
Royal Holloway Series 2010

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

1

Open-Source
Security Assessment
More organisations are using open source software, but what are
the risks involved? Yoav Aner and Carlos Cid present a framework
for security evaluation and assessment of open-source software
based around threat modelling.



1 INTRODUCTION
obody likes re-inventing the wheel.
When you are faced with a problem,
more likely than not, somebody else
has stumbled upon a similar one
before you, and they may have
come up with a solution already.
Many problems can be solved

with a simple online search: Google it! The
same approach is used very frequently in an
enterprise environment. Perhaps the solutions
are not as simple as reading a how-to or watch-
ing a YouTube video helping you tie a Windsor
knot, but there are solutions to many different
business and technology requirements.
Customer Relationship Management (CRM),

Helpdesk systems, virtualisation platforms, web
frameworks, middleware — these are all tools
that (at least claim to) help solving business
needs. Streamlining customer experience,
providing a better return on investment (ROI),
enabling shorter time to market, reducing total
cost of ownership (TCO) are just a few of the
reasons to use technology.

The days of a single computing environment
are long gone. In your organisation (unless you
happen to be working for Dr. Evil) you will not see
scientists in lab coats punching cards and crunch-
ing numbers in a big warehouse filled with refrig-
erator-like machines. The enterprise is filled with
diverse computing platforms, different software
and hardware, operating systems, complex net-
working infrastructure and interconnections.
Companies use in-house processing, third-party
partners and providers, and exchange data with
customers in many different locations worldwide.
This diversity has many benefits. The enter-

prise can pick and choose the best tools for the
job with little compromise. Very few companies
are locked-in with a single vendor or a one-size-
fits-all platform.
Open-source software is increasing in popular-

ity and prevalence. Not only is it becoming main-
stream for home users, many commercial and
business environments are also becoming
increasingly reliant on open-source software, at
times, without even realising it. Vendors, third-
party software providers, as well as off-the-shelf

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

2

N



software and hardware may include open-source
components. Choosing open-source might make
business sense too. Some open-source products
are on par with competing commercial products,
some may even outperform and provide better
value for money. Some companies actively con-
tribute to open-source projects in order to ensure
continuous improvements and set the direction of
open-source tools to fit their particular needs.
Despite all the perceived benefits and attrac-

tive features, the increasing use of open-source
software may pose several security challenges
to organisations.
What impact does open source have on the

security posture of the organisation?
What are the risks that the use of open-source

software can introduce and how can organisa-
tions address the specific issues that its use
presents? How can open-source projects give
better assurance to their customers?
In this article, we present a framework for

security evaluation and assessment of open-
source software based around threat modelling.
Some of the benefits and limitations of the
framework are discussed in the context of open-
source software and its unique security chal-
lenges and advantages. It is hoped that such
framework can be used by organisations opting

to use open-source tools, open-source develop-
ment teams and security specialists wishing to
analyse open-source software.

2 OPEN SOURCE— FRIENDOR FOE?
Introducing any new piece of software or a solu-
tion to an organisation involves changing the level
of risk, not only to the new service itself, but also
to existing systems. If, for example, a vulnerability
in the new software is exploited, the server and
neighbouring computing resources, internal or
external, may be affected as well. Conversely,
introducing a security tool may reduce the risk
to the organisation. When faced with a decision
between closed-source, proprietary, in-house or
third-party based tools and open-source solu-
tions, other than the functional and business
requirements, what are the security considera-
tions that should be taken? And for open-source
projects, how can developers provide more confi-
dence that their software is secure?
Whilst many open-source applications specifi-

cally deliver security functionality (e.g. OpenSSH),
it is not true of them all.. With the source code
readily available and with the freedom to improve
and modify it, there is a great potential for security
improvements and robust security, but such

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

3



potential is not guaranteed. Kerckoff ’s principle [8]

states that the security of a cryptographic system
should not rely on secrecy of the algorithm, but
rather on the key. Similar arguments [4, 10, 14] are
made on the merits of open-source software and
its potential for improved security. However, open-
source software also provides opportunity for
attackers, not only to detect and misuse software
vulnerabilities, but also to directly affect the code,
add insecure code, and more easily distribute
tainted versions of the software.

