
Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

1

Buffer overflows
in aWindows
environment
Buffer overflow vulnerabilities are commonly exploited
by hackers to gain control of an IT system. Parvez Anwar and
Andreas Fuchsberger explain what they are, how they work,
and how companies can protect themselves—up to a point.



OMPUTERS GETTING HACKED, information
being disclosed, corporations losing
billions1, these are some of the mis-
eries brought by the buffer overflow

vulnerability. Over the years we have seen hun-
dreds of articles relating to buffer overflows being
published making it a thoroughly researched vul-
nerability. Well known security researchers have
published papers providing a plethora of informa-
tion, but buffer overflows are still being discov-
ered on a regular basis. The chaos and destruc-
tion a buffer overflow can cause can be disastrous
if not dealt with at the earliest opportunity. This
article will gives an insight into why this vulnera-
bility exists in the first place and what can be
done to improve defences against it. In the last
decade we have seen various worms2 taking
advantage of buffer overflows to assist in criminal
deeds. Worms are malicious programs which
silently take over IT systems and carry out mali-
cious activities. As recently as October 2008
another worm was discovered in the wild abusing
a buffer overflow vulnerability. This worm not
only hid itself in a way not easily visible but also
downloaded various malicious files. So what can

be done to stop this threat and what measures
can be taken to mitigate it? As well as having lay-
ers of security providing defence in depth, it is
often necessary to protect against buffer overflow
attacks directly and understanding exactly what
a buffer overflow is goes a long way in diagnosing
and investigating a possible attack. Taking early
pre-emptive measures on a likely vulnerability
without relying heavily on third-party software
might make all the difference in protecting an
organisation’s IT assets.

UNDERSTANDING
BUFFER OVERFLOWS
What exactly is a buffer overflow? A buffer over-
flow is a type of vulnerability in software that
could be exploited to gain control of an IT system.
A buffer overflow occurs when too much data is
inputted into a fixed amount of space set aside by
the programmer, commonly called a buffer. If too
much water is poured into a glass, the excess
water would overflow and create a mess. If too
much data is accepted, more than the allocated
memory can handle, then the data would over-

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

2

C



flow to the adjacent memory locations corrupting
memory and similarly creating a mess. But why
do these buffer overflow vulnerabilities exist in
the first place? This really comes down to poor
programming practices by developers who pro-
duce software. Developers use various functions

to write their software. Some functions are vul-
nerable as there are no checks in place as to how
much data they can handle. C and C++ are two of
the most popular languages affected by buffer
overflows. Simply using safe functions, which
define boundaries of inputted data, can eliminate
this vulnerability. Languages such as Java and C#
are known as safe languages as they have checks
in place which prevent overflows.
To appreciate how buffer overflow vulnerabili-

ties can be exploited we need to have an under-
standing of processor registers and shellcode.

PROCESSOR REGISTERS: Registers are a type of
memory contained in the processor and used by
the processor. These are different from main
memory where programs are loaded and data is
stored. Registers are small portions of memory
used for very fast processing. There are a number
of registers, each with its own responsibilities.
When a buffer overflow takes place these regis-
ters get overwritten and the program usually
crashes. Observing these register values after a
crash will give us some indication as to what had
occurred. Simply looking at crash logs usually
contains the information we need to diagnose a
problem. For a security researcher, observing a
crash is a good thing as it gives the researcher a
possibility of discovering a new vulnerability.

SHELLCODE: For a buffer overflow vulnerability to
be exploited we need to have a basic understand-
ing of shellcode. Shellcode is basically program
code in binary processor native code, usually
reproduced in hexadecimal format. The purpose
of the program code could be to download and
execute a virus or a worm. The reason shellcode
is used is that code injected in memory has to be

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

3

When a buffer overflow
takes place registers get
overwritten and the program
usually crashes. Crash logs
can usually help identify
the problem.



in a format for the processor to understand.
When exploiting a buffer overflow vulnerability,
the overflowed data including the shellcode is
injected into memory and the processor is manip-
ulated to jump to the shellcode. As an example
“Royal Holloway University of London” in hexa-
decimal format will look like:

52 6f 79 61 6c 20 48 6f 6c 6c 6f 77
61 79 20 55 6e 69 76 65 72 73 69 74
79 20 6f 66 20 4c 6f 6e 64 6f 6e

There are two main types of buffer overflow
vulnerabilities, stack-based and heap-based
buffer overflows. The stack and heap are areas
of memory that programs use for reading and
writing data.

