
Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

1

Fuzzing—or how to
help computers cope
with the unexpected
Testing the security of software before implementation can be
a hit-and-miss affair, and is unlikely to discover every weakness.
Toby Clarke and Jason Crampton explain how the technique
of fuzzing can help in all stages of testing.



HE PRESENCE OF vulnerabilities in software appli-
cations represents a significant risk to the
security of individuals, businesses and nation
states. As increasing reliance is placed upon

data and the systems that process and store it,
the risk associated with vulnerabilities in software
applications increases.

In this article we will examine fuzzing: a specific
type of software security testing which can be
used to discover vulnerabilities in software appli-
cations.

We will begin by looking at software vulnerabil-
ities and security testing in general, before focus-
ing on fuzzing. After describing a basic model
of a fuzzer, we will identify and discuss four fun-
damental problems that practical fuzzers have
to address. We will then explore three different
approaches to a key aspect of fuzzer design: fuzz
test data generation. Finally, we will examine
what fuzzing can, and cannot, offer us.

Humans are rather good at coping with the
unexpected, but computers, by default, are not.
In the early days of computing, programs were
used exclusively by thoughtful, scientific people
who were very methodical and precise about

entering data.
As computers became more common, a wider

range of people began to interact with computer
programs and data entry errors often led to pro-
gram failures. The phrase “syntax error’’ drove
many users to distraction.

Developers tried to defend themselves with the
rallying cry “Garbage in, garbage out’’, and the
age of the Graphical User Interface was ushered
in to address the failings of the Command Line
Interface (or as a means to contain the damage
users were capable of, depending on your view-
point).

However, computers and computer programs
were going to have to get a lot better at dealing
with unexpected data, because the wider popula-
tion of humans were not only error prone, but
sometimes actively malicious. Once computers
became networked, software had to learn to
defend itself.

SOFTWARE VULNERABILITIES
Software vulnerabilities occur when an applica-
tion permits the confidentiality, integrity or avail-

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

2

T



ability of data it processes or stores to be affected
in an unauthorized manner. In other words, a soft-
ware vulnerability is a security compromise wait-
ing to happen: an attacker can exploit the vulner-
ability in order to read or modify the data the
software processes, or even take control of the
computer system on which the application
resides.

Vulnerabilities can stem from failings at all
stages in the life cycle of an application. This
includes the software design and implementation
(programming) phases of development, the
deployment and operational stages, right through
to the retirement and removal of an application.

Programming defects (’bugs’) are of particular
concern, since they are so common1 that it is usu-
ally not economically viable to detect and correct
every bug during the development of an applica-
tion.

Instead, bugs are typically rated in terms of the
risk they represent, and resources are allocated to
addressing the most critical bugs until an agreed
’bug bar’ of acceptable bugs is reached.

While it may be acceptable to release a com-
mercial software application with hundreds or
even thousands of known bugs, bugs that have
potential to be exploitable (i.e. vulnerabilities)
must be detected and corrected as far as possi-

ble. As well as protecting users and their data,
this makes economic sense, since the cost of cor-
recting vulnerabilities post-release is far greater
than doing so pre-release [5].

SOFTWARE SECURITY TESTING
The objective of software security testing is to
identify the presence of vulnerabilities, so that the
defects that cause them can be addressed. Secu-
rity testing methods can be grouped into two key
areas: static and dynamic testing.

� Static testing usually involves analysis of the
high-level application source code, but can also
be performed using low-level assembly ’dead list-
ings’ if the source is not available.

� Dynamic testing involves testing for vulnera-
bilities by analysing the application as it executes;
this means that access to the source code is not
a requirement. Examples of dynamic software
security testing include API fault injection, where
error messages are passed to the application at
the API-level, or run-time permissions auditing,
where tools such as Sysinternals Accesschk,
WinObj, or Process Explorer2 are used to test the
application as it executes for inappropriately

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

3



weak access permissions—an example of this is
provided by Cerrudo [3].

Fuzzing is a form of dynamic software testing
that works by submitting malformed input(s) to
the target application to see if it causes an error.
If a software application crashes as a result of
receiving malformed input, the fuzzer has discov-
ered a software defect.