Most information security experts agree that
hiding the source code of an application does
not guarantee better security. Whitfield Diffie
supported this position and stated that “A
secret that cannot be readily changed should be

regarded as a vulnerability”, adding further that
“If you depend on a secret for your security,
what do you do when the secret is discovered?
If it is easy to change, like a cryptographic key,
you do so. If it’s hard to change, like a crypto-
graphic system or an operating system, you’re
stuck. You will be vulnerable until you invest the
time and money to design another system.” [2].
However, it is also clear that the opportunity for
security improvement arising from use of open-
source applications does not necessarily trans-
late or lead to better security in practice.
With that in mind, it seems clear that relying

on developers, who usually focus on functionali-
ty or fixing bugs, to code securely or fix security
flaws may not always be the best strategy.
Open-source applications should be evaluated
from a security perspective to ascertain the level
of security robustness or potential exposure to
threats. With a commercial product or a bespoke
third-party development, some of this assess-
ment can be “delegated”, at least contractually.
As a client, you can require a certain level of

certification, assurance or at least some indica-
tion as to the level of security and compliance
the product can offer.
When it comes to open-source solutions, there

is rarely an equivalent level of assurance (One

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

4

Despite all the perceived
benefits and attractive
features, the increasing use
of open-source software
may pose several security
challenges to organisations.



notable example to the contrary is OpenSSL,
which can offer a FIPS 140-2 certified option. See
http://www.openssl.org/docs/fips/fipsnotes.html)
The motivation for the proposal of the frame-

work contained in this article is to give better
tools for security-focused evaluation, and to
allow finding (and ideally fixing) security design
flaws and bugs.
One of the benefits of open-source however,

is that it can give the organisation an increased
level of confidence. When buying a closed-
source product or service, very few companies
will open their code for inspection or independ-
ent evaluation. With open-source tools however,
the ability to inspect and evaluate the code is
always available. Furthermore, given a wide-
enough audience and user base, some of the
evaluation may be performed by others and
shared within the community.
Other than relying on open-source developers

to spot security vulnerabilities and fix them, or
worse, wait for attacks to take place and ‘learn’
from the experience, which options are available
to open-source projects and organisations who
want to use open-source tools? What is the
most effective and efficient route to assess the
level of security of a given product? Does it
involve having teams of people trawl through the

entire code base in search for security vulnerabil-
ities? Should the application run through auto-
mated or manual penetration testing? Should
static code analysis tools be used? Section 3
investigates and attempts to answer some of
these questions, and presents one potential
approach based on Threat Modelling.

3 THREATMODELLINGMETHODOLOGY
3.1 Why Threat Model?
Before describing the threat modelling process,
it is important to consider the reasons for using
threat modelling to analyse the security of open-
source applications. With the aim of reducing
the risks to confidentiality, integrity and avail-
ability, there might be other alternative
approaches to solving the same ‘problem’, i.e.
identifying threats, vulnerabilities and risks to an
application, and finding the best ways to reduce
those to an acceptable level.
When an adversary chooses to attack an appli-

cation, they might opt to use one or more of
these approaches, and it seems sensible to at
least consider these techniques or methods
when trying to identify vulnerabilities and pro-
tect against the most likely attacks. In fact, these
techniques are not purely alternatives to threat

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

5



modelling, but rather complementary to the
analysis process, and form part of the open-
source security assessment framework presented
in this article. It is important to remember the
attacker has many advantages over those pro-
tecting the system: put simply, an attacker only
needs to find one vulnerability to exploit, whilst
those trying to protect the system must take
care of all potential issues.
Some of the alternative / complementary

security analysis and attack methods include:
• Code auditing - involves going through source

code of the application, searching for security
bugs and vulnerabilities in the code itself. With
an open-source application, an attacker can easi-
ly perform this task. For example, in C code an
attacker can search for known functions vulnera-
ble to buffer overflow, then manually investigate
which call can most easily be manipulated.
Whilst Code Auditing can identify many bugs,
it is unclear whether it is very cost effective. It
requires high level of expertise and is very time
consuming. Code auditing is also limited to
uncovering programming flaws, and may miss
out on perhaps more important design and
architectural flaws.
• Penetration testing - utilises active attempts

at ‘breaking’ (or hacking into) an application.

This type of testing simulates a real attack on
the system, and therefore can be considered a
prominent form of analysing an application’s
security - trying to emulate what the adversaries
would attempt and learn how to protect the sys-
tem better from it. Open-source applications are
easier to penetration test (than e.g. a proprietary
system installed in a location with limited access
and strict monitoring), since a copy of the appli-
cation can easily be used in a lab environment.

