
Metamorphic
Virus: Analysis
and Detection

This thesis describes the evolution of the first simple
computer virus to the most advanced metamorphic virus.

BY EVGENIOS KONSTANTINOU AND STEPHEN WOLTHUSEN

Produced by the Information Security Group at Royal Holloway, University of London in conjunction with TechTarget. Copyright © 2008 TechTarget. All rights reserved.

ABSTRACT

Metamorphic viruses transform their code as they propagate, thus evading detection by
static signature-based virus scanners, while keeping their functionality. They use code
obfuscation techniques to challenge deeper static analysis and can also beat dynamic
analyzers, such as emulators, by altering their behavior. To achieve this, metamorphic
viruses use several metamorphic transformations, including register renaming, code
permutation, code expansion, code shrinking, and garbage code insertion. In this article,
a simple analysis of metamorphic viruses is presented, along with the techniques they
use to transform their code to new generations. This article describes the evolution of the
computer virus from the first-generation simple virus to the most advanced metamorphic
virus. Several metamorphic techniques are described, then the description of several
techniques to detect metamorphic viruses is given.

Metamorphic Virus: Analysis and Detection

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 2

1 THE MALWARE MENACE
The recent years have been very interest-
ing, but at the same time very frustrating for
the information security professional. As
information technology is expanding and
improving, so are its threats. Its adversaries
evolved from the 15 year old “script kiddy”
to the professional hacker employed by
organized crime.

A recent research in the UK showed that
around 97% of businesses in the UK have

internet connection and around 88% have
broadband, thus the thread from malicious
software has never been greater[1].

The research reports that virus infection
was the biggest single cause of respon-
dents’ worst security incidents, accounting
for roughly half of them. Two-fifths of these
were described as having a serious busi-
ness impact. The report also informs that
virus infections tended to take more effort
to resolve than other incidents, some of

Evgenios
Konstantinou
Information Security Group, Royal
Holloway, Egham, Surrey, U.K.

Stephen
Wolthusen
Information Security Group, Royal
Holloway, Egham, Surrey, U.K.

This article was prepared by students and
staff involved with the award-winning M.Sc.
in Information Security offered by the
Information Security Group at Royal Holloway,
University of London. The student was judged
to have produced an outstanding M.Sc. thesis
on a business-related topic. The full thesis
is available as a technical report on the
Royal Holloway website
http://www.ma.rhul.ac.uk/tech.

For more information about the Information
Security Group at Royal Holloway or on the
M.Sc. in Information Security, please visit
http://www.isg.rhul.ac.uk.

http://searchsecurity.techtarget.co.uk/

them needing more than 50 person-days.
With the exception of rootkits, metamor-

phic viruses must be the most sophisticated
malicious pieces of code. To write a decent
metamorphic engine is a very challenging
task and some of them are so well written
that modern antivirus products can still
miss them some times, as shown by
Christodorescu and Jha in[2].

Because of their complexity their study
is very interesting, and the fact that there
were no real metamorphic viruses in the
wild since Simile in 2002 should not make
the virus researcher relaxed. The technology
is there and waiting to be exploited and
implemented into modern types of malware,
such as network worms and spyware.

Computer Virus. A computer virus is a
malicious program that modifies other host
files or boot areas to replicate. In most cases
the host object is modified to include a com-
plete copy of the malicious code program.
The subsequent running of the infected host
file or boot area then infects other objects[3].
There are many types of viruses such as
Boot Sector viruses, File Infecting viruses,
Memory Resistant viruses, Macro viruses,
etc. Figure 1 illustrates the simple virus V
replication, from generation to generation.

Figure 1: Simple virus replication

2 VIRUS DETECTION MECHANISMS
Before digging into more advanced
computer viruses, a description of the
most widely used detection techniques
is appropriate.