Fuzzing can be thought of as a form of software
security performance testing. There are similari-
ties between stress testing—“Can this application
handle 1000 simultaneous users?’’—and fuzz test-
ing—“Can this application handle a URL with 256
characters?’’. Indeed, the first ever fuzzer (appro-
priately called fuzz), was developed to test the
robustness of UNIX applications [9]. However,
when a fuzzer is employed for security testing,
the objective is usually not to determine whether
a functional requirement is met, but to trigger and
detect software defects so that they may be
addressed.

The term fuzzer may be used to describe a wide
range of tools, scripts, applications, and testing
frameworks. However, most fuzzers share the fol-
lowing features:

� Data generation (creating data to be passed
to the target application);

� Data transmission (getting the data to the
target);

� Target monitoring and logging (observing and
recording the reaction of the target); and

� Automation (reducing, as much as possible,
the amount of direct user-interaction required to
carry out the testing regime).

One of the key aspects that differentiate
fuzzers is test data generation. But before we
examine this topic, it would be useful to under-
stand some of the problems that have shaped
fuzzer development.

FOUR FUNDAMENTAL FUZZING PROBLEMS
At least four fundamental fuzzing problems must
be addressed to produce an effective fuzzer. The
degree to which a fuzzer addresses these prob-
lems will significantly influence its success in dis-
covering vulnerabilities.

1. Input Validation. Almost all commercial soft-
ware applications incorporate some form of input
validation. In order to ensure that test data is
processed by the application, a fuzzer should

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

4



generate malformed data that can also satisfy
validation checks if possible. This does not neces-
sarily require analysis of the target application
source code or design documents: validation
checks may be documented in a network protocol
or file format specification.

2. Optimising Program State Coverage. A run-
ning program can be thought of as a machine
which moves through a number of states. Ideally,
a fuzzer would ensure that every possible state is
‘visited’’ during testing, by programmatically gen-
erating and submitting every possible permuta-
tion of input (termed the input space) to the
application under test. Unfortunately, it is infeasi-
ble to enumerate the input space of all but the
most simple of programs. The best fuzzers
attempt to optimise program state coverage,
maximizing the number of potential security vul-
nerabilities they discover, while reducing test
duration.

3. Detecting Errors. It is not enough to trigger
failures: a fuzzer needs to be capable of detecting
failures, otherwise they cannot be reported to the
analyst.

4. Target Recovery. Once the target crashes,

testing must stop until the target has been
returned to its normal running state. It would be
very useful to automatically return the target to
its normal running state as this would allow unat-
tended testing to be performed.

Solving the input validation problem involves
creating input that is malformed (in order to
cause a crash) while also satisfying any integrity
checks that the application may employ to vali-
date input such as:

� content length checks as found in many net-
work protocols such as Hyper Text Transfer Pro-
tocol.

� checks for the presence of static values at
specific locations such as Java’s use of the
CAFEBABE ’magic number’.

� self-referential checks such as cyclic redun-
dancy checks (CRCs) found in the Portable Net-
work Graphic (PNG) image file format.

Most applications employ checks to detect
data corruption, as opposed to active data tam-
pering. Such checks can usually be circumvented
by making the fuzzer ’aware’ of them. For exam-

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

5



ple, where static values are used, the fuzzer is
informed of this (either through a GUI or some
form of configuration script) and can then gener-
ate test data that includes the required value at
the required location. Where length checks are
used, the fuzzer would have to re-calculate these
to ensure they correlate with malformed values.

Solving the program state coverage problem
by enumerating all possible program states would
require the generation of every possible combina-
tion of input, which is simply infeasible for mod-
ern software applications.

Instead, practical fuzzers focus upon trigger-
ing errors and thus discovering fault states. By
accepting that we cannot enumerate the entire
state space of an application, we may construct
practical fuzzers that can complete testing within
reasonable timescales, but we must also accept
that there can be no assurance that they will
detect all present bugs. In practice then, fuzzing
is like fishing for bugs; if you find none, you have
learned nothing. You cannot prove the absence
of bugs via fuzzing.