Once the attack is ‘perfected’, it can be launched
on a real system. This gives attackers another
advantage of avoiding detection. However, pene-
tration testing has some fundamental limitations
on all but the most simple applications. Whilst
penetration testing can prove the existence of

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

6

Despite all the perceived
benefits and attractive
features, the increasing use
of open-source software
may pose several security
challenges to organisations.



vulnerabilities, it fails to provide evidence of their
absence. Even if the penetration test results in
no successful attacks, the system may still be
vulnerable to other attacks, which simply were
not attempted.
• Static analysis tools - allow automatically

inspecting source code for known security
issues, or use heuristics to detect unsafe func-
tions and libraries and therefore discover poten-
tial coding vulnerabilities. Static analysis tools
are similar to code auditing to the extent of con-
centrating on the actual source code, but uses
gained knowledge and known issues more effec-
tively and focuses the attention on areas of the
code more likely to be vulnerable. “Code reviews
depend on the expertise of the human reviewers,
whereas automated techniques can benefit from
expert knowledge codified in tools” [3]. There are
many open-source and commercial static analy-
sis tools covering different programming lan-
guages and using different analysis methods.
However, static analysis tools also have limita-
tions, particularly in identifying design and archi-
tecture issues and vulnerabilities.

3.2 Threat Modelling Approach
ISO/IEC 27005:2008 states that a “threat has
the potential to harm assets such as information,

processes and systems and therefore organiza-
tions” [7]. Threat modelling is defined as “a
method of assessing and documenting the secu-
rity risks associated with an application” [13].
Threat Modelling is primarily meant to be used

in the design and development phases of appli-
cations, rather than to analyse existing applica-
tions [5]. However, the same methodology can be
adapted and employed when trying to analyse an
existing system. The threat modelling approach,
with slight modifications, can aid in the identifi-
cation of security vulnerabilities for applications
or systems which are already developed. Appli-
cation design and architectural threats and vul-
nerabilities can be identified using the threat
modelling approach, as well as assisting in focus-
ing the investigation of coding issues and imple-
mentation mistakes.
The threat modelling process used in this article

is therefore likely to identify vulnerabilities rather
than just threats. In addition, some threats can
easily be omitted if they are already known to be
mitigated in the design or implementation. For
that reason, the terms threat and vulnerability
may be used interchangeably in this instance.
One further addition and modification to the

threat modelling process used in this article is
the mixed approach used to model processes

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

7



and applications.
Section 3.1 mentions some techniques which

may be used by both security analysts and
attackers. Whilst some security assessment can
be done using an implementation of a system
(as may be provided by a test implementation
of a closed-source application), there are further
benefits that may be obtained from the use of
open-source applications. Part of the investiga-
tion process of threats to an open-source system
can therefore include some level of practical
experimentation with the application, reviewing
code segments, searching for keywords in code
as well as focused and specific elements of pen-
etration testing. Using threat modelling to aid
code reviews and penetration testing is already
documented in [6, 13]. However, instead of using a
linear process, where the threat model feeds
into code review and penetration testing, the
approach presented here advocates the use of
a more symbiotic (or hybrid ) attitude. For exam-
ple, if the analysis is trying to establish how
authentication is performed by the application,
in some instances it may be easier and more
effective to look at the code or libraries used
by the application. A balance should be made
between higher-level, design and architectural
(or even conceptual) threat modelling and the

more hands-on tasks of looking through code
or running automated tools.

3.3 Threat Modelling Process
The threat modelling process used in this article
is based predominately on the one pioneered by
Microsoft since 1999 [11]. The process itself
evolved over the years and is now incorporated
into the Microsoft Secure Development Lifecycle
at the core of the Risk Analysis process [6].
Threat modelling incorporates 4 key stages:
1. Application Analysis / Diagramming.
2. Threat Enumeration.
3. Threat Rating.
4. Mitigation Options.

3.4Application Analysis / Diagramming
This stage of the threat modelling process con-
sists of analysing the application from a flow of
data perspective. All assets that make up the
application are catalogued, and then the rela-
tionships between them are identified in terms
of data exchange. Data Flow Diagrams (DFD) [9]

help both visualise elements of the applications
and the flow of data between them. The
Microsoft threat modelling further enhanced the
‘classic’ DFD by adding a ‘trust boundary’ ele-
ment [5]. Trust boundaries aid in analysing differ-

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

8



ent privilege and trust levels and better assess
threats. Figure 1 shows a sample DFD diagram.
Other background information which is used in

the analysis process includes:
• Use Scenarios - descriptions of typical as well

as atypical use (including unauthorised use sce-
narios). This allows better understanding of the
application and its components, and makes sure
no data flow diagram elements are missing. Con-
sidering unauthorised use scenarios can help
direct security threat assessment and security
testing as well as ensure practical scenarios are
considered.

• External Dependencies - any third-party com-
ponents, libraries, tools and services which may
affect the security of the application.
• Security Assumptions - assumptions relating

to the security provided by any third-party or
relied-upon components.
• External Security Notes - notes which are

made available to users of the application about
the security provided by default or which can or
cannot be configured. Notes can also include
limitations, recommendations and warnings.

