technology allowed 

basic blocking traffic based on origin 
and destination

… But the “call back” where the remote 
server connects back into the 
originating client was outside of what originating client was outside of what 
the routers’ simple abilities could 
handlehandle
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Firewalls: There’s a Market

• 1991 First commercial firewall: • 1991 First commercial firewall: 
$175,000
1994 Fi ll i d t  3 d  $12 • 1994 Firewall industry: 3 vendors $12 
million combined sales

• 1997 Firewall industry: 15 vendors 
$100 million

• 2009 Network Edge defense 
technologies: $1+billion (hard to even g $ (
count)



What Is The Cost of a Nail?

• It would have taken a good 
programmer two hours to fix programmer two hours to fix 
FTP in 1975
H d d f illi f $ • Hundred of millions of $ 
spent on firewalls between 
1991 and 2009

• The problem is still thereThe problem is still there
… and so is FTP



More about Sockets

B  th  l  90’  th  I t t • By the early 90’s the Internet 
implementation was largely 
dominated by bsd/UNIX 
operating system and its p g y
derivatives
• The network software layer in UNIX The network software layer in UNIX 

(aka: “the TCP/IP stack”) is all 
basically the same code-base
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What Does it Mean?

• 1995: Some versions of UNIX 
would crash and burn if they 
got too many connections at got too a y co ect o s at
once

• Question: What else started • Question: What else started 
happening in a big way around 
1995?1995?



World Wide Web

• In order to avoid the overloaded 
socket table problem, Tim Berners-p
Lee et al make HTTP protocol 
“stateless”state ess
• Each request is a separate connection
• Accessing one web page might trigger 5  Accessing one web page might trigger 5, 

10, 20 individual short-lived connections
• The browser assembles all the responses The browser assembles all the responses 

into a coherent-looking document



Performance Hacks

• It turns out that making lots of 
short-lived connections is slowshort lived connections is slow
• So: browser coders hit on the clever 

idea: make 4 or 5 short-lived idea: make 4 or 5 short lived 
connections in parallel!

• Browsing gets much faster in return 
for higher load on the server and g
network



Incoming Connection Limits - 2

• Because of the load from many many
short-lived connections hitting the g
servers, the socket management code 
is improved in IP stacksp
• Systems can now handle much larger 

(tens of thousands) of sockets, much ( ) ,
faster
I.e.: the original reason for doing short-
lived connections is solved



1997: La E-Deluge1997: La E Deluge

• Internet commerce works!

… Now, happens a very 
strange thing:strange thing:
• It turns out that “stateless” is not 

really so goodreally so good



The State of StatelessNessThe State of StatelessNess

• Things that hold state:
• Secure Sockets Layer (SSL)y ( )
• Shopping carts
• Website loginsg
• Websites that keep track of what 

you’ve seeny



L’Etat, C’est Moi!

• Software frameworks (PHP, 
Ruby, AJAX, .NET et al) all y )
support models to re-introduce 
state in the form of “session state t e o o sess o
management”
• Uses a variety of cookies  tracking in • Uses a variety of cookies, tracking in 

the servers, etc
• Programmers have to correctly code Programmers have to correctly code 

session management into their 
applications



State in a Box
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The Bottom Line

I  d  t hi  bilit  • In order to re-achieve a capability 
that the underlying TCP/IP protocol 
already has:
• Hundreds of thousands of coder-hours will 

be spent by programmers who now have to 
deal with session management

• Millions of dollars are being spent on load 
balancers and infrastructure that has extra 
“smarts” to handle state management“smarts” to handle state management



Failed States

• Some of those hundreds of 
thousands of coder-hours will thousands of coder-hours will 
be mis-spent

Th k  t  fl  i  th  i  • Thanks to flaws in the session 
management model we now have:
• Session hijacking attacks• Session hijacking attacks
• cross-site scripting
• html injection attackshtml injection attacks



ReminderReminder

• The bug Berners-Lee et al went 
stateless to code around was 
fixed before the web went 
bigtimebigtime



Things You May Have Learned

• Software is a hugely connected 
enterprise: small mistakes over here enterprise: small mistakes over here 
can have huge impact elsewhere

• Software evolves: intelligent design • Software evolves: intelligent design 
by an omniscient overseer - would 
be nicebe nice

• Laziness + Genius + Momentum = 
di t bl  b  tunpredictably baroque systems



What Matters

• Software is now becoming a 
major cost driver in most of the major cost driver in most of the 
things humans build
• We need to do better
• We need to be much less concerned 

h “b k d b l ”with “backwards compatibility”
• We need to be much more aware of 

d t   f ‘ ll’ downstream consequences of ‘small’ 
design decisions


