
CHAPTER
Domain 8: Application
development security
 9

EXAM OBJECTIVES IN THIS CHAPTER

• Programming Concepts

• Application Development Methods

• Object-Oriented Design and Programming

• Software Vulnerabilities, Testing, and Assurance

• Databases

• Artificial Intelligence

UNIQUE TERMS AND DEFINITIONS
• Extreme Programming (XP)—an Agile development method that uses pairs of

programmers who work off a detailed specification

• Object—A “black box” that combines code and data, and sends and receives

messages

• Object-Oriented Programming—changes the older procedural programming

methodology, and treats a program as a series of connected objects that com-

municate via messages

• Procedural languages—programming languages that use subroutines, proce-

dures and functions

• Spiral Model—a software development model designed to control risk

• Systems Development Life Cycle—a development model that focuses on secu-

rity in every phase

• Waterfall Model—An application development model that uses rigid phases;

when one phase ends, the next begins
INTRODUCTION
Software is everywhere: not only in our computers, but in our houses, our cars, and

our medical devices, and all software programmers make mistakes. As software

has grown in complexity, the number of mistakes has grown along with it. We will

learn in this chapter that programmers may make 15-50 mistakes per thousand

lines of code, but following a programming maturity framework such as the SEI
CISSP® Study Guide. DOI: 10.1016/B978-1-59749-563-9.00009-3

© 2010 Elsevier, Inc. All rights reserved.
329

330 CHAPTER 9 Domain 8: Application development security
Capability Maturity Model (CMM) can lower that number to 1 mistake per thou-

sand. That sounds encouraging, but remember that an operating system like Micro-

soft Vista has 50 million (50,000,000) lines of code.

As our software has grown in complexity, the potential impact of a software

crash has also grown. Many cars now use “fly by wire” (software) to control the

vehicle: in that case, the gear shift is no longer directly mechanically connected

to the transmission; instead, it serves as an electronic input device, like a keyboard.

What if a software crash interrupts I/O?

Developing software that is robust and secure is critical: this chapter will show

how to do that. We will cover programming fundamentals such as compiled versus

interpreted languages, as well as procedural and object-oriented programming lan-

guages. We will discuss application development models such as the Waterfall
Model, Spiral Model, and Extreme Programming (XP) and others. We will describe

common software vulnerabilities, ways to test for them, and maturity frameworks to

assess the maturity of the programming process and provide ways to improve it.
PROGRAMMING CONCEPTS
Let us begin by understanding some cornerstone programming concepts. As com-

puters have become more powerful and ubiquitous, the process and methods used

to create computer software has grown and changed. Keep in mind that one method

is not necessarily better than another: As we will see in the next section, high-level

languages such as C allow a programmer to write code more quickly than a low-

level language such as assembly, but code written in assembly can be far more effi-

cient. Which is better depends on the need of the project.
Machine Code, Source Code, and Assemblers
Machine code (also called machine language) is a software that is executed directly

by the CPU. Machine code is CPU-dependent; it is a series of 1s and 0s that trans-

late to instructions that are understood by the CPU. Source code is computer pro-

gramming language instructions which are written in text that must be translated

into machine code before execution by the CPU. High-level languages contain

English-like instructions such as “printf” (print formatted).

Assembly language is a low-level computer programming language. Assembly

language instructions are short mnemonics, such as “ADD,” “SUB” (subtract), and

“JMP” (jump), that match to machine language instructions. An assembler converts

assembly language into machine language. A disassembler attempts to convert

machine language into assembly.
Compilers, Interpreters, and Bytecode
Compilers take source code, such as C or Basic, and compile it into machine code.

331Programming concepts
Here is an example C program “Hello World”:

int main()

{

printf(“hello, world”);

}

A compiler, such as gcc (the GNUCompiler Collection, see http://gcc.gnu.org) trans-

lates this high-level language into machine code, and saves the results as an executable

(such as “hello-world.exe”). Once compiled, the machine language is executed directly

by the CPU. hello-world.exe is compiled once, and may then be run countless times.

Interpreted languages differ from compiled languages: interpreted code (such

as shell code) is compiled on the fly each time the program is run. Here is an exam-

ple of “Hello World” program written in the interpreted scripting language Perl

(see: http://www.perl.org):

#!/usr/local/bin/perl

print “Hello World\n";

This code is saved as “hello-world.pl.” Each time it is run, the Perl interpreter

(located at/usr/local/bin/perl in the previous code) translates the Perl instructions

into machine language. If hello-world.pl is run 100 times, it will be compiled

100 times (while hello-world.exe was only compiled once).

Bytecode, such as Java bytecode, is also interpreted code. Bytecode exists as an

intermediary form (converted from source code), but still must be converted into

machine code before it may run on the CPU. Java Bytecode is platform-independent

code which is converted into machine code by the Java Virtual Machine (JVM, see

Chapter 6, Domain 5: Security Architecture and Design for more information on

java bytecode).

Procedural and Object-Oriented Languages
Procedural languages (also called procedure-oriented languages) use subroutines,
procedures, and functions. Examples include Basic, C, Fortran, and Pascal. Object-

oriented languages attempt to model the real world through the use of objects

which combine methods and data. Examples include Cþþ, Ruby, and Python;

see the “Object Orientation” section below for more information. A procedural lan-

guage function is the equivalent of an object-oriented method.

The following code shows the beginning “ram()” function, written in C (a pro-

cedural language), from the BSD text-based game Trek.

void

ram(ix, iy)

int ix, iy;

{

int i;

char c;

http://gcc.gnu.org
http://www.perl.org

332 CHAPTER 9 Domain 8: Application development security
printf(“\07RED ALERT\07: collision imminent\n”);

c ¼ Sect[ix][iy];

switch (c)

{

case KLINGON:

printf(“%s rams Klingon at %d,%d\n", Ship.shipname, ix, iy);

killk(ix, iy);

break;

case STAR:

case INHABIT:

printf(“Yeoman Rand: Captain, isn’t it getting hot in here?\n”);

sleep(2);

printf(“Spock: Hull temperature approaching 550 Degrees Kelvin.

\n”);

lose(L_STAR);

case BASE:

printf(“You ran into the starbase at %d,%d\n", ix, iy);

killb(Ship.quadx, Ship.quady);

/* don’t penalize the captain if it wasn’t his fault */
1

This ram() function also calls other functions, including killk(), killb(), and lose().

Next is an example of object-oriented Ruby (see: http://ruby-lang.org) code for

a text adventure game that creates a class called “Verb,” and then creates multiple

Verb objects. As we will learn in the “Object Orientation” section below, an object

inherits features from its parent class.

class Verb

attr_accessor:name,:description

def initialize(params)

@name ¼ params[:name]

@description ¼ params[:description]

end

end

Create verbs

north ¼ Verb.new(:name ¼> “Move east",:description ¼> “Player moves to

the north”)

east ¼ Verb.new(:name ¼> “Move east",:description ¼> “Player moves to

the east”)

west ¼ Verb.new(:name ¼> “Move east",:description ¼> “Player moves to

the west”)

south ¼ Verb.new(:name ¼> “Move east",:description ¼> “Player moves to

the south”)

xyzzy ¼ Verb.new(:name ¼> “Magic word",:description ¼> “Player

teleports to another location in the cave”)
2

Note that coding itself is not testable; these examples are given for illustrative

purposes.

http://ruby-lang.org

333Programming concepts
Fourth-generation Programming Language
Fourth-generation programming languages (4GL) are computer languages that are

designed to increase programmer’s efficiency by automating the creation of com-

puter programming code. They are named “fourth generation” because they can

be viewed as the fourth step of evolution of computer languages:

• First-generation language: machine code

• Second-generation language: assembly

• Third-generation language: COBOL, C, Basic

• Fourth-generation language: ColdFusion, Progress 4GL, Oracle Reports

Fourth-generation languages tend to be Graphical User Interface (GUI)-focused;

dragging and dropping elements, and then generating code based on the results.

4GL languages tend to be focused on the creation of databases, reports, and

websites.
Computer-Aided Software Engineering (CASE)
Computer-Aided Software Engineering (CASE) uses programs to assist in the cre-

ation and maintenance of other computer programs. Programming has historically

been performed by (human) programmers or teams: CASE adds software to the

programming “team.”

There are three types of CASE software:

1. “Tools: support only specific task in the software-production process.

2. Workbenches: support one or a few software process activities by integrating

several tools in a single application.

3. Environments: support all or at least part of the software production process

with a collection of Tools and Workbenches.”3

Fourth-generation computer languages, object-oriented languages, and GUIs

are often used as components of CASE.
Top-Down versus Bottom-Up Programming
A programmer is tasked with developing software that will play MP3 music files.

How should the programmer begin conceptualizing the challenge of turning bits in

a file into music we can hear? Should she start at the “top,” thinking about how the

music will sound, and how the MP3 player will look and behave? Or should she

start at the “bottom,” thinking about the low-level device drivers required to

receive a stream of bits and convert them into audio wave forms?

Top-Down (TD) programming starts with the broadest and highest level

requirements (the concept of the final program) and works down towards the

low-level technical implementation details. Bottom-Up programming is the

reverse: it starts with the low-level technical implementation details and works

up to the concept of the complete program.

334 CHAPTER 9 Domain 8: Application development security
Both methods pose risks: what if the Top-Down approach made incorrect

assumptions on the performance of the low-level devices? On the other hand,

Bottom-Up risks wasting time by performing lots of programming for features

which may not be required or implemented in the final product.

Procedural languages such as C have historically been programmed Top-Down

style: start with the main program, define the procedures, and work down from

there. Object-oriented programming typically uses bottom-up design: define the

objects, and use them to build up to the final program.
Types of Publicly-Released Software
Once programmed, publicly-released software may come in different forms (such

as with or without the accompanying source code) and released under a variety

of licenses.

Open and Closed Source Software
Closed source software is software typically released in executable form: the

source code is kept confidential. Examples include Oracle and Microsoft Windows

7. Open source software publishes source code publicly, allowing anyone to

inspect, modify, or compile the code themselves. Examples include Ubuntu Linux

and the Apache web server. Proprietary software is software that is subject to intel-

lectual property protections such as patents or copyrights. “Closed source soft-

ware” and “proprietary software” are sometimes used as synonyms, but that is

not always true: some open source software is also proprietary.

Free Software, Shareware, and Crippleware
Free software is a controversial term that is defined differently by different groups.