3.5 Threat Enumeration
Each element on the Data Flow Diagram is
analysed against a list of potential threats
depending on the element type. Threats are cat-
egorised based on the STRIDE [13] taxonomy:
• Spoofing - Masquerading, stealing or disguis-

ing one identity with another. Spoofing does not
solely apply to user identities and individuals.
Server spoofing can also take place, e.g. in phish-
ing attacks.
• Tampering - Altering, modifying, adding or

retracting data. Tampering includes any unau-
thorised or unintended modification and com-
promise of data integrity. Tampering threats not
only apply to data, but also to communication
links and processes.

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

9

FIGURE 1

SAGE NOTEBOOK [12] DATA FLOWDIAGRAM



• Repudiation - Denying having performed an
action, or covering tracks after a malicious act or
misuse.
• Information Disclosure - An attack on infor-

mation confidentiality. Obtaining unauthorised
access to information.
• Denial of Service - Compromising system or

application availability. Reducing or denying
access to resources.
• Elevation of Privilege - Obtaining unautho-

rised elevated access to services or resources.
Elevation of Privilege attacks primarily aim at
obtaining the highest level of access (Adminis-
trator, or root), but it is not limited to it. Elevation
from anonymous user to a registered one, e.g.
from a registered user to ‘power’ user, are also
of concern.

When threats are analysed, a consideration is
given whether or not a control is in place to par-
tially or fully mitigate the threat. When analysing
an existing open-source system this process is
slightly different from traditional threat model-
ling. Controls are either already implemented
or they are missing.
It may be useful to enumerate all threats, but in

order to keep the analysis brief and focused, enu-
meration usually includes only realistic threats

and actual vulnerabilities (i.e. lack of control) that
need to be considered and potentially addressed.

3.6 Threat Rating
Rating threats is essential to determining the
most cost effective approach for remediation
and mitigation. It helps to ensure the necessary
resources, time and attention are given to the
more critical threats. The most effective threat
rating is therefore a scaling based on risk. The
higher the risk to the application caused by the
threat, the higher the priority or rating of the
threat. There are different risk rating or estima-
tion methods, including various qualitative and
quantitative techniques. Even though the threat
modelling process is, as its name suggests, look-
ing at threats, the process is in fact equivalent to
risk rating
as described in [7]. When rating a threat, the

following aspects have to be considered:
• Application assets (e.g. components, data

flows) - described on the Data Flow Diagram, as
covered in section 3.4.
• Threats to assets (e.g. spoofing, tampering) -

threats are identified and enumerated, as
described on section 3.5.
• Identification of existing controls - when

analysing an existing application, as is the case

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

10



in this paper, some controls would already exist.

However, even with an application not yet
implemented, some controls may have already
been designed. Also covered in section 3.5
• Identification of vulnerabilities - Vulnerabilities

may exist at the architecture level and are also
considered as part of section 3.5.
• Identification of consequences - The impact of

a threat ‘materialising’ by exploiting a vulnerability
to an asset.

Therefore, when determining the risk levels for
each of the enumerated threats and establishing
a rating of threats, all those considerations are
analysed together with the estimated likelihood/
probability of the consequences taking place.

3.7 Mitigation Options
Threat mitigation is provided to reduce the risk
associated with threats to an acceptable level.
Mitigation is subject to cost/benefit analysis and
consideration into the best ways to address par-
ticular threats or vulnerabilities. Threat mitiga-
tion of already developed applications is more
constrained than with applications still in the
design process, primarily because mitigation
tends to be more complex and costly, and the

pressure to fix vulnerabilities might be higher.
There are several types of mitigation options

available, which range between removing func-
tionality, patching, adding other security controls
to re-design. Some of the risks may be accept-
able to the organisation or specific deployment
and left unmitigated.

3.8Caveats and Limitations
It is important to understand the limitations and
caveats of the threat modelling process, and to
avoid a false sense of security. In the context of
threat modelling, a failure to identify a threat,
vulnerability or a problem might mean the prob-
lem does not get addressed, whereas the threat
or issue does in fact exist.
A typical threat model is also likely to be more

focused, and therefore miss wider-scope issues,
such as:
• Future threats and patterns - exploits and

attacks evolve and change constantly. Attackers
change their patterns or interest and techniques
gain focus or ‘go out of fashion’. For example,
integer overflow vulnerabilities climbed to num-
ber 2 for operating system advisories in 2007,
after barely being included in the top 10 list in
the previous few years [1].
• Human elements - Some human elements are

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

11



covered by a typical threat model, but others are
not. Social engineering attacks are not impossi-
ble to identify, but more difficult to capture using
the threat model than more direct threats.