STACK-BASED BUFFER OVERFLOWS:When a pro-
gram uses the stack it creates a stack frame for
function calls made by the program. A function
is a set of instructions to carry out a specific task
such as copying a file from one location to anoth-
er. When a function call is made, the function is
carried out for the program and then the flow of
control is returned back to the calling program.
The stack frame created holds a number of ele-
ments for the called function. First the function

parameters are placed onto the stack frame. Next
the return pointer is pushed on which holds the
current return address. This return address is a
location in memory where the program is located
so when an operation is finished it knows where
to return. Next to go onto the stack frame is the
frame pointer which contains the base address
of the stack frame. The base address is a location
in memory of the stack frame which does not
change during the functions operation. Finally
the local variable goes onto the stack frame. This
local variable contains the information the func-
tion needs to operate, such as the name of the file
we wish to copy. FIGURE 1 shows a stack frame lay-

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

4

FIGURE 1

STACK FRAME LAYOUT

Local variable

Frame pointer

Return pointer

Function parameters



out. When too much data is inputted, more than
the local variable can handle, e.g. entering a very
long filename, it overflows towards and past the
return pointer overwriting our return address and
as a result producing a stack-based buffer over-
flow.

HEAP-BASED BUFFER OVERFLOWS: The heap
memory is structured and works in a different
way from stack memory. The heap manager man-
ages the allocation and freeing of heap memory.
When a program requires heap memory, the heap
manager allocates blocks of memory known as
chunks. This memory chunk consists of a chunk
header and chunk data. The chunk header stores
various bits of information about the chunk, such
as the size, memory segment location, whether
the memory chunk is free or in use, etc. This
chunk header is 8 bytes in size and if the block is
free then it contains 8 more bytes of which are its
pointers. There are two pointers of 4 bytes each
and are known as the forward and backward links.
The pointers point to previous and next memory
chunks which are managed by the heap manager.
The heap manager updates these pointers and
keeps note of which chunks are free and which
chunks are in use. When a buffer overflow takes
place, and a neighbouring chunk exists, the chunk

data overflows into the next free heap chunk
overwriting these pointers. When this happens a
heap-based buffer overflow in the program has
taken place.

GAINING CONTROL
BY EXPLOITING SOFTWARE
Once a buffer overflow vulnerability has been
discovered, it can be only a matter of days before
hackers start exploiting the vulnerability to carry
out its malicious activities. There are a number of
buffer overflow techniques which allow hackers
to take over a machine. These involve overwriting
registers or function pointers with values that tell
the processor to jump to a memory location and
process shellcode from that location. Once the
shellcode has been processed the processor goes
back to its normal operation processing valid
instructions. This is known as controlling the
“flow of execution”.

RETURN ADDRESS:When overwriting the return
address, the values held in a control register
which holds the return address for the current
function are indirectly changed. Every time the
program completes an operation it updates this
register with a new return address. This return

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

5



address is responsible for the program’s flow of
execution. To obtain control an address needs to
be found that can be placed in the register that
can then take control of the flow execution back
to the memory location where the injected shell-
code resides. To recognize what address is need-
ed, the stack memory is examined after an over-
flow and observations on what memory locations
have been overwritten are used. Based on what
has been overwritten an address is chosen that is
at the beginning of the injected code.

STRUCTURED EXCEPTION HANDLER: Another way
to control the flow of execution for stack-based
overflows is using the structured exception han-
dler. The Structured Exception Handler or SEH for
short is a structure used in handing errors in soft-
ware. This SEH structure contains two pointers;
one which points to the next handler in a chain of
handlers and the other is the exception handler
which essentially produces the error. When a
buffer overflow occurs in a function that is locat-
ed inside a block of code handled by the SEH
structure, the SEH handler handles the error, for
example overwriting the return address. In some
cases when the allocated memory is overflowed it
will continue overwriting the stack and these two
pointers. These pointers can be used to control

the flow of execution.

UNHANDLED EXCEPTION FILTER: In heap-based
buffer overflows control of the flow of execution
is obtained by overwriting the pointers on the
next available free block header. These pointers
are held in two registers. These two registers can
then be used to overwrite a function pointer to
jump to a memory location containing the shell-
code. The UnhandledExceptionFilter() function
is one of many exception handler functions which
can be used to do this. Exception handler func-
tions are used rather than any other functions as
it allows control of the flow of execution. If point-
ers of other functions were to be overwritten, an
exception would have occurred preventing the
exploit from being successful. Once the pointers
of an exception handler function has been over-
written, thereafter, when an exception takes place
and the exception handler function is called, the
flow of execution jumps to the address given by
the modified pointers and executes the injected
shellcode.
Writing exploits can be a challenge so knowing

a variety of languages can be a tremendous help.
It is common to come across certain languages
better suited for writing particular exploits3. The
memory available to be able to inject shellcode

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

6



can be limited and the injected code needs to be
able to handle restrictions on certain hexadecimal
values.