“Free” may mean it is free of charge to use (sometimes called “free as in beer”), or

“free” may mean the user is free to use the software in any way they would like,

including modifying it (sometimes called “free as in liberty”). The two types are

called gratis and libre, respectively. The confusion derives from the fact that “free”

carries multiple meanings in English. Software that is both gratis and libre is some-

times called free2 (free squared).

Freeware is “free as in beer” (gratis) software, which is free of charge to use. Share-
ware is fully-functional proprietary software that may be initially used free of charge.

If the user continues to use the Shareware for a specific period of time specified by the

license (such as 30 days), the Shareware license typically requires payment. Cripple-
ware is partially-functioning proprietary software, often with key features disabled.

The user is typically required to make a payment to unlock the full functionality.

Software Licensing
Software may be released into the public domain, meaning it is (expressly) not

copyrighted or licensed. This places no intellectual property constraints of the soft-

ware’s users. Some free (libre) software falls into this category. Most software,

both closed and open source, is protected by software licensing.

335Application development methods
Proprietary software is usually copyrighted (and possibly patented, see Chapter

11, Domain 10: Legal regulations, Investigations, and Compliance for more infor-

mation on copyrights and patents); the users of the software must usually agree to

the terms of the software licensing agreement before using the software. These

agreements are often called EULAs (End-User License Agreements), which are

usually agreed to when the user clicks “I agree” while installing the software.

Open source software may be protected by a variety of licensing agreements,

including the GNU Public License (GPL), BSD (Berkeley Software Distribution),

and Apache (named after the Apache Software Foundation) licenses.

The most prevalent of open source licenses is the GPL, which focuses on free

(libre) software, allowing users the freedom to use, change, and share software. The

core of the GPL is the term “copyleft,” a play on copyright: copyleft seeks to ensure

that free (libre) software remains free. A Quick Guide to GPLv3 (see: http://www.

gnu.org/licenses/quick-guide-gplv3.html) states: “Nobody should be restricted

by the software they use. There are four freedoms that every user should have:

• The freedom to use the software for any purpose,

• The freedom to change the software to suit your needs,

• The freedom to share the software with your friends and neighbors, and

• The freedom to share the changes you make.”4

The GPL copyleft requires modifications to GPL software to remain free: you can-

not take GPL code, alter it, and make the altered code proprietary. Other free

licenses, such as BSD, allow licensed code to become proprietary.
APPLICATION DEVELOPMENT METHODS
Computer programming dates to the dawn of electronic computers, in the late

1940s. Programmers first used machine code or assembly; the first high-level pro-

gramming language was Fortran, which debuted in 1954. The original computer

programmers often worked alone, creating entire programs as a solo effort. In that

case, project management methodologies were simple or unnecessary: the pro-

grammer could sometimes conceptualize the entire project in (human) memory,

and then simply write the code. As software has grown in complexity, software

programming has increasingly become a team effort. Team-based projects require

project management: providing a project framework with deliverables and mile-

stones, divvying up tasks, team communication, progress evaluation and reporting,

and (hopefully) a final delivered product.

Ultimately, large application development projects may closely resemble pro-

jects that have nothing to do with software, like making widgets or building

bridges. Application development methods such as the Waterfall and Spiral Mod-

els are often close cousins to nonprogramming models. These methods can be

thought of as project management methods, with additional features to support

the creation of code.

http://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.gnu.org/licenses/quick-guide-gplv3.html

336 CHAPTER 9 Domain 8: Application development security
Waterfall Model
The Waterfall Model is a linear application development model that uses rigid

phases; when one phase ends, the next begins. The Waterfall Model predates soft-

ware design and was first used in manufacturing. It was first used to describe a

software development process in 1969, when large software projects had become

too complex to design using informal methods. Steps occur in sequence, and the

unmodified waterfall model does not allow developers to go back to previous steps.

It is called the waterfall because it simulates water falling: it cannot go back up.

The Waterfall Model was first described in relation to developing software in

“Managing the Development of Large Software Systems” by Dr Winston W Royce

(see: http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_

paper_winston_royce.pdf). Royce’s unmodified waterfall (with no iteration, some-

times called “stagewise”) is shown in Figure 9.1, and includes the following steps:

System requirements, Software Requirements, Analysis, Program Design, Coding,

Testing, and Operations.

Royce’s paper did not use the term “waterfall,” but he described the process.

An unmodified waterfall does not allow iteration: going back to previous steps.

This places a heavy planning burden on the earlier steps. Also, since each

subsequent step cannot begin until the previous step ends, any delays in earlier

steps cascade through to the later steps.

Ironically, Royce’s paper was a criticism of themodel. Regarding the model shown

in Figure 9.1, “the implementation described above is risky and invites failure.”5 In the

real world, iteration is required: it is not (usually) realistic to prohibit a return to previ-

ous steps: Royce raised the issue of discovering a fundamental design error during the

testing phase: “The testing phase which occurs at the end of the development cycle is

the first event for which timing, storage, input/output transfers, etc., are experienced

as distinguished from analyzed. These phenomena are not precisely analyzable
Yet if these phenomena fail to satisfy the various external constraints, then invariably

amajor redesign is required.”5Many subsequent software designmodels are called iter-

ative models: they are explicitly designed to allow iteration: a return to previous steps.
EXAM WARNING

The specific names of the phases of Royce’s unmodified Waterfall Model are not specifically
testable: learn the overall flow. Also, Royce omitted a critical final step: destruction. No
development process that leads to an operational system with sensitive production data is
truly complete until that system has been retired, the data archived, and the remaining data
on those physical systems securely destroyed.

Royce described a modified waterfall model that allowed a return to a previous

phase for verification or validation, ideally confined to connecting steps. Barry

Boehm’s paper “A Spiral Model of Software Development and Enhancement”

(see “Spiral Model” section below) shows a modified waterfall based on Royce’s

paper, shown in Figure 9.2.

http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf

System
Requirements

Software
Requirements

Analysis

Program
Design

Coding

Testing

Operations

FIGURE 9.1

Unmodified Waterfall Development Model.5

337Application development methods
Others have proposed similar modifications, or broadening the waterfall model.

The Sashimi Model is based on (and a reaction to) the Waterfall Model.
NOTE

The unmodified Waterfall Model does not allow going back. The modified Waterfall Model
allows going back at least one step.

Sashimi Model
The Sashimi Model has highly overlapping steps; it can be thought of as a real-

world successor to the Waterfall Model (and is sometimes called the Sashimi

Waterfall Model). It is named after the Japanese delicacy Sashimi, which has

image of Figure 9.1

System
Feasibility

Software Plans &
Requirements

Analysis

Program Design

Coding

Testing

Operations

Validation

Validation

Verification

Verification

Unit Test

Product
Verification

System test

Operations

Revalidation

FIGURE 9.2

Modified Waterfall Development Model.10

338 CHAPTER 9 Domain 8: Application development security
overlapping layers of fish (and also a hint for the exam). The model is based on the

hardware design model used by Fuji-Xerox: “Business scholars and practitioners

were asking such questions as ‘What are the key factors to the Japanese manufac-

turers’ remarkable successes?’ and ‘What are the sources of their competitive

advantage?’ The sashimi system seems to give answers to these questions.”6

Peter DeGrace described Sashimi in relation to software development in his

book “Wicked problems, righteous solutions: a catalogue of modern software.”

Sashimi’s steps are similar to the Waterfall Model’s; the difference is the explicit

overlapping, shown in Figure 9.3.

image of Figure 9.2

Software Concept

Requirements Analysis

Architectural Design

Detailed Design

Coding and Debugging

System Testing

FIGURE 9.3

The Sashimi Model.27

339Application development methods
Agile Software Development
Agile Software Development evolved as a reaction to rigid software development

models such as the Waterfall Model. Agile methods include Scrum and Extreme
Programming (XP). The Agile Manifesto (See: http://agilemanifesto.org/) states:

“We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan”7

Agile embodies many modern development concepts, including more flexibility,

fast turnaround with smaller milestones, strong communication within the team,

and more customer involvement.

Scrum
The Scrum development model (named after a scrum in the sport of rugby) is an Agile

model first described in “The New New Product Development Game” by Hirotaka

Takeuchi and Ikujiro Nonaka in relation to product development; they said “Stop run-

ning the relay race and take up rugby.”8 The “relay race” is the waterfall, where teams

hand work off to other teams as steps are completed. They suggested: “Instead, a

http://agilemanifesto.org/
image of Figure 9.3

340 CHAPTER 9 Domain 8: Application development security
holistic or ‘rugby’ approach-where a team tries to go the distance as a unit, passing the

ball back and forth-may better serve today’s competitive requirements.”8

Peter DeGrace (of Sashimi fame) described (and named) Scrum in relation to

software development. Scrums contain small teams of developers, called the Scrum
Team. They are supported by a Scrum Master, a senior member of the organization

who acts like a coach for the team. Finally, the Product Owner is the voice of the

business unit.

Extreme Programming (XP)
Extreme Programming (XP) is an Agile development method that uses pairs of pro-

grammers who work off a detailed specification. There is a high level of customer

involvement. “Extreme Programming improves a software project in five essential

ways; communication, simplicity, feedback, respect, and courage. Extreme Program-

mers constantly communicate with their customers and fellow programmers. They

keep their design simple and clean. They get feedback by testing their software start-

ing on day one. They deliver the system to the customers as early as possible and

implement changes as suggested.”9. XP core practices include:

• Planning: specifies the desired features, which are called the User Story. They are

used to determine the iteration (timeline) and drive the detailed specifications.

• Paired programming: programmers work in teams.

• Forty-hour workweek: the forecasted iterations should be accurate enough to

forecast how many hours will be required to complete the project. If program-

mers must put in additional overtime, the iteration must be flawed.

• Total customer involvement: the customer is always available, and carefully

monitors the project.

• Detailed test procedures: they are called Unit Tests.9
NOTE

The XP development model is not to be confused with Microsoft Windows XP: Extreme
Programming’s use of the acronym “XP” predates Microsoft’s use.

Spiral
The Spiral Model is a software development model designed to control risk. Barry

W. Boehm created the model, described in his 1986 paper “A Spiral Model of Soft-

ware Development and Enhancement” (see: http://portal.acm.org/citation.cfm?

id¼12948). Boehm states “The major distinguishing feature of the spiral model

is that it creates a risk-driven approach to the software process rather than a pri-

marily document-driven or code-driven process. It incorporates many of the

strengths of other models and resolves many of their difficulties.”10

The spiral model repeats steps of a project, starting with modest goals, and

expanding outwards in ever wider spirals (called rounds). Each round of the spiral

constitutes a project, and each round may follow traditional software development

http://portal.acm.org/citation.cfm?id=12948
http://portal.acm.org/citation.cfm?id=12948
http://portal.acm.org/citation.cfm?id=12948

341Application development methods
methodology such as Modified Waterfall. A risk analysis is performed each round.