2.1 String Scanning
String scanning is the simplest technique
used by anti-virus software to detect com-
puter viruses. It searches for sequence of
bytes (strings) that are typical of a specific
virus but not likely to be found in other pro-
grams. This sequence of bytes is often
called the signature of the virus[4].

2.2 Wildcards
Scanners that support wildcards are
allowed to skip bytes or byte ranges. For
example, the bytes represented by the ‘?’
character are skipped. Some early genera-
tion encrypted, polymorphic, and even
metamorphic viruses could be detected
using wildcards.

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 3

A computer virus
is a malicious
program that
modifies other
host files or boot
areas to replicate.

http://searchsecurity.techtarget.co.uk/

2.3 Heuristics Analysis
Heuristics analysis is useful when detecting
new viruses. This technique is also particu-
larly useful for detecting macro viruses. For
binary viruses heuristic analysis can be help-
ful, but it creates many false positives which
is a big problem. However, in many cases a
heuristic analyzer can be valuable and can
also be used to detect variants of existing
virus families.

Heuristic analysis, as described in[5], can
be static or dynamic. Static analysis base the
analysis on file format and the code structure
of the virus body. Dynamic heuristics use
emulators to detect suspicious behavior
while the virus code runs inside the emulator.

2.4 Algorithmic Scanning
There are cases when the standard
algorithm of the virus scanner cannot deal
with a virus and a new detection code must
be introduced to implement a virus-specific
detection algorithm. This method is called
algorithmic scanning. Early scanners imple-
mented algorithmic scanning by hard-coding
detection routines that were released with
the core engine code, but this technique
caused many problems like stability issues
of the scanner. To solve this problem,

researchers introduced virus scanning
languages, which allowed seek and read
operations in scanned objects[4].

2.5 Code Emulation
This extremely powerful technique imple-
ments a virtual machine to simulate the
CPU and memory management system and
executes malicious code inside the virtual
machine. The malicious code cannot escape
the virtual machine of the scanner, thus this
technique is relatively safe. The code emula-
tor mimics the instruction set of the CPU
using virtual registers and flags. The func-
tionality of the operating system must also
be emulated to create a virtualized system
that supports system APIs, files, memory
management, etc. The emulator mimics the
execution of programs and analyzes each
instruction one-by-one.

3 ADVANCED CODE EVOLUTION
Malware writers are continually trying
to invent new methods to defeat antivirus
software. Their worst enemies are the most
commercially popular antivirus products.
Virus writers had to come up with ideas that
made first-generation virus scanners useless.

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 4

Malware writers
are continually
trying to invent
new methods to
defeat antivirus
software.

http://searchsecurity.techtarget.co.uk/

3.1 Encrypted Virus
One of the first and easiest methods virus
writers used to hide the functionality of the
virus code was encryption. Usually, an
encrypted virus consists of two parts; the
decryptor and the encrypted main body of the
virus. The decryptor executes when an infect-
ed program runs, and decrypts the virus body.
In[6] it is mentioned that virus writers use
encryption for the four following reasons:

• prevent static code analysis
• prolong the process of dissection
• prevent tampering
• evade detection

Figure 2 illustrates how the encrypted
virus replicates. The decryptor D is constant
and behind the encryption the body of the
virus remains constant too.

Figure 2: Encrypted virus replication

3.2 Polymorphic Virus
Polymorphism is the next step virus writers
took to challenge antivirus software. Poly-
morphic viruses can mutate their decryptors

to a high number of different instances that
take millions of different forms[4]. They use
their mutation engine to create a new
decryption routine each time they infect a
program. The new decryption routine would
have exactly the same functionality, but the
sequence of instructions could be completely
different[7].

The mutation engine also generates an
encryption routine to encrypt the static code
of the virus before it infects a new file. Then
the virus appends the new decryption rou-
tine together with the encrypted virus body
onto the targeted file. Since the virus body
is encrypted and the decryption routine is
different for each infection, antivirus scan-
ners cannot detect the virus by using search
strings[7].