FUNCTION ADDRESSES: Each function has its
own memory address describing where it is
located in memory. These function addresses
are static i.e. they do not change if the version
of the software does not change. Static function
addresses are generally used in shellcode to make
the size of the shellcode smaller. It is normal to
encounter a limited amount of memory space
so having a small shellcode helps the exploit be
successful.
Having static addresses has its drawbacks as

it makes the exploit dependant on a specific oper-
ating system or version of software.

BADCHARACTERS: For injected shellcode to work
the vulnerable software must not remove or
replace any characters from our shellcode. Some
applications implement a filtering process which
modifies or omits a number of characters from the
inputted data when placing it into memory. These
characters would no longer be available in the exe-
cuting shellcode. Successful exploits have been
modified to take account of modified input
characters.

PREVENTING EXPLOITATION
OF SOFTWARE
There are a number of ways buffer overflows
can be prevented even if vulnerable functions still
exist in code. Ideally developers should replace
vulnerable functions with secure functions and
follow secure programming practices, but devel-
opers are only human and mistakes will happen.
The features mentioned below add another pre-
ventive measure in software.

ADDRESS SPACE LAYOUT RANDOMIZATION:
Address Space Layout Randomization is com-
monly known as ASLR. This feature randomizes a
program’s memory address locations every time
a program is started. As memory addresses are
different, an attacker has no way of predicting
what jump address or function address to use in
an exploit. This feature has been incorporated in
Microsoft’s Windows Vista®. For programs to
benefit from this feature developers will need to
compile the program code and link it with the
DYNAMICBASE switch.

HARDWARE-BASED DEP: Data Execution Pre-
vention (DEP) is another protection mechanism
which prevents the execution of code from the
stack or the heap. It works by marking memory

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

7



locations as readable and writeable but not
executable. To be able to mark memory locations
the operating system requires processors that
support NX (“No eXecute”) bit. For software to
benefit from this feature the program code will
need to be compiled and linked with a switch
called NXCOMPAT. No matter what method
thereafter is used to take to control of the flow
of execution back to the shellcode location on
the stack or heap, the exploit will be unable
to execute. In this way, we can mitigate the
vulnerability.

SOFTWARE-BASED DEP: For machines that do
not have processors supporting the hardware
NX bit, software-based DEP can provide another
form of protection. This protection mechanism
does not prevent execution of code in memory
but instead protects from SEH overwrite attacks.
When an exception is raised it checks to make
sure that the exception is registered and is con-
sidered to be one of the safe exception handlers.
If the exception handler is not a safe exception
handler, then steps are taken to prevent it from
being called, stopping a possible attack. To use
software-based DEP protection program code
will need to be compiled and linked with the
SAFESEH switch.

CANARY: Another simple but effective way of
preventing the occurrence of buffer overflows
is to placing a canary, also known as a cookie,
before the return address in the stack. When a
stack-based buffer overflow occurs it overwrites
this canary and the return address. Before the
program returns, the value of the canary on the
stack is compared to the original value stored
in memory, and if they do not match then the
program closes. Programs will need to be com-
piled with the GS switch to benefit from this
protection.

SAFE UNLINKING AND COOKIES: To protect heap
memory chunks Microsoft introduced two new
security features. One was to prevent the abuse
of the unlinking functionality of the heap manage-
ment routines. This is known as safe unlinking
and requires link pointers (which point to the pre-
vious and next memory chunks) to be validated
before executing the unlinking process. The other
security feature involved adding a cookie in the
chunk header. A cookie is a byte in size which
contains a value. This value is checked when
memory chunks are allocated and freed. If the
cookie value is found to be missing or inconsis-
tent then an exception is raised mitigating a
potential exploit.

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

8



BYPASSING PROTECTION
Despite all these preventive measures, there are
still a fair few techniques which can be used to
bypass the above protection. Below we explain a
number of ways that prevention can be bypassed.