Fundamental flaws in the project or process are more likely to be discovered in the

earlier phases, resulting in simpler fixes. This lowers the overall risk of the project:

large risks should be identified and mitigated.

Boehm used the Spiral Model to develop the TRW Software Productivity Sys-

tem (TRW-SPS), a complex software project that resulted in 1,300,000 computer

instructions. “Round zero” was a feasibility study, a small project designed to

determine if the TRW-SPS project represented significant value to the organiza-

tion, and was thus worth the risk of undertaking. The feasibility study indicated

that the project was worthwhile (low risk), and the project spiraled outward. The

deliverables of further rounds included:

1. Concept of Operations (COOP)

2. Software Requirements

3. Software Product Design

4. Detailed Design10

Each round included multiple repeated steps, including prototype development

and, most importantly, a risk analysis. Boehm’s spiral is shown in Figure 9.4.

The spiral ended with successful implementation of the project. Any potential high

risk, such as lack of value to the organization or implementation failure, was indenti-

fied and mitigated earlier in the spiral, when it was cheaper and easier to mitigate.
Rapid Application Development (RAD)
Rapid Application Development (RAD) rapidly develops software via the use of

prototypes, “dummy” GUIs, back-end databases, and more. The goal of RAD is

quickly meeting the business need of the system; technical concerns are secondary.

The customer is heavily involved in the process.

According to the Centers for Medicare & Medicaid Services (see: http://www.

cms.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.

pdf), RAD “Aims to produce high quality systems quickly, primarily through the

use of iterative prototyping (at any stage of development), active user involvement,

and computerized development tools. These tools may include Graphical User

Interface (GUI) builders, Computer Aided-Software Engineering (CASE) tools,

Database Management Systems (DBMS), fourth-generation programming lan-

guages, code generators, and object-oriented techniques.”11
Prototyping
Prototyping is an iterative approach which breaks projects into smaller tasks, cre-

ating multiple mockups (prototypes) of system design features. This lowers risk

by allowing the customer to see realistic-looking results long before the final prod-

uct is completed. As with other modern development methods, there is a high level

of customer involvement: the customer inspects the prototypes to ensure that the

project is on track and meeting its objective.

http://www.cms.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://www.cms.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://www.cms.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf

Determine
objectives,
alternatives,
constraints

Commitment
partition

Plan next phases

Develop, verify
next-level product

Implementation

Integration
and test

plan

Develop-
ment plan

Requirements
validation

Design validation
and verification

Software
product
design

Software
requirements

Requirements plan
life-cycle plan Concept of

operation

Risk
analysis

Evaluate alternatives,
identify, resolve risks

Progress
through
steps

Cumulative
cost

Risk
analysis

Risk
analysis

Prototype Prototype Prototype Operational
prototype

Risk
analy-
sis

Acceptance
test

Integration
and test

Unit
test

Code

Detailed
design

Review

1 2 3

Simulations, models, benchmarks

FIGURE 9.4

The Spiral Model.10

342 CHAPTER 9 Domain 8: Application development security
The term “prototype” may be a bit misleading: later stage prototypes may be

used as the actual final product. Prototypes can be thought of as “working model.”

Prototyping is not a full-fledged software development methodology: it is used by

other iterative methods such as Spiral or RAD.

SDLC
The Systems Development Life Cycle (SDLC, also called the Software Development
Life Cycle or simply the System Life Cycle) is a system development model. SDLC

is used across the IT industry, but SDLC focuses on security when used in context

of the exam. Think of “our” SDLC: as the “Secure Systems Development Life

Cycle”: the security is implied.

On the exam, SDLC focuses on security in every phase. This model is broader

than many application development models, focusing on the entire system, from

image of Figure 9.4

343Application development methods
selection/development, through operational requirements, to secure disposal. There

are many variants of the SDLC, but most follow (or are based on) the National

Institute of Standards and Technology (NIST) SDLC process.

NIST Special Publication 800-14 states: “Security, like other aspects of an IT

system, is best managed if planned for throughout the IT system life cycle. There

are many models for the IT system life cycle but most contain five basic phases:

initiation, development/acquisition, implementation, operation, and disposal.”12

Additional steps are often added, most critically the security plan, which is the first

step of any SDLC. The following overview is summarized from NIST SP 800-14:

• Prepare a Security Plan: Ensure that security is considered during all phases of

the IT system life cycle, and that security activities are accomplished during

each of the phases.

• Initiation: The need for a system is expressed and the purpose of the system is

documented.

• Conduct a Sensitivity Assessment: Look at the security sensitivity of the

system and the information to be processed.

• Development/acquisition: The system is designed, purchased, programmed or

developed.

• Determine Security Requirements: Determine technical features (like access

controls), assurances (like background checks for system developers), or

operational practices (like awareness and training).

• Incorporate Security Requirements Into Specifications: Ensure that the pre-

viously gathered information is incorporated in the project plan.

• Obtain the System and Related Security Activities: May include developing

the system’s security features, monitoring the development process itself for

security problems, responding to changes, and monitoring threats.

• Implementation: The system is tested and installed.

• Install/Turn-On Controls: A system often comes with security features

disabled. These need to be enabled and configured.

• Security Testing: Used to certify a system; may include testing security

management, physical facilities, personnel, procedures, the use of commercial

or in-house services (such as networking services), and contingency planning.

• Accreditation: The formal authorization by the accrediting (management)

official for system operation and an explicit acceptance of risk.

• Operation/Maintenance: The system is modified by the addition of hardware

and software and by other events.

• Security Operations and Administration: Examples include backups, train-

ing, managing cryptographic keys, user administration, and patching.

• Operational Assurance: Examines whether a system is operated according to

its current security requirements.

• Audits and Monitoring: A system audit is a one-time or periodic event to

evaluate security. Monitoring refers to an ongoing activity that examines

either the system or the users.

344 CHAPTER 9 Domain 8: Application development security
• Disposal: The secure decommission of a system.

• Information: Information may be moved to another system, archived, dis-

carded, or destroyed.

• Media Sanitization: There are three general methods of purging media:

overwriting, degaussing (for magnetic media only), and destruction.12

Notice that the word “secure” or “security” appears somewhere in every step of

NIST’s SDLC, from project initiation to disposal: this is the crux of the SDLC.
NOTE

Security is part of every step of “secure” SDLC on the exam. Any step that omits security is
the “wrong answer.” Also, any SDLC plan that omits secure disposal as the final lifecycle step
is also the “wrong answer.”

Many organizations have broadened the SDLC process, beginning with the

framework described in NIST SP 800-14, and adding more steps. The United

States Department of Justice (DOJ) describes a 10-step SDLC (see: http://www.

justice.gov/jmd/irm/lifecycle/ch1.htm).The text from the DOJ SDLC graphic,

shown in Figure 9.5, is summarized here:
EXAM WARNING

Memorizing the specific steps of each SDLC is not required, but be sure to understand the
logical (secure) flow of the SDLC process.

• “Initiation: Begins when a sponsor identifies a need or an opportunity. Concept

Proposal is created

• System Concept Development: Defines the scope or boundary of the concept.

Includes Systems Boundary Document, Cost Benefit Analysis, Risk Manage-

ment Plan and Feasibility Study

• Planning: Develops a Project Management Plan and other planning documents.

Provides the basis for acquiring the resources needed to achieve a solution

• Requirements Analysis: Analyzes user needs and develops user requirements.

Creates a detailed Functional Requirements Document

• Design: Transforms detailed requirements into complete, detailed System

Design Document. Focuses on how to deliver the required functionality

• Development: Converts a design into a complete information system. Includes

acquiring and installing systems environment; creating and testing databases/

preparing test case procedures; preparing test files; coding, compiling, refining

programs; performing test readiness review and procurement activities

• Integration and Test: Demonstrates that the developed system conforms to

requirements as specified in the Functional Requirements Document. Conducted

by the Quality Assurance staff and users. Produces Test Analysis Reports

http://www.justice.gov/jmd/irm/lifecycle/ch1.htm
http://www.justice.gov/jmd/irm/lifecycle/ch1.htm

Initiation

System Concept
Development

Planning

Requirements
Analysis

Design

Systems Development Life Cycle (SDLC)
Life-Cycle Phases

Development

Integration
and Test

Implementation

Operations and
Maintenance

Disposition

Begins when
a sponsor
identifies
a need or an
opportunity.
Concept
Proposal
is created

Defines the
scope or
boundary of
the concepts.
Includes Systems
Boundary
Document.
Cost Benefit
Analysis. Risk
Management
Plan and
Feasibility Study.

Develops a
Project
Management
Plan
and other
planning
documents.
Provides
the basis for
acquiring the
resources
needed to
achieve a
solution.

Analyses user
needs and
develops user
requirements.
Create a detailed
Functional
Requirements
Document.

Transforms
detailed
requirements
into complete,
detailed
Systems
Design
Document
Focuses
on how to
deliver the
required
functionality

Converts a design
into a complete
information system
Includes acquiring
and installing systems
environment; creating
and testing databases
preparing test case
procedures; preparing
test files, coding,
compiling, refining
programs; performing
test readiness review
and procurement
activities.

Demonstrates
that developed
system conforms
to requirements
as specified in
the Functional
Requirements
Document.
Conducted by
Quality Assurance
staff and users.
Produces Test
Analysis Reports.

Includes
implementation
preparation,
implementation
of the system
into a production
environment,
and resolution
of problems
identified in the
Integration and
Test Phases

Describes tasks
to operate and
maintain
information
systems
in a production
environment.
includes Post-
Implementation
and In-Process
Reviews.

Describes
end-of-system
activities,
emphasis is
given to
proper
preparation
of data.

FIGURE 9.5

The DOJ SDLC.13

3
4
5

A
p
p
lic
a
tio
n
d
e
ve
lo
p
m
e
n
t
m
e
th
o
d
s

image of Figure 9.5

346 CHAPTER 9 Domain 8: Application development security
• Implementation: Includes implementation preparation, implementation of the

system into a production environment, and resolution of problems identified

in the Integration and Test Phase

• Operations and Maintenance: Describes tasks to operate and maintain informa-

tion systems in a production environment. Includes Post-Implementation and

In-Process Reviews

• Disposition: Describes end-of-system activities. Emphasis is given to proper

preservation of data”13

Software Escrow
Software escrow describes the process of having a third party store an archive or

computer software. This is often negotiated as part of a contract with a proprietary

software vendor. The vendor may wish to keep the software source code secret, but

the customer may be concerned that the vendor could go out of business (poten-

tially orphaning the software). Orphaned software with no available source code

will not receive future improvements or patches.