Figure 3 illustrates how the polymorphic
virus replicates. The decryptor D changes
shape from generation to generation, but
behind the encryption there is still a constant
virus body.

Figure 3: Polymorphic virus replication

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 5

The mutation
engine also
generates an
encryption routine
to encrypt the
static code of
the virus before it
infects a new file.

http://searchsecurity.techtarget.co.uk/

4 METAMORPHIC VIRUSES
Metamorphic viruses transform their
code as they propagate, thus evading detec-
tion by static signature-based virus scanners
and have the potential to lead to a breed of
malicious programs that are virtually unde-
tectable statistically[8]. These viruses also
use code obfuscation techniques to chal-
lenge deeper static analysis and can also
beat dynamic analyzers, such as emulators,
by altering their behaviour when they detect
that they are executing under a controlled
environment[9].

Metamorphic viruses do not have a
decryptor and do not “unpack” to give a
constant virus body like polymorphic viruses
do. However, they are able to create new
generations of the virus that look different.
They do not use a data area filled with string
constants but have one single-code body
that carries data as code[4]. To achieve this,
metamorphic viruses use several metamor-
phic transformations, such as register usage
exchange, code permutation, code expan-
sion, code shrinking, and garbage code
insertion.

Figure 4 illustrates the replication of a
metamorphic virus. It is obvious that no
constant data exists between different

generations.

Figure 4: Metamorphic virus replication

4.1 Metamorphic Techniques
To avoid detection, metamorphic viruses use
several different techniques to evolve their
code into new generations that look com-
pletely different, but have exactly the same
functionality.

4.1.1 Garbage Code Insertion
Garbage code (or junk code) insertion is a
simple technique used by many metamor-
phic and polymorphic viruses to evolve their
code. The idea behind this technique is to
make their code look different so that no
usable hexadecimal search string can be
extracted. The instructions inserted into the
code are called garbage because they have
no impact on the functionality of the code[10].

4.1.2 Register usage exchange
Another simple technique used by metamor-
phic viruses is register usage exchange. This

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 6

Metamorphic
viruses do not
have a decryptor
and do not
“unpack” to give
a constant virus
body like polymor-
phic viruses do.

http://searchsecurity.techtarget.co.uk/

method was used by the Win95/Regswap
virus, which was created by the virus writer
Vecna and released in 1998. Different gen-
erations of the virus will use the same code
but with different registers[11].

4.1.3 Permutation Techniques
The Win32/Ghost and the Win95/Zperm
viruses introduced a new level of metamor-
phism. Although the virus code is constant,
metamorphosis is achieved by dividing the
code into frames, and then position the
frames randomly and connect them by
branch instructions to maintain the process
flow. The flow of control always remains
the same[12].

The Win32/Ghost virus, which was
discovered in May 2000, had the ability to
re-order its subroutines from generation to
generation. If the number of subroutines is n,
then the number of different virus genera-
tions is n!. Win32/Ghost had 10 subrou-
tines, thus there were 3628800 different
possible virus generations.

4.1.4 Insertion of Jump Instructions
Another method used by some metamorphic
viruses to create new generations is insert-
ing jump instructions within its code. The

Win95/Zperm virus is a very good example
of this technique. The virus inserts and
removes jump instructions within its code
and each jump instruction will point to a new
instruction of the virus[11]. Zperm never gen-
erates a constant body anywhere, not even
in memory, so detection of the virus using
search strings is virtually impossible.

4.1.5 Instruction Replacement
Some metamorphic viruses are able to
replace some of their instructions with other
equivalent instructions. In addition to jump
insertions, Win95/Zperm had the ability to
perform instruction replacement. For exam-
ple, the virus could replace the instruction
“xor eax, ea” with the instruction “sub eax,
eax”. Both instructions perform the same
function – zeroing the content of the eax
register – but have a different opcode (hexa-
decimal representation of the instruction)[11].