RETURN TO LIBC: Stack-based buffer overflows
require executable stack memory for the injected
shellcode to be processed. If however the vulner-
able software takes advantage of hardware-based
DEP protection then execution of shellcode from
the stack will not be possible and consequently
the use of shellcode is no longer applicable.
Unfortunately there is a way around this protec-
tion known as “Return to Libc”. In return to libc,
the return address is overwritten with a memory
address of a function already loaded in memory.
Using this function the flow of execution can be
made to execute a command injected in the stack
frame instead of our shellcode. For example, a
command could be “calc.exe” which would load
up theWindows calculator.

HEAP SPRAYING: Heap spraying technique works
by spraying the heap with hundreds of heap
memory blocks each containing a block of shell-
code. When a stack-based or heap-based buffer
overflow takes place, it is possible that control of

the flow of execution falls into one of these
blocks, which executes the shellcode. Due to the
heap protections put in place by Microsoft, the
heap spraying technique is an ideal choice for
exploitation as it bypasses the existing protec-
tion. This spraying technique works well for web
based attacks as the heap protection does not
extend to program data stored in memory.

NO SAFESEH: For software-based DEP protection
the SafeSEH switch will need to be used at com-
pile time telling the linker to add a static list of
known good exception handlers in the program
for it to use. Unfortunately if every individual pro-
gram code is not compiled with SafeSEH then
protection is not achieved. If these unprotected
programs are loaded by software that has been
compiled with the SafeSEH switch, it makes the
protected software insecure.

CONCLUSION
This article has shown how buffer overflows take
place and what effects they can bring. A number
of preventive measures can be taken by develop-
ers for protecting their code from buffer over-
flows, but this should by no means thought of as
a solution, but rather as a backup measure if acci-

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

9



dentally unsafe functions or programming tech-
niques are used in the code. Most of these pre-
ventive measures involve recompiling and linking
code with various switches. By using the latest
compilers provided by development environ-
ments such as Visual Studio® 2008, we will be
able to use all of the switches mentioned in this
article to protect code. Upgrading to Microsoft’s
Windows Vista® operating system will also be a

huge countermeasure against buffer overflows.
Windows Vista® alone will greatly diminish
exploits from succeeding even if vulnerable code
still exists with no preventive measures taken by
the developer. It is therefore always recommend-
ed to upgrade products frequently to benefit from
the new security features being integrated in
products.

TABLE 1 below shows that applying one pre-

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

10

BUFFER OVERFLOW PREVENTIVEMEASURES AND BYPASS TECHNIQUES

SWITCH/UPDATE TYPE OF
PREVENTIVEMEASURE FOR PROTECTION PROTECTION METHOD TO BYPASS

ASLR Dynamicbase Stack and heap None easily

DEP (hardware) Nxcompat Stack and heap Return to LibC

DEP (software) SafeSEH Stack Heap spraying

Canary GS (default) Stack SEH/heap spraying

Safe unlinking SP2 for XP onwards Heap Heap spraying

Heap cookies SP2 for XP onwards Heap Heap spraying

TABLE 1



ventive measure will still allow an attacker to
use another technique to obtain control.
It is worth pointing out that just having an up-

to-date antivirus software and intrusion preven-
tion software is not enough these days as hackers
always find innovative techniques to bypass
detection. It is now considered good practice,
when a buffer overflow vulnerability has been
published and there is a software update to fix
the issue, to get the fix deployed as soon as oper-
ationally possible. Buffer overflows are not some-
thing to overlook as they are here to stay for years
to come. !

ABOUT THE AUTHORS

Parvez Anwar is a Senior Technical
Security Specialist working for Verizon. His
specialities include the investigation of malware
and performing assessments for vulnerablities.
As an independent security researcher, he hunts
for vulnerabilities in his spare time and his
personal web site is www.greyhathacker.net

Andreas Fuchsberger is a lecturer in
information security at Royal Holloway, Univer-
sity of London, with research interests in secure
software development, intrusion detection, and
network security. He teaches the course in Soft-
ware Security on the M.Sc. in Information Secu-
rity at Royal Holloway.

Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

11

http://www.greyhathacker.net


Royal Holloway Series Buffer overflows in aWindows environment

HOME

UNDER-
STANDING
BUFFER
OVERFLOWS

GAINING
CONTROL BY
EXPLOITING
SOFTWARE

PREVENTING
EXPLOITATION
OF SOFTWARE

BYPASSING
PROTECTION

CONCLUSION

SOURCES

12

SOURCES:
1http://news.zdnet.co.uk/itmanagement/0,1000000308,2129738,00.htm
2http://vil.nai.com/vil/content/v_100454.htm
3The full MSc project report illustrates an exploit bypassing certain restrictions.