Software escrow places the source code in escrow, under the control of a neutral

third party.A contract strictly specifies the conditions for potential release of the source

code to the customer, typically due to the business failure of the software vendor.
OBJECT-ORIENTED DESIGN AND PROGRAMMING
Object oriented design and programming uses an object metaphor to design and

write computer programs. Our bodies are comprised of objects that operate indepen-

dently and communicate with each other. Our eyes are independent organs (objects)

that receive input of light, and send an output of nerve impulse to our brains. Our

hearts receive deoxygenated blood from our veins and oxygen from our lungs, and

send oxygenated blood to our arteries. Many organs can be replaced: a diseased liver

can be replaced with a healthy liver. Object-Oriented Programming (OOP) replicates
the use of objects in computer programs. Object-Oriented Design (OOD) treats

objects as a higher level design concept, like a flow chart.

Object-Oriented Programming (OOP)
Object-Oriented Programming (OOP) changes the older structured programming

methodology, and treats a program as a series of connected objects that communicate

via messages. Object-Oriented Programming attempts to model the real world.

Examples of OOP languages include Java, Cþþ, Smalltalk, and Ruby.

An object is a “black box” that is able to perform functions, and sends and

receives messages. Objects contain data and methods (the functions they perform).

The object provides encapsulation (also called data hiding): we do not know, from

the outside, how the object performs its function. This provides security benefits:

users should not be exposed to unnecessary details. Think of your sink as an object

347Object-oriented design and programming
whose function is washing hands. The input message is clean water; the output

message is dirty water. You do not know or care about where the water is coming

from, or where it is going to. If you are thinking about those issues, the sink is

probably broken.

Cornerstone Object-Oriented Programming Concepts
Cornerstone object-oriented programming concepts include objects, methods, mes-

sages, inheritance, delegation, polymorphism, and polyinstantiation. We will use

an example object called “Addy” to illustrate the cornerstone concepts. Addy is

an object that adds two integers; it is an extremely simple object, but has enough

complexity to explain core OOP concepts. Addy inherits an understanding of num-

bers and math from his parent class (the class is called mathematical operators).

One specific object is called an instance. Note that objects may inherit from other

objects, in addition to classes.

In our case, the programmer simply needs to program Addy to support the

method of addition (inheritance takes care of everything else Addy must know).

Figure 9.6 shows Addy adding two numbers.

“1 þ 2” is the input message; “3” is the output message. Addy also supports

delegation: if he does not know how to perform a requested function, he can dele-

gate that request to another object (called “Subby” in Figure 9.7).

Addy also supports polymorphism (based on the Greek roots “poly” and

“morph,” meaning many and forms, respectively): he has the ability to overload

his plus (“þ”) operator, performing different methods depending on the context

of the input message. For example: Addy adds when the input message contains

“numberþnumber”; polymorphism allows Addy to concatenate two strings when

the input message contains “stringþstring,” as shown in Figure 9.8.
Addy“Zork” + “mid” “Zorkmid”

FIGURE 9.8

Polymorphism.

Addy7 - 4 7 - 4 Subby 3

FIGURE 9.7

Delegation.

Addy1 + 2 3

FIGURE 9.6

The “Addy” Object.

image of Figure 9.8
image of Figure 9.7
image of Figure 9.6

Addy<Top secret> input <Top secret> output

Addy<Secret> input <Secret> output

FIGURE 9.9

Polyinstantiation.

348 CHAPTER 9 Domain 8: Application development security
Finally, polyinstantiation means “many instances,” two instances (specific

objects) with the same names that contain different data. This may be used in

multilevel secure environments to keep top secret and secret data separate, for exam-

ple. See Chapter 6, Domain 5: Security Architecture and Design for more informa-

tion about polyinstantiation. Figure 9.9 shows polyinstantiated Addy objects: two

objects with the same name but different data. Note that these are two separate

objects. Also, to a secret-cleared subject, the Addy object with secret data is the only

known Addy object.

Here is a summary of Object-Oriented Programming concepts illustrated by

Addy:

• Object: Addy

• Class: Mathematical operators

• Method: Addition

• Inheritance: Addy inherits an understanding of numbers and math from his par-

ent class mathematical operators. The programmer simply needs to program

Addy to support the method of addition

• Example input message: 1 þ 2

• Example output Message: 3

• Polymorphism: Addy can change behavior based on the context of the input,

overloading the “þ” to perform addition, or concatenation, depending on the

context

• Polyinstantiation: Two Addy objects (secret and top secret), with different data

Coupling and Cohesion
Coupling and cohesion are two concepts used to describe objects. A highly coupled

object (such as Addy) requires lots of other objects to perform basic jobs, like

math. An object with high cohesion is far more independent: it can perform most

functions independently. Objects with high coupling have low cohesion, and the

reverse is also true: objects with low coupling have high cohesion.

Addy is highly coupled and has low cohesion: he must delegate any message

that does not contain a “þ.” Imagine another object called “Calculator,” which

can add, subtract, multiply, divide, perform square roots, exponentiation, etc.

Calculator would have high cohesion and low coupling.

image of Figure 9.9

349Object-oriented design and programming
LEARN BY EXAMPLE: MANAGING RISK THOUGH OBJECTS
Objects are designed to be reused: this lowers development costs. Objects can also lower risk.
Much like strong encryption such as AES, the longer an object remains in secure use, the more
assurance we have that the object is truly secure. Like encryption algorithms, as time passes,
and countless attacks prove unsuccessful, the object demonstrates its real-world strength.

Let us assume your company has been selling information security books online for
the past 5 years. Your website allows users to choose a book, such as TCP/IP Illustrated by
W. Richard Stevens, and enter their name, address, and credit card billing information.
Credit card transactions are risky: risks include disclosure of customer’s PII, as well as risk of
credit card fraud: stolen cards used to fraudulently purchase books.

The website is programmed in an object-oriented language. It includes a credit card
processing object called CCValidate, first written 5 years ago. The input message is the credit
card number and expiration date entered by the customer. The output message is binary:
“approved” or “denied.”

The CCValidate object hides the complexity of what is happening in the background after
the input message of credit card number and expiration date are entered. It performs the
following methods:

1. The object has variable buffers for the credit card number that perform bounds checking.
2. The object ensures that the input message is the proper length and contains the proper

types of characters in each field.
a. In the case of a Master Card, 16 numbers (the credit card number), followed by the

date (two-digit month followed by a four-digit year).
b. Any input message that does not meet these criteria is immediately rejected.

3. The object ensures the expiration date is in the future.
a. Any input message that does not meet this criteria is immediately rejected.

4. The object then evaluates the format and self-checking digits within the entered credit
card number.
a. Valid Master Card numbers start with 51-55, and have 16 digits.
b. They must also contain proper self-checking digits.
i. See: http://www.beachnet.com/�hstiles/cardtype.html for more information
c. Any input message that does not meet these criteria is immediately rejected.

5. The object then sends a message to the proper credit card company server, checking to
see if the card is valid and contains enough balance to make a purchase.
a. The credit card company sends a return message of “accept” or “denied,” which the

credit card object sends to the web server as a message.

As CCValidate is used, bugs may be discovered and fixed. Improvements may be
identified and coded. Over time, the object matures and simply does its job. It is attacked on
the Internet; attackers launch buffer overflow attacks and insert garbage numbers, and the
object performs admirably.

If a new site comes online, the programmers should not create a new credit card
validating object by scratch: reinventing the wheel is too risky. They should manage their risk
by locating and using a mature object that has stood the test of time: CCValidate.

Object Request Brokers
As we have seen previously, mature objects are designed to be reused: they lower

risk and development costs. Object Request Brokers (ORBs) can be used to locate

objects: they act as object search engines. ORBs are middleware: they connect pro-

grams to programs. Common object brokers included COM, DCOM, and CORBA.

http://www.beachnet.com/~hstiles/cardtype.html
http://www.beachnet.com/~hstiles/cardtype.html

350 CHAPTER 9 Domain 8: Application development security
COM and DCOM
Two object broker technologies by Microsoft are COM (Component Object Model)
and DCOM (Distributed Component Object Model). COM locates objects on a

local system; DCOM can also locate objects over a network.

COM allows objects written with different OOP languages to communicate,

where objects written in Cþþ send messages to objects written in Java, for exam-

ple. It is designed to hide the details of any individual object, and focuses on the

object’s capabilities. According to Microsoft (see: http://www.microsoft.com/

com/default.mspx), COM “is used by developers to create reusable software com-

ponents, link components together to build applications, and take advantage of

Windows services. COM objects can be created with a variety of programming

languages. Object-oriented languages, such as Cþþ, provide programming

mechanisms that simplify the implementation of COM objects. The family of

COM technologies includes COMþ, Distributed COM (DCOM), and ActiveX�

Controls.”14 COMþ is an extension to COM, introduced in Microsoft Windows

2000. ActiveX is discussed in Chapter 6, Domain 5: Security Architecture and Design.

DCOM is a networked sequel to COM: “Microsoft� Distributed COM

(DCOM) extends the Component Object Model (COM) to support communication

among objects on different computers—on a LAN, a WAN, or even the Internet.

With DCOM, your application can be distributed at locations that make the most

sense to your customer and to the application.”15 DCOM includes Object Linking
and Embedding (OLE), a way to link documents to other documents.

Both COM and DCOM are being supplanted by Microsoft.NET, which can

interoperate with DCOM, but offers advanced functionality to both COM and

DCOM.

CORBA
Common Object Request Broker Architecture (CORBA) is an open vendor-neutral

networked object broker framework by the Object Management Group (OMG).

CORBA competes with Microsoft’s proprietary DCOM. CORBA objects commu-

nicate via a message interface, described by the Interface Definition Language
(IDL). See http://www.corba.org for more information about CORBA.

The essence of CORBA, beyond being a networked object broker, is the separa-

tion of the interface (syntax for communicating with an object) from the instance

(the specific object): “The interface to each object is defined very strictly. In contrast,

the implementation of an object—its running code, and its data—is hidden from the

rest of the system (i.e., encapsulated) behind a boundary that the client may not cross.

Clients access objects only through their advertised interface, invoking only those

operations that that the object exposes through its IDL interface, with only those para-

meters (input and output) that are included in the invocation.”16

In addition to locating objects over a network, CORBA enforces fundamental

object-oriented design: low-level details are encapsulated (hidden) from the client.