Another example of instruction replacement
is the Win95/Zmist virus.

The types of instruction replacement that
can be performed by Zmist, as described in
[13], include:

• reversing of branch conditions
• register moves replaced by push/pop

sequences

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 7

Another method
used by some
metamorphic
viruses to create
new generations
is inserting jump
instructions within
its code.

http://searchsecurity.techtarget.co.uk/

• alternative opcode encoding
• xor/sub and or/test interchanging

4.1.6 Host Code Mutation
The Win95/Bistro virus not only mutates
itself in new generations, but it also mutates
the code of its host. This way the virus can
generate new viruses and worms. To do this,
the virus uses a randomly executed code-
morphing routine. Also, because the entry-
point code of the application could be differ-
ent, disinfection cannot be done perfectly.

The code-morphing routine of Bistro uses
techniques previously described in this sec-
tion. Code permutations of worms and virus-
es, as done by Bistro, would be very difficult
to deal with. If similar morphing techniques
were implemented by a 32-bit worm, a major
problem would occur as new mutations of
old viruses and worms would be created
endlessly[10].

4.1.7 Code Integration
The Win95/Zmist virus implemented an even
more sophisticated technique. This tech-
nique, named code integration, has never
been seen in any previous virus. Zmists
engine can decompile Portable Executable
(PE) files to their smallest elements, requir-
ing 32MB of memory. Then the virus moves

code blocks out of the way, inserts itself into
the code, re-generates code and data refer-
ences, and rebuilds the executable[11]. This
way the virus can integrate itself seamlessly
to the code of its target, making it very hard
to detect and even harder to repair.

4.2 Advanced Metamorphic Viruses
Win95/Zmist and Win32, Linux/Simile were
the two most advanced metamorphic viruses.
Zmist was created by the virus writer
Z0mbie and released in 2000. Simile –
named “MetaPHOR” by its creator – was
created by “The Mental Driller” and was
released in 2002.

4.2.1 Win95/Zmist
The Russian virus writer Z0mbie released
Win95/Zmist in 2000, along with his “Total
Zombification” magazine. Z0mbie is the
author of many other polymorphic and meta-
morphic viruses, including Win95/Zmorph
and Win95/Zperm. At the time of its release,
Zmist was one of the most complex viruses.
Peter Ferrie and Peter Szor went as far as to
call Zmist “one of the most complex binary
viruses ever written.” Zmist is a Entry-Point
Obscuring (EPO) virus that is metamorphic.
With the EPO method, some random place
in the victims’ body is patched by virus

Code permuta-
tions of worms
and viruses, as
done by Bistro,
would be very
difficult to
deal with.

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 8

http://searchsecurity.techtarget.co.uk/

instructions in the hope that these instruc-
tions will gain control at some point[14].

In addition, Zmist randomly uses a poly-
morphic decryptor[13].

Zmist supports the unique technique
called code integration. Also, it occasionally
inserts jump instructions after every single
instruction of the code section, each point-
ing to the next instruction. The fact that
these extremely modified applications work
– from generation to generation – was not
expected by anyone, not even by Z0mbie.
In [13] it is mentioned that “due to its extreme
camouflage, Zmist is clearly the perfect
anti-heuristics virus.”

4.2.2 Win32, Linux/Simile
In March 2002, a virus writer who calls
himself “The Mental Driller,” released the
Win32/Simile virus. Information about Simile
comes from[15].

Simile, which is even more complex than
Zmist, is approximately 14,000 lines of
assembly code. Its extremely powerful and
complex metamorphic engine takes up
about 90% of the virus code. His creator
named the virus “MetaPHOR”, which stands
for Metaphoric Permutating High-Obfuscating
Reassembler.

There are four known variants of the virus,
three of them (variants A, B, and D) written
by the original author, and one (variant C)
written by an unknown author[4].

Simile is very obfuscated and very difficult
to understand. It attacks the disassembling,
debugging, and emulation techniques. It also
challenges the standard evaluation-based
techniques for virus analysis. Just like Zmist,
Simile makes use of EPO techniques. Most
first generation metamorphic viruses could
only expand. Simile can both expand and
shrink to different forms. The power of Simi-
les’ engine is demonstrated in the following
code, which was published in[16]:

mov dword_1, 0h
mov edx, dword_1
mov dword_2, edx
mov ebx, dword_2
mov edi, 32336C65h
lea eax, [edi]
mov esi, 0A624548h
or esi, 4670214Bh
lea edi, [eax]
mov dword_4, edi
mov edx, ebp
mov dword_5, edx
mov dword_3, esi
mov edx, offset dword_3

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 9

Simile is very
obfuscated and
very difficult to
understand. It
attacks the
disassembling,
debugging,
and emulation
techniques.

http://searchsecurity.techtarget.co.uk/

push edx
mov dword_6, offset GetModuleHandleA
push dword_6
pop dword_7
mov edx, dword_7
call dword ptr ds:0[edx]

Similes’ metamorphic engine could
replace the previous code by the following
five lines:

mov dword_3, 6E72654Bh
mov dword_4, 32336C65h
mov dword_5, 0h
push offset dword_3
call ds:[GetModuleHandleA]

5 METAMORPHIC
VIRUS DETECTION

Metamorphic techniques make virus
detection using search strings virtually
impossible. To detect a metamorphic virus,
techniques such as examination of the file
structure, or analysis of the behavior of the
code must be used. For perfect detection
of a metamorphic virus, detection routines
must be written that can generate the
essential instruction set of the virus
body from the actual instance of the
infection[4].

5.1 Geometric Detection
Geometric detection is based on modifica-
tions that a virus has made to the file struc-
ture. Peter Szor calls this method shape
heuristics because it is far from exact and
prone to false positives[4]. Geometric detec-
tion can be used to detect Win95/Zmist.
Because the data section of a file is in-
creased by at least 32KB when it is infected
by an encrypted version of the virus, the file
might be reported as being infected if the
virtual size of its data section is at least
32KB larger than its physical size. However,
this method could introduce false positives[4].

5.2 Wildcard String and Half-Byte Scanning
Simple metamorphic viruses, such as
viruses that use register swapping and
instruction replacement, can be detected
by wildcard and half-byte scanning. For
example, in the Win95/Regswap virus that
there exist many common opcodes that
are constant to all generations of the virus.
This makes the extraction of usable search
strings using wildcards possible. If the
scanner supports it, half-byte detection
would also be appropriate for this type
of infection[4].

Metamorphic
techniques make
virus detection
using search
strings virtually
impossible.

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 10

http://searchsecurity.techtarget.co.uk/

5.3 Code Disassembling
Disassembling the virus code means sepa-
rating the stream into individual instructions.
This technique is good for detecting viruses
that insert garbage code between their
code. Code disassembling becomes a
powerful tool when combined with a state
machine, which could record the order in
which “interesting” instructions are found.
(A state machine is a model of behaviour
composed of a finite number of states,
transitions between those states, and
actions [17]) It becomes even more powerful
if it is combined with an emulator, and it
becomes capable of detecting difficult
viruses like Win95/Zmist or Win95/Puron
based on an engine called “Lexotan”[4].

5.4 Using Emulators
Code emulation implements a virtual
machine to simulate the CPU and memory
management system and executes mali-
cious code inside the virtual machine. The
malicious code cannot escape the virtual
machine of the scanner[4]. Antivirus scan-
ners can run code inside an emulator and
examine it periodically or when interesting
instructions are executed.

5.4.1 Using Emulator-Based Heuristics
Heuristic detection does not identify viruses
specifically but extracts features of viruses
and detects classes of computer viruses
generically. The emulator-based heuristics
technique is described in[4].

The heuristics engine can track the inter-
rupts or implement a deeper level of heuris-
tics using a virtual machine that simulates
the operating system.

Such systems can even replicate the virus
inside the virtual machine on a virtual file
system. Some antivirus products implement
such systems and find them to be very effec-
tive, providing less false positives. This tech-
nique requires emulation of file systems. For
example, whenever a new file is opened by
the emulated virus, a virtual file is given to it.
Then the emulated virus might decide to
infect the virtual file in its own virtual system.
The two biggest problems is that is very
difficult to emulate multithreaded systems
and performance is poor.

5.4.2 Dummy Loops Detection
An anti-emulation technique was introduced
by an improved version of the Bistro virus,
which was released some time after the orig-
inal. This technique, which is called random

Heuristic detection
does not identify
viruses specifically
but extracts fea-
tures of viruses
and detects
classes of
computer viruses
generically.

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 11

http://searchsecurity.techtarget.co.uk/

code insertion, inserts garbage instructions
and dummy loops randomly before the
decryptor code. This forces some emulators
to emulate millions of garbage instructions
and fail to rebuild the real virus. This results
in failure to detect the virus[12].

5.4.3 Stack Decryption Detection
Variants of the Zmorph virus place a piece
of polymorphic code at the entry point of
an infected file. Then they decrypt the virus
instruction-by-instruction and rebuild it by
pushing the result into the stack memory.
If the emulator is not capable of detecting
stack decryption, such viruses would be
missed. The memory accessed by the virus
must be monitored by the emulator and
when control is transferred to the stack
memory, the emulator should detect it and
dump the whole decrypted virus code for
identification.

The drawback of this technique is that is
has a significant impact on the performance
of the scanner[12].

5.5 Code Transformation Detection
Code transformation is used to convert
mutated instructions into their simplest form,
where the combinations of instructions are

transformed to an equivalent but simple
form. After the transformation, common
code exhibited by the virus can be identi-
fied[12]. The first metamorphic virus that
this technique was applicable to was
Win32/Simile. This technique involves trans-
forming the virus code back to its initial form
similar to the first generation. However, to be
able to guarantee perfect detection without
compromising scanning speed, the code
transformation module must be highly opti-
mised and flexible. The virus location can
be transformed to where the scan pattern
is taken this will reduce the impact on the
performance of the scanner[12].

5.6 Subroutine Depermutation
Subroutine depermutation technique is used
for detection of viruses that use permutation
of their code to form new generations.
As described earlier, metamorphosis is
achieved by dividing the code into frames,
and then positioning the frames randomly
and connecting them by branch instructions
to maintain the process flow[12].

The Zperm virus uses the sophisticated
Real Permutation Engine (RPME) in order to
mutate its code. To detect such a virus, the
scanner must perform partial emulation to

Variants of the
Zmorph virus
place a piece of
polymorphic code
at the entry point
of an infected file.

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 12

http://searchsecurity.techtarget.co.uk/

reconstruct the virus code into its initial form
before the permutation. Partial emulation
means emulating branch instructions, such
as jump instructions. Deciding when to stop
decoding is the problem of this technique.
Also, ensuring that the virus code is finished
is another challenge. In addition to rebuilding
the virus code, this technique can be effec-
tive for removing garbage instructions too[12].

6 CONCLUSION
This article described the evolution of the
computer virus, from the first-generation
simple virus to the most advanced metamor-
phic virus. First-generation viruses are
simple and their detection is relatively trivial.
As anti-virus software became more
advanced, virus writers kept inventing new
techniques to thwart detection. This lead to
the creation of the metamorphic virus, which
used advanced code mutation techniques.

This article described many techniques
used by metamorphic viruses, such as
Garbage Code Insertion, Instruction
Replacement, Host code Mutation, and
Code Integration.

Anti-virus vendors had to react and
invent several detection techniques, such as
Geometric Detection, Code Disassembling,
Stack Description Detection, and Subrou-
tine Depermutation, capable of detecting
metamorphic viruses.