In fact, all software testing is subject to this lim-
itation. The International Software Testing Quali-
fications Board states that “Testing reduces the
probability of undiscovered defects remaining in

the software but, even if no defects are found,
it is not a proof of correctness.’’ [8]

Most fuzzing is limited to input/output analy-
sis, and can be classed as ’black box’ testing,
since the internal workings of the target software
are “invisible’’ to the tester. Extending fuzz testing
to include analysis of the internals of the applica-
tion (termed white-box fuzzing) provides oppor-
tunities to address some of the issues relating to
black-box fuzzing.

Code coverage is one example of a white-box
fuzzing technique that offers feedback about
fuzzer performance. Code coverage involves
measuring the amount of code that is executed
during a complete fuzzing session, and compar-
ing this with the total code of the application.

If a fuzzing session results in 10% of the total
code base being executed, it is obvious that the
fuzz test has not been very effective (or a large
proportion of the code is not reachable from
input).

If a fuzzing session results in 100% of the total
code base being executed, we can say we have
successfully traversed all possible code branches,
but we can say nothing about what data was
passed to the application at each code branch.
Hence, although it can provide some useful feed-
back, code coverage does not necessarily provide

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

6



an accurate metric of fuzzer performance.

Solving error detection is achieved using an
oracle, a generic term for a software component
that monitors the target and reports a failure or
exception. An oracle may take the form of a sim-
ple liveness check, which merely “pings’’ the tar-
get to ensure it is responsive, or it may comprise
a debugger running on the target that can moni-
tor for, and intercept, exceptions, and collect
detailed logging information.

Solving target recovery may be as simple as
automatically restarting the target application
before each individual test case is passed to it.
However, this may be time consuming when mul-
tiplied over a large number of test cases. An ele-
gant approach is to integrate an oracle into the
fuzzer and extend its functionality to allow it to
restart the target if an exception occurs. This
functionality is present in the Sulley fuzzing
framework.3

Having described some of the requirements
for effective fuzzing, we will describe three
approaches to fuzzer test data generation and will
explore how these approaches address the input
validation and program state coverage problems.
Although we will not cover exception monitoring

or target recovery any further, these subjects are
discussed in the technical report on which this
article is based [4, Chapter 7].

FUZZER TEST DATA GENERATION
The objective of the test data generation aspect
of a fuzzer is to induce failures in the target appli-
cation. Almost all fuzzers create a large number
of individual ’input buffers’ or test cases, each
one of which will be passed as input to the appli-
cation, one at a time.

A number of different data generation
approaches have been adopted, which can be
grouped into one of the following classes: ran-
dom, (blind) data mutation, and protocol-based
analysis data generation.

Random data generation involves using a pseu-
do-random generator to produce random test
cases, minimizing the effort and time required in
initiating testing. However, random generation is
the least effective of the three classes in terms of
triggering bugs.

Using human language as an analogy, if I were
to approach you uttering random vowels and con-
sonants at you, you would probably ignore me. In
order to engage people verbally, I (usually!) shape

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

7



sounds into words that they recognise and
arrange those words into a sequence that gives
them meaning; I obey lexical rules (use the right
words) and grammatical rules (put the words in
the right order).

Modern software applications often apply

lexical and grammatical rules to determine
whether input will be processed or rejected.
Ideally, fuzzer test data should conform to lexical
and grammatical rules to a degree sufficient to be
accepted into the application, but should also vio-
late either the same rules or cause some violation
of the program logic, in both cases triggering a
failure.

Random data generation is highly inefficient

since it cannot account for lexical or grammatical
rules applied to input, nor can it apply any intelli-
gence in terms of triggering failures. That does
not mean that random generation fuzzing does
not work: many bugs have been discovered this
way. However, this is arguably the least effective
method of test data generation, since a large ratio
of test cases will likely be rejected by the target
application.

Data mutation brings together two important
techniques: data capture and selective mutation.
Valid input is captured and used as a means to
quickly and easily define well-formed input.
The captured data or mutation template is then
selectively mutated so the test data produced
contains much of the structure present in valid
input.

For example, returning to our human language
analogy, we might capture the valid introductory
sentence “Can you talk?’’ and mutate it into “Can
you walk?’’.

In this way, we start out with a well-formed
input that will likely be accepted by the target,
and we can then selectively mutate it, creating
boundary cases where input validation routines
struggle to differentiate between valid and invalid
input.