The objects perform their methods without revealing how they do it. Implementers

focus on connections, and not on code.

http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.corba.org

351Software vulnerabilities, testing, and assurance
Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD)
Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD) are a software
design methodology that takes the concept of objects to a higher, more conceptual,

level than OOP. The two terms are sometimes combined as Object-Oriented Analysis

and Design (OOAD).

It is like drawing a flowchart on a whiteboard which shows how a program should

conceptually operate. The way data in a program flows and is manipulated is visua-

lized as a series of messages and objects. Once the software design is complete, the

code may be programmed in an OOP language such as Ruby.

Object-Oriented Analysis (OOA) seeks to understand (analyze) a problem
domain (the challenge you are trying to address) and identifies all objects and their

interaction. Object-Oriented Design (OOD) then develops (designs) the solution.

We will use Object-Oriented Analysis and Design to design a networked intru-

sion detection system (NIDS). As we learned in Chapter 8, Domain 7: Telecommu-

nications and Network Security, an NIDS performs the following actions:

1. Sniffs packets from a network and converts them into pcap (packet capture)

format;

2. Analyzes the packets for signs of attacks, which could include Denial of Ser-

vice, client-side attacks, server-side attacks, web application attacks, and

others;

3. If a malicious attack is found, the NIDS sends an alert. NIDS may send alerts

via email, paging, syslog, or security information and event managers (SIEMs).

The previous steps serve as the basis for our Object-Oriented Analysis. A sniffer

object receives messages from the network in the form of packets. The sniffer con-

verts the packets to pcap (packet capture) data, which it sends to the analysis

object. The analysis object performs a number of functions (methods), including

detecting denial of service, client-side, server-side, or web application attacks. If

any are detected, it sends an alert message to the alerting object. The alerting

object may also perform a number of functions, including alerting via email, pag-

ing, syslog, or SIEM. The NIDS Object-Oriented Design is shown in Figure 9.10.

This NIDS design addresses the problem domain of alerting when malicious

traffic is sent on the network.
SOFTWARE VULNERABILITIES, TESTING, AND ASSURANCE
Once the project is underway and software has been programmed, the next steps

are testing the software, focusing on the confidentiality, integrity, and availability

of the system, the application, and the data processed by the application. Special care

must be given to the discovery of software vulnerabilities which could lead to data or

system compromise. Finally, organizations need to be able to gauge the effectiveness

of their software creation process, and identify ways to improve it.

Sniffer
Object

Network
Pa
ck
et
s

PCAP Data
Analysis Object

DoS
Client
Side

Server
Side Web

Al
er
ts

Alerting Object

Paging Email Syslog SIEM

FIGURE 9.10

OOD NIDS Design.

352 CHAPTER 9 Domain 8: Application development security
Software Vulnerabilities
Programmers make mistakes: this has been true since the advent of computer pro-

gramming. In Code Complete, Steve McConnell says “experience suggests that

there are 15-50 errors per 1000 lines of delivered code.”17 One thousand lines of

code is sometimes called a KLOC; “K” stands for thousand. This number can be

lowered by following a formal application maturity framework model. Watts S.

Humphrey, a Fellow at Carnegie Mellon University’s Software Engineering Insti-

tute, claims that organizations that follow SEI Capability Maturity Model (CMM,

see “Software Capability Maturity Model” section below) can lower the number of

errors to one in every KLOC.18

Even 1 error per thousand lines of code can introduce large security risks, as

our software becomes increasingly complex. Take Microsoft Windows, for exam-

ple: “As a result, each new version of Windows carries the baggage of its past. As

Windows has grown, the technical challenge has become increasingly daunting.

Several thousand engineers have labored to build and test Windows Vista, a

sprawling, complex software construction project with 50 million lines of code,

or more than 40% larger than Windows XP.”19

If the Microsoft Vista programmers made only one error per KLOC, then Vista

has 50,000 errors. Large software projects highlight the need for robust and

methodical software testing methodologies.

Types of Software Vulnerabilities
This section will briefly describe common application vulnerabilities. More techni-

cal details on vulnerabilities such as buffer overflows are discussed in Chapter 6,

Domain 5: Security Architecture and Design. An additional source of up-to-date

vulnerabilities can be found at “2010 CWE/SANS Top 25 Most Dangerous Pro-

gramming Errors,” available at http://cwe.mitre.org/top25/; the following summary

http://cwe.mitre.org/top25/;
image of Figure 9.10

353Software vulnerabilities, testing, and assurance
is based on this list. CWE refers to Common Weakness Enumeration, a dictionary

of software vulnerabilities by MITRE (see: http://cwe.mitre.org/). SANS is the

SANS Institute; see http://www.sans.org.

• Hard-coded credentials: Backdoor username/passwords left by programmers in

production code

• Buffer Overflow: Occurs when a programmer does not perform variable bounds

checking

• SQL Injection: manipulation of a back-end SQL server via a front-end web

server

• Directory Path Traversal: escaping from the root of a web server (such as/var/

www) into the regular file system by referencing directories such as “../..”

• PHP Remote File Inclusion (RFI): altering normal PHP URLs and variables such

as “http://good.example.com?file¼readme.txt” to include and execute remote

content, such as: http://good.example.com?file¼http://evil.example.com/bad.php

• Cross-Site Scripting (XSS): Third-party execution of web scripting languages

such as Javascript within the security context of a trusted site

• Cross-Site Request Forgery (CSRF, or sometimes XSRF): Third-party redirect

of static content within the security context of a trusted site20

Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF) are often confused.

They are both web attacks: the difference is XSS executes a script in a trusted context:

<script>alert(“XSS Test!”);</script>

The previous code would pop up a harmless “XSS Test!” alert. A real attack

would include more javascript, often stealing cookies or authentication credentials.

CSRF often tricks a user into processing a URL (sometimes by embedding the

URL in an HTML image tag) that performs a malicious act, for example tricking a

white hat into rendering the following image tag:

<img src¼”https://bank.example.com/transfer-money?from¼WHITEHAT&

to¼BLACKHAT”>
Software Testing Methods
There are a variety of software testing methods. In addition to the testing the fea-

tures and stability of the software, testing increasingly focuses on discovering spe-

cific programmer errors that could lead to vulnerabilities which risk system

compromise, including a lack-of-bounds checking.

Static testing tests the code passively: the code is not running. This includes

walkthroughs, syntax checking, and code reviews. Dynamic testing tests the code

while executing it.

White box software testing gives the tester access to program source code, data

structures, variables, etc. Black box testing gives the tester no internal details: the

software is treated as a black box that receives inputs.

http://cwe.mitre.org/
http://www.sans.org
http://good.example.com?file=readme.txt
http://good.example.com?file=readme.txt
http://good.example.com?file=http://evil.example.com/bad.php
http://good.example.com?file=http://evil.example.com/bad.php

354 CHAPTER 9 Domain 8: Application development security
A Traceability Matrix (sometimes called a Requirements Traceability Matrix,

or RTM) can be used to map customer’s requirements to the software testing plan:

it “traces” the “requirements,” and ensures that they are being met.

Software Testing Levels
It is usually helpful to approach the challenge of testing software from multiple

angles, addressing various testing levels, from low to high. The software testing

levels of Unit Testing, Installation Testing, Integration Testing, Regression Test-

ing, and Acceptance Testing are designed to accomplish that goal:

• Unit Testing: Low-level tests of software components, such as functions, proce-

dures or objects

• Installation Testing: Testing software as it is installed and first operated

• Integration Testing: Testing multiple software components as they are com-

bined into a working system. Subsets may be tested, or Big Bang integration

testing tests all integrated software components

• Regression Testing: Testing software after updates, modifications, or patches

• Acceptance Testing: testing to ensure the software meets the customer’s opera-

tional requirements. When this testing is done directly by the customer, it is

called User Acceptance Testing.

Fuzzing
Fuzzing (also called fuzz testing) is a type of black box testing that enters random,

malformed data as inputs into software programs to determine if they will crash.

A program that crashes when receiving malformed or unexpected input is likely

to suffer from a boundary checking issue, and may be vulnerable to a buffer over-

flow attack.

Fuzzing is typically automated, repeatedly presenting random input strings as

command line switches, environment variables, and program inputs. Any program

that crashes or hangs has failed the fuzz test.

Combinatorial Software Testing
Combinatorial software testing is a black-box testing method that seeks to identify

and test all unique combinations of software inputs. An example of combinatorial

software testing is pairwise testing (also called all pairs testing).
NIST gives the following example of pairwise testing (see: http://csrc.nist.gov/

groups/SNS/acts/documents/kuhn-kacker-lei-hunter09.pdf), “Suppose we want to

demonstrate that a new software application works correctly on PCs that use the

Windows or Linux operating systems, Intel or AMD processors, and the IPv4 or

IPv6 protocols. This is a total of 2 � 2 � 2 ¼ 8 possibilities but, as (Table 9.1)

shows, only four tests are required to test every component interacting with every

other component at least once. In this most basic combinatorial method, known as

pairwise testing, at least one of the four tests covers all possible pairs (t ¼ 2) of

values among the three parameters.”21

http://csrc.nist.gov/groups/SNS/acts/documents/kuhn-kacker-lei-hunter09.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/kuhn-kacker-lei-hunter09.pdf

Table 9.1 NIST Pairwise Testing Example21

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

355Software vulnerabilities, testing, and assurance
Disclosure
Disclosure describes the actions taken by a security researcher after discovering a

software vulnerability. This topic has proven controversial: what actions should

you take if you discover a flaw in well-known software such as the Apache web

server or Microsoft’s IIS (Internet Information Services) web server?

Assuming you are a white hat (ethical) researcher, the risk is not that you

understand the vulnerability: the risk is that others may independently discover

the vulnerability, or may have already done so. If the others are black hats (unethi-

cal), anyone running the vulnerable software is at risk. See Chapter 3, Domain 2:

Access Control for more information on types of security attackers and researches.

The ethical researcher could privately inform the vendor responsible for the

software, and share the research that indicated the software was vulnerable. This

process works well if the vendor quickly releases a fix or a patch for the vulnera-

bility, but what if the vendor does nothing?

Full Disclosure is the controversial practice of releasing vulnerability details

publicly. The rationale is this: if the bad guys may already have the information,

then everyone should also have it. This ensures the white hats also receive the

information, and will also pressure the vendor to patch the vulnerability. Advocates

argue that vulnerable software should be fixed as quickly as possible; relying

on (perceived) lack of knowledge of the vulnerability amounts to “Security through

obscurity,” which many argue is ineffective. The Full Disclosure mailing list (see:

http://seclists.org/fulldisclosure/) is dedicated to the practice of full disclosure.