However, some metamorphic viruses are
so advanced that anti-virus software are not
able to detect them even today. Fortunately,
these viruses are so difficult to write that virus
writers turned to other types of malware.
This, however, does not mean anti-viruses
researchers can relax as viruses writers are
beginning to use metamorphic techniques
again, in different types of malware.m

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 13

REFERENCES

[1] Alun Michael, Chris Potter, and Andrew Beard. Information security breaches survey 2006. Technical report, PriceWater-
houseCoopers, 2006.

[2] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect malicious patterns. In SSYM’03: Proceed-

Ron Condon
UK bureau chief
searchsecurity.co.UK

Ron Condon
has been writing
about develop-
ments in the IT
industry for
more than 30
years. In that
time, he has
charted the evolution from big main-
frames, to minicomputers and PCs in
the 1980s, and the rise of the Internet
over the last decade or so. In recent
years he has specialized in information
security. He has edited daily, weekly
and monthly publications, and has
written for national and regional
newspapers, in Europe and the U.S.

http://searchsecurity.techtarget.co.uk/
http://searchsecurity.techtarget.co.uk/

ings of the 12th conference on USENIX Security Symposium, pages 12–12, Berkeley, CA, USA, 2003. USENIX Association.

[3] Roger A. Grimes. Malicious Mobile Code: Virus Protection for Windows. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2001.

[4] Peter Szor. The Art of Computer Virus Research and Defense. Addison Wesley Professional, 1 edition, February 2005.
12

[5] Prabhat K. Singh and Arun Lakhotia. Analysis and detection of computer viruses and worms: an annotated bibliography.
SIGPLAN Not., 37(2):29–35, 2002.

[6] Fridrik Skulason. Virus encryption techniques. Virus Bul letin, pages 13–16, November 1990.

[7] Carey Nachenberg. Computer virus-antivirus coevolution. Commun. ACM, 40(1):46–51, 1997.

[8] Mohamed R. Chouchane and Arun Lakhotia. Using engine signature to detect metamorphic malware. In WORM ’06:
Proceedings of the 4th ACM workshop on Recurring malcode, pages 73–78, New York, NY, USA, 2006. ACM Press.

[9] Arun Lakhotia, Aditya Kapoor, and Eric Uday Kumar. Are metamorphic computer viruses really invisible? part 1. Virus Bul
letin, pages 5–7, December 2004.

[10] Peter Szor. The new 32-bit medusa. Virus Bul letin, pages 8–10, December 2000.

[11] Peter Sz ?or and Peter Ferrie. Hunting for metamorphic. In Virus Bulletin Conference, September 2001.

[12] Rodelio G. Finones and Richard t. Fernandez. Solving the metamorphic puzzle. Virus Bul letin, pages 14–19, March 2006.

[13] Peter Ferrie and Peter Szor. Zmist oportunities. Virus Bul letin, pages 6–7, March 2001.

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 14

http://searchsecurity.techtarget.co.uk/

[14] Malivanchuk Taras. Epo - what is next? Virus Bul letin, pages 8–9, March 2002.

[15] Frederic Perriot, Peter Szor, and Peter Ferrie. Striking similarites: Win32/simile and metamorphic virus code. Technical
report, Symantec, 2003.

[16] Myles Jordan. Dealing with metamorphism. Virus Bul letin, pages 4–6, Octomber 2002.

[17] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, and Peter Wolstenholme. Modeling Software with Finite State
Machines: A Practical Approach. Number 0-8493-8086-3. Taylor & Francis Group, LLC, 1 edition, 2006.
13

Royal Holloway series Metamorphic virus

• METAMORPHIC VIRUSES • CODE MUTATIONS • METAMORPHIC DETECTION • HEURISTIC DETECTION 15

http://searchsecurity.techtarget.co.uk/