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

8

“Random generation fuzzing
is arguably the least effective
method of test data genera-
tion, since a large ratio of test
cases will be rejected by the
target application.”



For example, if we are fuzz testing a web server,
we might start with a valid HTTP GET request
such as:

GET /index.html HTTP/1.1

Malformed requests could then be generated at
the text level by simply replacing each character
of the input string with, say, the ’_’ underscore
character:

_ET /index.html HTTP/1.1
G_T /index.html HTTP/1.1
GE_ /index.html HTTP/1.1
GET_/index.html HTTP/1.1

This is a form of ’blind’ fuzzing, since no knowl-
edge of the protocol is required. By replaying and
programatically altering an input buffer, we can
create near-valid data, which has a number of
benefits. Firstly, the efficiency is improved as the
number of test cases which are rejected due to
the program’s inability to parse the input is great-
ly reduced compared to random data creation.
Secondly, we can target specific aspects of input
handling because we isolate specific aspects of
input and mutate them.

In general, software application input invariably

consists of a number of distinct data elements
which are often processed by different parts of
the application each using distinct techniques to
parse the input.

When a web server processes an HTTP request
such as the one above, it will probably separate it
into three elements: ’GET’ (the method), ’index.
html’ (the resource) and ’HTTP/1.1’ (the proto-
col), each processed by a different routine. By
selectively mutating a valid request we can pro-
duce test data with the potential to target specific
processing routines. However, this is achieved
without any awareness of the protocol.

Blind data mutation often fails to achieve good
code coverage for a number of reasons. One flaw
is that it is limited to mutating the captured data.
If we capture and mutate an HTTP GET request
in order to fuzz a web server, what about other
requests such as POST, TRACE, HEAD and so
on?

One solution is to capture multiple data sam-
ples and create multiple mutation templates, but
while each new template has the potential to
increase code coverage, it may increase test
duration significantly.

Data mutation is a significant improvement
over random fuzzing, since it can (albeit ’blindly’)
account for lexical and grammatical rules.

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

9



However, this ’blind’ approach cannot account
for checks over input data such as hashes or
CRCs.

Protocol analysis-based data generation is
based on the fact that application input data
often conforms to a protocol of some sort. A
’protocol aware’ fuzzer can be created by defining

a model of the protocol so that the fuzzer can
group and sequence data elements into valid
input messages.

FIGURE 1 provides a graphical representation of
a very basic protocol definition.

Starting with element 1, we see that four differ-
ent values have been defined: GET, POST, HEAD
and TRACE. This would allow the fuzzer to gener-

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

10

FIGURE 1

A GRAPHICAL REPRESENTATION OF A BASIC PROTOCOL DEFINITION



ate GET, POST, HEAD and TRACE requests,
extending code coverage by satisfying lexical and
grammatical rules.

Element 1 has been defined as being a string
type. The fuzzer can use this information to
replace the element with a range of mutation ele-
ments that are specifically aimed at triggering

bugs in string handling routines.
Element 2 has been defined as a delimiter type.

In general, fuzzers do not fuzz all elements simul-
taneously but selectively fuzz each element indi-
vidually while replaying valid values for the rest of
the elements. In this way a fuzzed element is fol-
lowed by the correct delimiter, increasing the like-

lihood that it will be processed. The fuzzer can
also replace this element with mutation elements
that are known to cause problems with delimiters.

Element 8 has been defined as a static type.
This element will not be fuzzed, reducing the
number of test iterations.

Only a few element types are present in our
example, but many more could be used to define
data types such as integers, signed integers, char-
acters, bits, etc.

This block-based approach can be extended to
include elements that describe aspects of other
elements, allowing valid CRCs or hashes to be
calculated for input buffers. Content length
descriptors and element size descriptors are fea-
tured in many protocols, and can also be con-
structed and deployed within a block-based
approach.

SPIKE4 is an excellent example of a block-
based fuzzer framework (its creator, Dave Aitel,
has also produced numerous valuable articles
and presentations on fuzzing including [1] and
[2]). My favourite fuzzer development framework
Sulley5 also applies a block-based approach to
protocol definition.