The practice of full disclosure is controversial (and considered unethical by

many) because many black hats (including script kiddies) may benefit from this

practice; zero-day exploits (exploits for vulnerabilities with no patch) are more

likely to be developed, and additional innocent organizations may be harmed.

Responsible disclosure is the practice of privately sharing vulnerability infor-

mation with a vendor, and withholding public release until a patch is available.

This is generally considered to be the ethical disclosure option. Other options exist

between full and responsible disclosure, including privately sharing vulnerability

information with a vendor, but including a deadline, such as “I will post the vulner-

ability details publicly in three months, or after you release a patch, whichever

comes first.”

http://seclists.org/fulldisclosure/

356 CHAPTER 9 Domain 8: Application development security
Software Capability Maturity Model (CMM)
The Software Capability Maturity Model (CMM) is a maturity framework for eval-

uating and improving the software development process. The model was developed

by Carnegie Mellon University’s (CMU) Software Engineering Institute (SEI).

The goal of CMM is to develop a methodical framework for creating quality soft-

ware which allowsmeasurable and repeatable results: “Even in undisciplined organiza-

tions, however, some individual software projects produce excellent results.When such

projects succeed, it is generally through the heroic efforts of a dedicated team, rather

than through repeating the proven methods of an organization with a mature software

process. In the absence of an organization-wide software process, repeating results

depends entirely on having the same individuals available for the next project. Success

that rests solely on the availability of specific individuals provides no basis for long-

term productivity and quality improvement throughout an organization. Continuous

improvement can occur only through focused and sustained effort towards building a

process infrastructure of effective software engineering and management practices.”22

The five levels of CMM are described in (see: http://www.sei.cmu.edu/reports/

93tr024.pdf):

(1) Initial: The software process is characterized as ad hoc, and occasionally even

chaotic. Few processes are defined, and success depends on individual effort.

(2) Repeatable: Basic project management processes are established to track cost,

schedule, and functionality. The necessary process discipline is in place to

repeat earlier successes on projects with similar applications.

(3) Defined: The software process for both management and engineering activities

is documented, standardized, and integrated into a standard software process

for the organization. Projects use an approved, tailored version of the organiza-

tion’s standard software process for developing and maintaining software.

(4) Managed: Detailed measures of the software process and product quality are

collected, analyzed, and used to control the process. Both the software process

and products are quantitatively understood and controlled.

(5) Optimizing: Continual process improvement is enabled by quantitative feed-

back from the process and from piloting innovative ideas and technologies.22
DATABASES
A database is a structured collection of related data. Databases allow queries

(searches), insertions (updates), deletions, and many other functions. The database

is managed by the Database Management System (DBMS), which controls all

access to the database and enforces the database security. Databases are managed

by Database Administrators (DBAs). Databases may be searched with a database

query language, such as the Structured Query Language (SQL). Typical database
security issues include the confidentiality and integrity of the stored data. Integrity

is a primary concern when replicated databases are updated.

http://www.sei.cmu.edu/reports/93tr024.pdf
http://www.sei.cmu.edu/reports/93tr024.pdf

357Databases
Additional database confidentiality issues include inference and aggregation
attacks, discussed in detail in Chapter 6, Domain 5: Security Architecture and

Design. Aggregation is a mathematical attack where an attacker aggregates details

at a lower classification to determine information at a higher classification. Infer-

ence is a similar attack, but the attacker must logically deduce missing details:

unlike aggregation, a mystery must be solved.

Types of Databases
Formal database types include relational (two dimensional), hierarchical, and

object-oriented. The simplest form of database is a flat file: a text file that contains
multiple lines of data, each in a standard format. A host file (located at/etc/hosts on

UNIX systems, and c:\system32\drivers\etc\hosts on many versions of Microsoft

Windows) is an example of a flat file: each entry (line) contains at least an IP

address and a host name.

Relational Databases
The most common modern database is the relational database, which contain two-

dimensional tables of related (hence the term “relational”) data. A table is also

called a relation. Tables have rows and columns: a row is a database record, called

a tuple; a column is called an attribute. A single cell (intersection of a row and col-

umn) in a database is called a value. Relational databases require a unique value

called the primary key in each tuple in a table. Table 9.2 shows a relational data-

base employee table, sorted by the primary key (SSN, or Social Security Number).

Table 9.2 attributes are SSN, Name, and Title. Tuples include each row: 133-

73-1337, 343-53-4334, etc. “Gaff” is an example of a value (cell). Candidate keys
are any attribute (column) in the table with unique values: candidate keys in the

previous table include SSN and Name; SSN was selected as the primary key

because it is truly unique (two employees could have the same name, but not the

same SSN). Two tables in a relational database may be joined by the primary key.

Foreign Keys
A foreign key is a key in a related database table that matches a primary key in the

parent database. Note that the foreign key is the local table’s primary key: it is

called the foreign key when referring to a parent table. Table 9.3 is the HR
Table 9.2 Relational Database Employee Table

SSN Name Title

133-73-1337 J.F. Sebastian Designer

343-53-4334 Eldon Tyrell Doctor

425-22-8422 Gaff Detective

737-54-2268 Rick Deckard Detective

990-69-4771 Hannibal Chew Engineer

Table 9.3 HR Database Table

SSN Vacation Time (Days) Sick Time (Days)

133-73-1337 15 20

343-53-4334 60 90

425-22-8422 10 15

737-54-2268 3 1

990-69-4771 15 5

358 CHAPTER 9 Domain 8: Application development security
database table which lists employee’s vacation time (in days) and sick time (also in

days); it has a foreign key of SSN. The HR database table may be joined to the par-

ent (employee) database table by connecting the foreign key of the HR table to the

primary key of the employee table.

Referential, Semantic, and Entity Integrity
Databases must ensure the integrity of the data in the tables: this is called data

integrity, discussed in the “Database Integrity” section below. There are three addi-

tional specific integrity issues that must be addressed beyond the correctness of the

data itself: Referential, Semantic, and Entity Integrity. These are tied closely to the

logical operations of the DBMS.

Referential integrity means that every foreign key in a secondary table matches

a primary key in the parent table: if this is not true, referential integrity has been

broken. Semantic integrity means that each attribute (column) value is consistent

with the attribute data type. Entity integrity means each tuple has a unique primary

key that is not null. The HR database table shown in Table 9.3, seen previously,

has referential, semantic, and entity integrity. Table 9.4, on the other hand, has

multiple problems: one tuple violates referential integrity, one tuple violates

semantic integrity, and the last two tuples violate entity integrity.

The tuple with the foreign key 467-51-9732 has no matching entry in the

employee database table. This breaks referential integrity: there is no way to link

this entry to a name or title. Cell “Nexus 6” violates semantic integrity: the sick

time attribute requires values of days, and “Nexus 6” is not a valid amount of sick

days. Finally, the last two tuples both have the same primary key (primary to this

table; foreign key to the parent employees table); this breaks entity integrity.
Table 9.4 Database Table Lacking Integrity

SSN Vacation Time (Days) Sick Time (Days)

467-51-9732 7 14

737-54-2268 3 Nexus 6

133-73-1337 16 22

133-73-1337 15 20

359Databases
Database Normalization
Database normalization seeks to make the data in a database table logically con-

cise, organized, and consistent. Normalization removes redundant data, and

improves the integrity and availability of the database. Normalization has three

rules, called forms (see: http://www.informit.com/articles/article.aspx?p¼30646

for more information):

• First Normal Form (1NF): Divide data into tables.

• Second Normal Form (2NF): Move data that is partially dependent on the pri-

mary key to another table. The HR Database (Table 9.3) is an example of 2NF.

• Third normal Form (3NF): Remove data that is not dependent on the primary

key.23

Database Views
Database tables may be queried; the results of a query are called a database view.
Views may be used to provide a constrained user interface: for example, nonman-

agement employees can be shown their individual records only via database views.

Table 9.5 shows the database view resulting from querying the employee table

“Title” attribute with a string of “Detective.” While employees of the HR depart-

ment may be able to view the entire employee table, this view may be authorized

for the captain of the detectives, for example.

The Data Dictionary
The data dictionary contains a description of the database tables. This is called

metadata: data about data. The data dictionary contains database view information,

information about authorized database administrator, and user accounts including

their names and privileges, auditing information, among others. A critical data dic-

tionary component is the database schema: it describes the attributes and values of

the database tables. Table 9.6 shows a very simple data dictionary which describes

the two tables we have seen previously this chapter: employees and HR.

Database Query Languages
Database query languages allow the creation of database tables, read/write access

to those tables, and many other functions. Database query languages have at least

two subsets of commands: Data Definition Language (DDL) and Data Manipula-
tion Language (DML). DDL is used to create, modify, and delete tables. DML is

use to query and update data stored in the tables.
Table 9.5 Employee Table Database View “Detective”

SSN Name Title

425-22-8422 Gaff Detective

737-54-2268 Rick Deckard Detective

http://www.informit.com/articles/article.aspx?p=30646
http://www.informit.com/articles/article.aspx?p=30646

Table 9.6 Simple Database Schema

Table Attribute Type Format

Employee SSN Digits ###-##-####

Employee Name String <30 characters>

Employee Title String <30 characters>

HR SSN Digits ###-##-####

HR Sick Time Digits ### days

HR Vacation Time Digits ### days

360 CHAPTER 9 Domain 8: Application development security
The most popular relational database query language is SQL (Structured Query

Language), created by IBM in 1974. Many types of SQL exist, including MySQL,

PostgreSQL, PL/SQL (Procedural Language/SQL, used by Oracle), T-SQL and

ANSI SQL (used by Microsoft SQL), and many others.

Common SQL commands include:

• CREATE: create a table

• SELECT: select a record

• DELETE: delete a record (or a whole table)

• INSERT: insert a record

• UPDATE: change a record

Tables are created with the CREATE command, which uses Data Definition Lan-

guage to describe the format of the table that is being created. An example of a

Data Manipulation Language command is SELECT, which is used to search and

choose data from a table. The following SELECT command could be used to cre-

ate the database view shown in Table 9.5:

SELECT * FROM Employees WHERE Title ¼ “Detective”

This means: show any (“*”) records where the Title is “Detective.”

Hierarchical Databases
Hierarchical databases form a tree: the global Domain Name Service (DNS) ser-

vers form a global tree. The root name servers are at the “root zone” at the base

of the tree; individual DNS entries form the leaves. www.syngress.com points to

the syngress.com DNS database, which is part of the dot com (.com) top level

domain (TLD), which is part of the global DNS (root zone). From the root, you

may go back down another branch, down to the dot gov (.gov) TLD, to the nist.

gov (National Institute of Standards and Technologies) domain, to www.nist.gov.

A special form of hierarchical database is the network model (referring to net-

works of people, not data networks): this allows branches of a hierarchical data-

base to have two parents (two connections back to the root). Imagine an

organization’s org chart is stored in a database that forms a tree, with the CEO

as the root of the hierarchy. In this company, the physical security staff reports

to both facilities (for facility issues) and to IT (for data center physical security).

http://www.syngress.com
http://www.nist.gov

361Databases
The network model allows the physical security staff to have “two bosses” in the

hierarchical database: reporting through an IT manager and a facilities manager.

Object-oriented Databases
While databases traditionally contain just (passive) data, object-oriented databases

combine data with functions (code) in an object-oriented framework. Object-

Oriented Programming (OOP) is used to manipulate the objects (and their data),

managed by an Object Database Management System (ODBMS).

Database Integrity
In addition to the previously discussed relational database integrity issues of

semantic, referential, and entity integrity, databases must also ensure data integrity:

the integrity of the entries in the database tables. This treats integrity as a more

general issue: mitigating unauthorized modifications of data. The primary chal-

lenge associated with data integrity within a database is simultaneous attempted

modifications of data. A database server typically runs multiple threads (light-

weight processes), each capable of altering data. What happens if two threads

attempt to alter the same record?

DBMSs may attempt to commit updates: make the pending changes permanent.

If the commit is unsuccessful, the DBMSs can rollback (also called abort) and

restore from a savepoint (clean snapshot of the database tables).

A database journal is a log of all database transactions. Should a database become

corrupted, the database can be reverted to a back-up copy, and then subsequent trans-

actions can be “replayed” from the journal, restoring database integrity.

Database Replication and Shadowing
Databases may be highly available (HA), replicated with multiple servers contain-

ing multiple copies of tables. Integrity is the primary concern with replicated data-

bases: if a record is updated in one table, it must be simultaneously updated in all

tables. Also, what happens if two processes attempt to update the same tuple simul-

taneously on two different servers? They both cannot be successful; this would vio-

late the integrity of the tuple.

Database replication mirrors a live database, allowing simultaneous reads and

writes to multiple replicated databases by clients. Replicated databases pose addi-

tional integrity challenges. A two-phase (or multiphase) commit can be used to

assure integrity: before committing, the DBMS requests a vote. If the DBMSs on

each server agree to commit, the changes are made permanent. If any DBMSs dis-

agree, the vote fails, and the changes are no committed (made permanent).

A shadow database is similar to a replicated database, with one key difference:

a shadow database mirrors all changes made to a primary database, but clients do

not access the shadow. Unlike replicated databases, the shadow database is one-

way (data flows from primary to shadow): it serves as a live data backup of the

primary.

362 CHAPTER 9 Domain 8: Application development security
Data Warehousing and Data Mining
As the name implies, a data warehouse is a large collection of data. Modern data

warehouses may store many terabytes (1000 gigabytes) or even petabytes (1000

terabytes) of data. This requires large scalable storage solutions. The storage must

be high performance, and allow analysis and searches of the data.

Once data is collected in a warehouse, data mining is used to search for pat-

terns. Commonly sought patterns include signs of fraud. Credit card companies

manage some of the world’s largest data warehouses; tracking billions of transac-

tions per year. Fraudulent transactions are a primary concern of credit card compa-

nies that lead to millions of dollars in lost revenue. No human could possibly

monitor all of those transactions, so the credit card companies use data mining to

separate the signal from noise. A common data mining fraud rule monitors multi-

ple purchases on one card in different states or countries in a short period of time.

Should this occur, a violation record can be produced, leading to suspension of the

card or a phone call to the card owner’s home.
ARTIFICIAL INTELLIGENCE
Computers compute: they do exactly what they are told. The term “computer” was

first used in 1613 to describe a person who added numbers. Artificial Intelligence

is the science of programming electronic computers to “think” more intelligently,

sometimes mimicking the ability of mammal brains.
Expert Systems
Expert systems consist of two main components. The first is a knowledge base that
consists of “if/then” statements. These statements contain rules that the expert sys-

tem uses to make decisions. The second component is an inference engine that fol-
lows the tree formed by the knowledge base, and fires a rule when there is a match.

Here is a sample “the internet is down” Expert System, which may be used by a

help desk when a user calls to complain that they cannot reach the internet:

1. If your computer is turned on
a. Else: turn your computer on
2. Then if your monitor is turned on
a. Else: turn your monitor on
3. Then if your OS is booted and you can open a cmd.exe prompt
a. Else: repair OS
4. Then if you can ping 127.0.0.1
a. Else: check network interface configuration
5. Then if you can ping the local gateway
a. Else: check local network connection

363Artificial intelligence
6. Then if you can ping internet address 192.0.2.187
a. Else: check gateway connectivity
7. Then if you can ping syngress.com
a. Else: check DNS
Forward chaining starts with no premise (“Is the computer turned on” in our previ-

ous example), and works forward to determine a solution. Backward chaining

begins with a premise (“Maybe DNS is broken”), and works backwards.

The integrity of the knowledge base is critical. The entire knowledge base should

form a logical tree, beginning with a trunk (“Is the computer turned on” in our pre-

vious example). The knowledge base should then branch out. The inference engine

follows the tree, branching or firing as if/then statements are answered.

There should be no circular rules; an example of a circular rule using our pre-

vious example: “If your computer is turned on, then if your monitor is turned on,

then if your OS is booted and you can open a cmd.exe prompt, then if your com-

puter is turned on. . .” There should also be no unreferenced rules (branches that do

not connect to the knowledge base tree).

Artificial Neural Networks
Artificial Neural Networks (ANN) simulate neural networks found in humans and

animals. The human brain’s neural network has 100 billion neurons, interconnected

by thousands or more synapses each. Each neuron may fire based on synaptic

input. This multilayer neural network is capable of making a single decision based

on thousands or more inputs.

Real Neural Networks
Let us discuss how a real neural network operates: Imagine you are walking down

the street in a city at night, and someone is walking behind you closely. You begin

to become nervous: it is late; it is dark; and the person behind you is too close. You

must make a decision: fight or flight. You must decide to turn around to face your

pursuer, or to get away from them.

As you are making your decision, you weigh thousands upon thousands of

inputs. You remember past experience; your instincts guide you, and you perceive

the world with your five senses. These senses are sending new input to your brain,

millisecond by millisecond. Your memory, instincts, sight, smell, hearing, etc., all

continually send synaptic input to neurons. Less important input (such as taste in

this case) has a lower synaptic weight. More important input (such as sound) has

a higher synaptic weight. Neurons that receive higher input are more likely to fire,

and the output neuron eventually fires (makes a decision).

Finally, you decide to turn and face your pursuer, and you are relieved to see it

was a person listening to music on headphones, not paying attention to their sur-

roundings. Thousands of inputs resulted in a binary decision: fight or flight. ANNs

seek to replicate this complex decision-making process.

364 CHAPTER 9 Domain 8: Application development security
How Artificial Neural Networks Operate
ANNs seek to replicate the capabilities of biological neural networks. A node is used

to describe an artificial neuron. Like its biologic counterpart, these nodes receive

input from synapses and send output when a weight is exceeded. Single-layer ANNs

have one layer of input nodes; multilayer ANNs have multiple layers of nodes,

including hidden nodes, as shown in Figure 9.11. The arrows in Figure 9.11 repre-

sent the synaptic weights. Both single and multilayer artificial neural networks even-

tually trigger an output node to fire: this output node makes the decision.

An Artificial Neural Network learns by example via a training function: synaptic

weights are changed via an iterative process, until the output node fires correctly for

a given set of inputs. Artificial Neural Networks are used for “fuzzy” solutions,

where exactness is not always required (or possible), such as predicting the weather.
Bayesian Filtering
Bayesian filtering is named after Thomas Bayes, an English clergyman who

devised a number of probability and statistical methods including “a simple math-

ematical formula used for calculating conditional probabilities.”24

Bayesian filtering is commonly used to identify spam. Paul Gram described

Bayesian filtering to identify spam in his paper “A Plan for Spam” (see: www.

paulgraham.com/spam.html). He described using a “corpus” of “spam” and

“ham,” human-selected groups of spam and nonspam, respectively. He then used

Bayesian filtering techniques to automatically assign a mathematical probability

that certain “tokens” (words in the email) were indications of spam.
Input
Node

Input
Node

Input
Node

Input
Node

Hidden
Node

Hidden
Node

Hidden
Node

Output
Node

FIGURE 9.11

Multilayer Artificial Neural network.

http://www.paulgraham.com/spam.html
http://www.paulgraham.com/spam.html
image of Figure 9.11

365Summary of exam objectives
Genetic Algorithms and Programming
Genetic Algorithms and Programming fundamentally change the way software is

developed: instead of being coded by a programmer, they evolve to solve a problem.

Genetic Algorithms and Programming seek to replicate nature’s evolution, where

animals evolve to solve problems. Genetic programming refers to creating entire

software programs (usually in the form of Lisp source code); genetic algorithms refer

to creating shorter pieces of code (represented as strings called chromosomes).

Both are automatically generated, and then “bred” through multiple generations

to improve via Darwinian principles: “Genetic algorithms are search algorithms

based on the mechanics of natural selection and natural genetics. They combine

survival of the fittest among string structures with a structured yet randomized

information exchange to form a search algorithm with some of the innovative flair

of human search. In every generation, a new set of artificial creatures (strings) is

created using bits and pieces of the fittest of the old; an occasional new part is tried

for good measure. While randomized, genetic algorithms are no simple random

walk. They efficiently exploit historical information to speculate on new search

points with expected improved performance.”25

Genetic programming creates random programs and assigns them a task of

solving a problem. The fitness function describes how well they perform their task.

Crossover “breeds” two programs together (swaps their code). Mutation introduces

random changes in some programs. John R. Koza described the process in

“Genetic Programming: On the Programming of Computers by Means of Natural

Selection.” The process is summarized here:

• Generate an initial population of random computer programs

• Execute each program in the population and assign it a fitness value according

to how well it solves the problem.

• Create a new population of computer programs.

• Copy the best existing programs

• Create new computer programs by mutation.