4 CONCLUSION
The framework presented in this article was
applied to the Sage Notebook [12] open-source
software as part of the first author’s MSc thesis
project. Using the framework, the analysis high-
lighted numerous threats and vulnerabilities
both to the development process of the software
and the software itself. Further to the paper, a
number of changes to the software were planned
and executed to reduce the level of risk in accor-
dance with the project’s priorities and goals.
Open-source software may not be more secure

than closed-source alternatives. It does however
bear the potential of becoming increasingly more
secure, given the right attention and the neces-
sary approach to security. The methodology and
processes covered in the article hopes to give
some direction to those who wish to assess the
security of open-source software, either in an
attempt to determine if this software can be use-
fully implemented in their organisation or as a
prelude to improving that software. By utilising
such a framework, open-source software can be

assessed in a more comprehensive and focused
manner to gain confidence and assurance.
Whilst not revolutionary nor new, it is believed

that the framework and ideas presented in this
article can be applied to many different open-
source projects and in many environments. Build-
ing upon well-established threat modelling
methodologies as well as the inherent benefits of
open source, this framework can be used by both
open-source project teams wishing to give assur-
ance to prospective clients, and organisations and
companies wishing to use open-source. �

ABOUT THE AUTHORS

Yoav Aner is an information security specialist with
16 years experience. His areas of expertise include secu-
rity architecture, design and evaluation, with particular
focus on application security and practical usage of
cryptography. He has worked both domestically and
internationally in the telecom, finance and IT industries.

Carlos Cid joined the Information Security Group
at Royal Holloway in October 2003 as a postdoctoral
research assistant to work on the EPSRC-funded project
"Security Analysis of the Advanced Encryption Standard
(AES)". He is currently a RCUK Academic Fellow. Carlos
has a broad interest in the area of information security,
in particular cryptography.

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

12



REFERENCES

[1] S. Christey and R.A. Martin. Vulnerability type distributions in CVE. CommonWeakness Enumeration, version, 1.1,
2007. Available at http://cwe.mitre.org/documents/vuln-trends.html. Last accessed, 30 August 2009.

[2] W. Diffie. Risky business: Keeping security a secret. Available at http://news.zdnet.com/2100-9595_22-127072.html,
2003. Last accessed, 14 July 2009.

[3] D. Evans and D. Larochelle. Improving security using extensible lightweight static analysis. IEEE software, pages 42–51,
2002.

[4] J.H. Hoepman and B. Jacobs. Increased security through open source. COMMUNICATIONS–ACM, 50:79–84, 2007.

[5] M. Howard and D.E. Leblanc. Writing secure code. Microsoft Press, second edition, 2002.

[6] M. Howard and S. Lipner. The Security Development Lifecycle. Microsoft Press, 2006.

[7] ISO/IEC. ISO/IEC 27005:2008 Information technology - Security techniques - Information security risk management.
First edition, International Organization for Standardization, Geneva, Switzerland., 2008.

[8] Auguste Kerckhoffs. ”la cryptographie militaire”. Journal des sciences militaires, vol. IX, 1883. available at
http://www.petitcolas.net/fabien/kerckhoffs/, Last accessed, 14 July 2009.

[9] P.G. Larsen, N. Plat, and H. Toetenel. A formal semantics of data flow diagrams. Formal aspects of Computing,
6(6):586–606, 1994.

[10] Bruce Schneier. Open source and security. Crypto-Gram. Counterpane Internet Security, Inc., September 15, 1999.
Available at http://www.counterpane.com/cryptogram-9909.html. Last accessed, 25 July 2009.

[11] A. Shostack. Experiences Threat Modeling at Microsoft. In Modeling Security Workshop. Dept. of Computing,
Lancaster University, UK, 2008.
Available at: http://blogs.msdn.com/sdl/attachment/8991806.ashx. Last accessed, 27 August 2009.

[12] W. A. Stein et al. Sage Notebook Public Server. The Sage Development Team. Available at http://www.sagenb.org/.
Last accessed, 28 July 2009.

[13] F. Swiderski and W. Snyder. Threat Modeling. Microsoft Press, 2004.

[14] B. Witten, C. Landwehr, and M. Caloyannides. Does open source improve system security? IEEE SOFTWARE,
pages 57–61, 2001.

Royal Holloway Series 2010 Open-Source Security Assessment

HOME

INTRODUCTION

OPEN SOURCE –
FRIEND OR FOE?

THREAT
MODELLING

CONCLUSION

REFERENCES

13