A fuzzer that has a protocol definition can iden-
tify individual data elements and their types, and
apply intelligence to triggering faults. This is often

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

11

“This block-based approach
can be extended to include
elements that describe
aspects of other elements,
allowing valid CRCs or hashes
to be calculated for input
buffers.”



achieved by deploying a database of distinct
classes of known-bad data buffers (which could
be termed mutation elements) and enabling the
fuzzer to target individual element types with
type-specific attacks.6

Protocol-based fuzzing is able to bring together
a protocol definition and a database of known-
bad buffers in order to create test data that is
likely to result in a high degree of code coverage
and have a high probability of triggering faults.
Block-based fuzzing frameworks can be used to
construct protocol-based fuzzers.

WHAT FUZZING CAN DO FOR YOU
Now that we have described what a fuzzer is
and how it works, let’s take a brief look at what
fuzzing has to offer us:

NO REQUIREMENT FOR SOURCE CODE. What if
you wanted to assess and compare the security
stance of three different closed-source software
products? You could ask for evidence of software
development quality assurance, or examine the
history of vulnerabilities in each vendor’s prod-
ucts (although it could be argued that the more
mistakes a vendor makes, the more the vendor
learns about secure software development).

Fuzzing, like all forms of run-time testing, offers
a means to discover flaws in software applica-
tions without access to the source code.

VIOLATION OF ASSUMPTIONS/SCOPE LIMITA-
TION. What if, as a developer, an external compo-
nent you are relying upon has a defect? What if
your application exposes a vulnerable aspect of a
third party driver or the operating system itself?
What if, as a tester, your scope is limited?

One benefit of not having access to information
about the inner workings of an application is that
the test cannot be influenced by this information.
There is always a risk that the scope of testing
will be restricted based on misplaced trust; an
example of this would be reviewing the source
code of an application, but failing to review the
source code of third party drivers or even the host
Operating System itself.

Such scope limitation is usually impossible to
achieve when fuzz testing. In fact, the behaviour
of an application undergoing fuzz testing is highly
unpredictable; this is why fuzzing should never be
performed in a live, production environment.

The unpredictability of fuzzing, and the fact
that it tests the application and the environment
it executes in, prevents misplaced assumptions
and scope restriction; fuzzing is capable of dis-

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

12



covering bugs in an application and any code it
interacts with.

FUZZING IDENTIFIES REACHABLE BUGS ONLY
AND PROVIDES PROOF OF CONCEPT CODE. All
security testing methods (static or dynamic) are
subject to false positives; they discover bugs that
appear to be a security vulnerability, but are in
fact not exploitable.

One class of false positives are potential vulner-
abilities that can’t be triggered by input, and
hence are not exploitable. An example of an such
an ’unreachable’ vulnerably would be a call to a
vulnerable function that is present in the program
code, but can never be executed.

Because fuzzing works by sending malformed
input, it cannot discover unreachable bugs, saving
the analyst the effort of assessing each potential
vulnerability for reachability. Fuzzing is perhaps
unique among security testing methods in this
aspect of its behaviour.

Additionally, since fuzzing reports the specific
input buffer that triggered a given bug (usually by
identifying the test case that caused the crash),
fuzzers provide demonstrable, repeatable evi-
dence of a defect—a crude form of proof of con-
cept code.

Here’s a look at what Fuzzing cannot offer:

FUZZING PROVIDES NO ASSURANCE. No testing
technique can provide concrete assurance. How-
ever, fuzzing may be more likely to miss bugs
than other testing techniques. A fuzzer may fail to
trigger the relevant program state, it may fail to
submit data sufficient to trigger a bug, and it may
fail to detect a triggered bug.

Fuzzing can be used to discover bugs, not to
provide assurance of their absence.

FUZZING IDENTIFIES BUGS, NOT SECURITY
VULNERABILITIES. All dynamic testing, including
fuzzing, aims to identify bugs. However, not all
bugs are vulnerabilities. Skilled analysis of bugs
discovered using fuzz testing is usually required
in order to determine whether a bug is exploit-
able, and rate the associated risk. An example
approach to ranking bugs discovered using
fuzzing is provided by Howard and Lipner [7].

SUMMARY
We have seen that fuzz testing provides a
method for discovering vulnerabilities by trigger-
ing software defects using malformed input(s) as
the application executes. We have described four
fundamental problems that a fuzzer should
address, and we have explored three different

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

13



approaches to generating test data. Finally, we
have suggested some of the benefits and draw-
backs of fuzzing.