• Create new computer programs by crossover(sexual reproduction)26

Genetic Algorithms and Genetic Programming have been used to program a Pac-Man

playing program, robotic soccer teams, networked intrusion detection systems, and

many others.
SUMMARY OF EXAM OBJECTIVES
We live in an increasingly computerized world, and software is everywhere. The

confidentiality, integrity, and availability of data processed by software are critical,

as is the normal functionality (availability) of the software itself. This domain has

shown how software works, and the challenges programmers face while trying to

write error-free code which is able to protect data (and itself) in the face of attacks.

366 CHAPTER 9 Domain 8: Application development security
Following a formal methodology for developing software, followed by a rigor-

ous testing regimen, are best practices. We have seen that following a software

development maturity model such as the Capability Maturity Model (CMM) can

dramatically lower the number of errors programmers make. The five steps of

CMM follow the process most programming organizations follow, from an infor-

mal process to a mature process which always seeks improvement: initial, repeat-

able, defined, managed, and optimizing.
SELF TEST
1. What software design methodology uses paired programmers?
A. Agile

B. Extreme Programming (XP)

C. Sashimi

D. Scrum
2. What form of Artificial Intelligence uses a knowledge base and an inference

engine?
A. Artificial Neural Network (ANN)

B. Bayesian Filtering

C. Expert System

D. Genetic Algorithm
3. Which of the following definitions describe open source software?
A. Freeware

B. Gnu Public License (GPL) software

C. Public domain software

D. Software released with source code
4. What type of software testing tests code passively?
A. Black box testing

B. Dynamic testing

C. Static testing

D. White box testing
5. At what phase of the (Systems Development Life Cycle) SDLC should secu-

rity become part of the process?
A. Before initiation

B. During development/acquisition

C. When the system is implemented

D. SDLC does not include a security process
6. An object acts differently, depending on the context of the input message.

What Object-Oriented Programming concept does this illustrate?
A. Delegation

B. Inheritance

367Self test
C. Polyinstantiation

D. Polymorphism
7. Two objects with the same name have different data. What Object-Oriented

Programming concept does this illustrate?
A. Delegation

B. Inheritance

C. Polyinstantiation

D. Polymorphism
8. Which software testing level tests software after updates, modifications, or patches?
A. Acceptance Testing

B. Integration Testing

C. Regression Testing

D. Unit Testing
9. What is a type of testing enters random malformed data as inputs into software

programs to determine if they will crash?
A. Black box testing

B. Combinatorial testing

C. Fuzzing

D. Pairwise testing
10. What type of database language is used to create, modify, and delete tables?
A. Data Definition Language (DDL)

B. Data Manipulation Language (DML)

C. Database Management System (DBMS)

D. Structured Query Language (SQL)
11. A database contains an entry with an empty primary key. What database con-

cept has been violated?
A. Entity Integrity

B. Normalization

C. Referential Integrity

D. Semantic Integrity
12. Which vulnerability allows a third party to redirect of static content within the

security context of a trusted site?
A. Cross-Site Request Forgery (CSRF)

B. Cross-Site Scripting (XSS)

C. PHP Remote File Inclusion (RFI)

D. SQL Injection
13. What language allows CORBA (Common Object Request Broker Architecture)

objects to communicate via a message interface?
A. Distributed Component Object Model (DCOM)

B. Interface Definition Language (IDL)

368 CHAPTER 9 Domain 8: Application development security
C. Object Linking and Embedding (OLE)

D. Object Management Guidelines (OMG)
14. What database high availability option allows multiple clients to access mul-

tiple database servers simultaneously?
A. Database commit

B. Database journal

C. Replicated database

D. Shadow database
15. What component of an expert system consists of “if/then” statements?
A. Backward chaining

B. Forward chaining

C. Inference engine

D. Knowledge base
SELF TEST QUICK ANSWER KEY
1. B
2. C
3. D
4. C
5. A
6. D
7. C
8. C
9. C

10. A
11. A
12. A
13. B
14. C
15. D
References
1. http://sup.netbsd.org/pub/NetBSD/NetBSD-release-4-0/src/games/trek/ram.c [accessed

April 19, 2010].

2. http://snippets.dzone.com/posts/show/1885 [accessed April 19, 2010].

3. http://www.gnu.org/licenses/quick-guide-gplv3.html [accessed April 19, 2010].

4. http://www.cms.gov/SystemLifecycleFramework/Downloads/SelectingDevelopment

Approach.pdf [accessed April 19, 2010].

5. http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_

winston_royce.pdf [accessed April 19, 2010].

http://sup.netbsd.org/pub/NetBSD/NetBSD-release-4-0/src/games/trek/ram.c
http://snippets.dzone.com/posts/show/1885
http://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.cms.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://www.cms.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf

369Self test quick answer key
6. http://www.jaist.ac.jp/ks/labs/umemoto/Fuji-Xerox.pdf [accessed April 19, 2010].

7. http://agilemanifesto.org/ [accessed April 19, 2010].

8. https://www.iei.liu.se/fek/frist/723g18/articles_and_papers/1.107457/TakeuchiNonaka

1986HBR.pdf [accessed April 19, 2010].

9. http://www.extremeprogramming.org/rules.html [accessed April 19, 2010].

10. http://portal.acm.org/citation.cfm?id¼12948 [accessed April 19, 2010].

11. http://csse.usc.edu/csse/TECHRPTS/2000/usccse2000-504/usccse2000-504.pdf

[accessed April 19, 2010].

12. http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf [accessed April 19, 2010].

13. http://www.justice.gov/jmd/irm/lifecycle/ch1.htm [accessed April 19, 2010].

14. http://www.microsoft.com/com/default.mspx [accessed April 19, 2010].

15. http://msdn.microsoft.com/en-us/library/ms809340.aspx [accessed April 19, 2010].

16. http://www.omg.org/gettingstarted/corbafaq.htm [accessed April 19, 2010].

17. http://www.businessweek.com/magazine/content/05_19/b3932038_mz009.htm

[accessed April 19, 2010].

18. McConnell S. Code complete: a practical handbook of software construction.
Redmond, Washington, USA: Microsoft Press; 1993.

19. http://www.nytimes.com/2006/03/27/technology/27soft.html [accessed April 19, 2010].

20. http://cwe.mitre.org/top25/ [accessed April 19, 2010].

21. http://csrc.nist.gov/groups/SNS/acts/documents/kuhn-kacker-lei-hunter09.pdf [accessed

April 19, 2010].

22. http://www.sei.cmu.edu/reports/93tr024.pdf [accessed April 19, 2010].

23. http://www.informit.com/articles/article.aspx?p¼30646 [accessed April 19, 2010].

24. Joyce J. Zalta EN, editor. Bayes’ theorem, the stanford encyclopedia of philosophy

(summer 2007 edition). 2007. http://plato.stanford.edu/archives/sum2007/entries/bayes-

theorem/ [accessed April 19, 2010].

25. Goldberg DE. Genetic algorithms in search, optimization, and machine learning.

Boston, MA, USA: Addison-Wesley; 1989.

26. http://www.geneticprogramming.com/Tutorial/ [accessed April 19, 2010].

27. http://www.acidaes.com/SWM.htm [accessed April 19, 2010].

http://www.jaist.ac.jp/ks/labs/umemoto/Fuji-Xerox.pdf
http://agilemanifesto.org/
https://www.iei.liu.se/fek/frist/723g18/articles_and_papers/1.107457/TakeuchiNonaka1986HBR.pdf
https://www.iei.liu.se/fek/frist/723g18/articles_and_papers/1.107457/TakeuchiNonaka1986HBR.pdf
http://www.extremeprogramming.org/rules.html
http://portal.acm.org/citation.cfm?id=12948
http://portal.acm.org/citation.cfm?id=12948
http://csse.usc.edu/csse/TECHRPTS/2000/usccse2000-504/usccse2000-504.pdf
http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf
http://www.justice.gov/jmd/irm/lifecycle/ch1.htm
http://www.microsoft.com/com/default.mspx
http://msdn.microsoft.com/en-us/library/ms809340.aspx
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.businessweek.com/magazine/content/05_19/b3932038_mz009.htm
http://www.nytimes.com/2006/03/27/technology/27soft.html
http://cwe.mitre.org/top25/
http://csrc.nist.gov/groups/SNS/acts/documents/kuhn-kacker-lei-hunter09.pdf
http://www.sei.cmu.edu/reports/93tr024.pdf
http://www.informit.com/articles/article.aspx?p=30646
http://www.informit.com/articles/article.aspx?p=30646
http://plato.stanford.edu/archives/sum2007/entries/bayes-theorem/
http://plato.stanford.edu/archives/sum2007/entries/bayes-theorem/
http://www.geneticprogramming.com/Tutorial/
http://www.acidaes.com/SWM.htm

	Domain 8: Application development security
	Unique Terms and Definitions
	Introduction
	Programming Concepts
	Machine Code, Source Code, and Assemblers
	Compilers, Interpreters, and Bytecode
	Procedural and Object-Oriented Languages
	Fourth-generation Programming Language
	Computer-Aided Software Engineering (CASE)
	Top-Down versus Bottom-Up Programming
	Types of Publicly-Released Software
	Open and Closed Source Software
	Free Software, Shareware, and Crippleware
	Software Licensing

	Application Development Methods
	Waterfall Model
	Sashimi Model
	Agile Software Development
	Scrum
	Extreme Programming (XP)

	Spiral
	Rapid Application Development (RAD)
	Prototyping
	SDLC
	Software Escrow

	Object-oriented Design and Programming
	Object-Oriented Programming (OOP)
	Cornerstone Object-Oriented Programming Concepts
	Coupling and Cohesion

	Object Request Brokers
	COM and DCOM
	CORBA

	Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD)

	Software Vulnerabilities, Testing, and Assurance
	Software Vulnerabilities
	Types of Software Vulnerabilities

	Software Testing Methods
	Software Testing Levels
	Fuzzing
	Combinatorial Software Testing

	Disclosure
	Software Capability Maturity Model (CMM)

	Databases
	Types of Databases
	Relational Databases
	Foreign Keys
	Referential, Semantic, and Entity Integrity
	Database Normalization
	Database Views
	The Data Dictionary

	Database Query Languages
	Hierarchical Databases
	Object-oriented Databases

	Database Integrity
	Database Replication and Shadowing
	Data Warehousing and Data Mining

	Artificial Intelligence
	Expert Systems
	Artificial Neural Networks
	Real Neural Networks
	How Artificial Neural Networks Operate

	Bayesian Filtering
	Genetic Algorithms and Programming

	Summary of Exam Objectives
	Self Test
	Self Test Quick Answer Key
	References