Regarding the comparison of fuzzing with
source code analysis: it has been argued that
source code review provides more assurance [11],
and also that fuzzing finds bugs that static testing
cannot [10]. I would argue that the two are com-
plementary; that both offer unique methods to
discover vulnerabilities, and that neither should
be neglected.

The author would like to think that this article
may encourage more IT professionals to consider
how they might take advantage of fuzz testing,
and to do so with a clear idea of its limitations as
well as its benefits. I welcome any feedback, and
invite readers to comment on any aspect of this
paper. �

ABOUT THE AUTHORS

Toby Clarke is a security consultant
providing penetration testing services within
KPMG's IT Advisory Practice

Dr. Jason Crampton is a reader in
information security at Royal Holloway, Univer-
sity of London, with research interests in access
control. He teaches the course in Computer
Security on the M.Sc. in Information Security
at Royal Holloway.

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

14



Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

15

SOURCES:

1One estimate suggests that even when software development is subject to strict Quality Assurance controls, 5 bugs
may be present per 1000 lines of code [6].

2http://technet.microsoft.com/en-us/sysinternals/default.aspx

3http://www.fuzzing.org/

4http://www.immunityinc.com/resources-freesoftware.shtml

5http://www.fuzzing.org/

6 A detailed examination of a selection of the attack buffers employed by the SPIKE fuzzing framework (created by Dave
Aitel) is included in Appendix B3 of [4].



REFERENCES:

[1] Dave Aitel. The advantages of block-based protocol analysis for security testing, 2002.

[2] Dave Aitel. MSRPC fuzzing with SPIKE 2006. On-line article, August 2006.

[3] Cesar Cerrudo. Practical 10 minute security audit Oracle case. On-line article. Argeniss Information Security, Presenta-
tion at Black Hat DC 2007.

[4] Toby Clarke. Fuzzing for software vulnerability discovery. Technical Report RHUL-MA-2009-4, Information Security
Group, Royal Holloway, University of London, 2008.

[5] Erwin Erkinger. Software reliability in the aerospace industry—how safe and reliable software can be achieved. 23rd
Chaos Communication Congress presentation, 2006.

[6] Greg Hoglund and Gary McGraw. Exploiting Software: How to Break Code. Pearson Higher Education, 2004.

[7] Michael Howard and Steve Lipner. The Security Development Lifecycle. Microsoft Press, Redmond, WA, USA, 2006.

[8] Thomas Maller, Rex Black, Sigrid Eldh, Dorothy Graham, Klaus Olsen, Maaret Pyhajarvi, Geoff Thompson, Erik van Veen-
dendal, and Debra Friedenberg. Certified tester—Foundation level syllabus. On-line article, April 2007.

[9] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of UNIX utilities. Communications of
the ACM, 33(12):32-44, 1990.

[10] David Thiel. Exposing vulnerabilities in media software. Black Hat conference presentation, BlackHat EU 2008.

[11] Jacob West. How I learned to stop fuzzing and find more bugs. Defcon conference presentation, August 2007.

Royal Holloway Series Fuzzing—or how to help computers cope with the unexpected

HOME

SOFTWARE
VULNER-
ABILITIES

SOFTWARE
SECURITY
TESTING

FUZZING
PROBLEMS

FUZZER
TEST DATA
GENERATION

WHAT
FUZZING CAN
DO FOR YOU

SUMMARY

SOURCES

16

http://video.google.com/videoplay?docid=-5461817814037320478
http://www.isecpartners.com/files/iSEC_Thiel_Exposing_Vulnerabilities_Media_Software_bh07.pdf
http://doi.acm.org/10.1145/96267.96279
http://www.istqb.org/downloads/syllabi/SyllabusFoundation.pdf
http://events.ccc.de/congress/2006/Fahrplan/events/1627.en.html
http://www.ma.rhul.ac.uk/static/techrep/2009/RHUL-MA-2009-04.pdf
http://doi.acm.org/10.1145/96267.96279
http://xcon.xfocus.org/XCon2006/archieves/Dave_Aitel-Microsoft_System_RPC_Fuzz.pdf
http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf

