
1

CHAPTER 1

THE CASE FOR AUTOMATED
DEFECT PREVENTION

Why do we never have time to do it right, but always have time to do it over?
—Anonymous

1.1 WHAT IS ADP?

ADP is a paradigm shift and a mindset. It is an approach to software develop-
ment and management infl uenced by three distinct yet related factors:

1. The need for new and effective methodologies focusing on improving
product quality

2. The fact that in today’s complex world of perpetual change, sophisticated
technology that assists software development must be an intrinsic part
of project and process management, not just an add-on feature

3. An understanding of the broad spectrum of human factors affecting
modern software development, in particular the psychology of
learning

ADP principles and practices are based on research combined with 20 years
of experience managing internal software projects, working with thousands of
customers, and dealing with software defects on a daily basis. ADP evolved

Automated Defect Prevention: Best Practices in Software Management, by Dorota Huizinga
and Adam Kolawa
Copyright © 2007 John Wiley & Sons, Inc.

CO
PYRIG

HTED
 M

ATERIA
L

2 THE CASE FOR AUTOMATED DEFECT PREVENTION

from the approach called Automated Error Prevention (AEP) [1], used and
practiced by Parasoft Corporation. Both adaptable and fl exible, ADP can be
applied to either existing or new projects, and it can be introduced as an exten-
sion to any iterative and incremental software process model. When used with
a new project, ADP provides a best-practice guide to defi ning a software devel-
opment process and managing a project.

Software has become one of the most pervasive components of our lives.
Our unprecedented dependence on it ranges from keeping track of our cal-
endars and fi nancial records to controlling electronic devices in our automo-
biles, pacemakers, and a host of other applications. Yet few other goods are
delivered to market with more defects than software products. This is because
there are now more opportunities than ever for defects to be injected into
software under development. For example, a typical enterprise system nowa-
days encompasses many complex multitier applications and is often a precari-
ous combination of old and new technologies, such as legacy systems wrapped
as web services and integrated with newer components through a service-
oriented architecture. At each layer there are possibilities for making mis-
takes, and a simple defect in one component can ripple throughout the system,
causing far-reaching and diffi cult-to-diagnose problems. Additionally, today’s
most common method of verifying system quality is through testing at the end
of the life cycle. Unfortunately, this “quality through testing” approach is not
only resource-intensive, but also largely ineffective. Since most of the time the
number of possible states to be tested is prohibitively large [2], testing often
leaves many system states untested, waiting only to reveal previously unde-
tected defects at the most unexpected moment.

Thus, ADP takes an alternative approach of comprehensive defect preven-
tion by modifying the development process in the entire software life cycle [3]
to reduce opportunities for mistakes. In essence, ADP helps development
teams prevent software faults by learning from their own mistakes and the
mistakes of others. In order to achieve this, ADP describes a blueprint for life
cycle defect prevention in its set of principles, practices, and policies.

At the heart of ADP lies its infrastructure, which defi nes the roles of
people, required technology, and interactions of people with technology. This
infrastructure facilitates both the implementation and sustainability of ADP
processes through automation of repetitive, error-prone tasks and by auto-
matic verifi cation of error-preventive practices. This infrastructure also assists
in the seamless collection of project-related data that is used for making
informed management decisions. Thus, in ADP, the technology infrastructure,
together with policies guiding its use, becomes an intrinsic part of project and
process management.

However, no management approach can be effective unless it is based on
an understanding of human nature, and aims at creating an environment that
provides job satisfaction. This is particularly important in software develop-
ment, an intellectually challenging task in itself, that is complicated by seem-
ingly endless industry change that requires constant learning. ADP’s

automation of tedious, repetitive, and mundane tasks combined with gradual,
step-by-step introduction of new practices is an attempt to stimulate effective
learning and perhaps even help achieve a highly increased sense of satisfaction
by entering a peak of mental concentration called “fl ow” [4].

In the next section of this chapter, we will describe the goals that we set
forth for ADP. This will be followed by a high-level overview of ADP’s prin-
ciples, practices, and policies. The last section will delineate the relationship
between ADP and modern software development.

1.2 WHAT ARE THE GOALS OF ADP?

The development of ADP was triggered by the need for effective methodolo-
gies that counter poor software quality, with its resulting high costs and opera-
tional ineffi ciencies. However, the high complexity of modern software
development coupled with continuous changes of technology and short time
to market pose a set of unique challenges not found in other industries. To
address these challenges, we have defi ned and addressed the goals for each
category of the software project management [5] spectrum, concentrating not
only on the four Ps suggested by Pressman [6]—people, product, process, and
project—but on the organization as an entirety.

In subsequent sections, we will explain the primary ADP goals for each of
the above categories and the motivation for each goal. (See Figure 1.1.)

1.2.1 People: Stimulated and Satisfi ed

People are the most important resource in an organization, as they are the
sole source of creativity and intellectual power. As much as we strive to defi ne
processes and methods to be people independent, people will either make or
break them.

Satisfi ed and motivated people are productive and cooperative. They take
pride in their work and they are willing to go the extra mile to deliver a quality
product. Therefore, software development, which is a people-intensive process
by itself, cannot be successful without creative and dedicated people. However,
professional satisfaction is not easily achieved, especially in a business where

People

Technology

Time

Money

Resources Goals

Happy People

Quality Product

Productive Organization

Improved Process

Successful Project

ADP

Principles

Policies

Practices

Figure 1.1 Resources transform into goals by using ADP.

 WHAT ARE THE GOALS OF ADP? 3

4 THE CASE FOR AUTOMATED DEFECT PREVENTION

continued learning is as important as performing routine tasks and frustration
can easily inhibit imagination. Moreover, achieving a balance between disci-
pline and creativity is diffi cult because according to the laws of human psychol-
ogy [4], in their professional lives, people tend to oscillate between two extreme
states: routine and repetitive tasks on the verge of boredom, and new, chal-
lenging tasks on the verge of anxiety. Both excessive boredom and excessive
anxiety make people ineffective and error-prone.

Part of the continuum between these two extreme states of mind includes
the competency zone, which is the zone where people’s skills match the
demands of the tasks they must perform. At the high end of the competency
zone is the state of fl ow. In this state people forgo their inhibitions, learn, and
explore their new skills, and through a high degree of concentration, their
performance is enhanced enormously, resulting in an increased level of com-
petence. People who achieve this state report a tremendous sense of accom-
plishment and success.

According to Phillip G. Armour, software development is subject to the
laws of fl ow, because it is a process of continuous learning. “If software devel-
opment were entirely the application of existing knowledge, it would be a
manufacturing activity and we could completely automate it” [7]. Moreover,
since most software defects can ultimately be traced back to “human error,”
any effective defect prevention approach must create a working environment
in which the team members can perform most of their tasks within the higher
ends of their competency zone, where the number of boring or overwhelmingly
challenging activities are minimized.

Thus, the goal of ADP is to keep people positively stimulated and yet not
overwhelmed, so they can perform in an advanced manner and consequently
achieve the maximum level of professional satisfaction.

1.2.2 Product: High Quality

The high quality of a product not only provides customer satisfaction and
helps to maintain the company’s competitive edge, but also generates a sense
of individual and organizational pride among those who contributed to its
development.

Software quality is a complex mix of many attributes such as usability, reli-
ability, effi ciency, and more. Focusing on just one of these factors in the devel-
opment process may impede the others and undermine the ultimate measure
of software quality, which is customer satisfaction. While the defect rate is one
of many factors used to determine software quality, it is so fundamental that
unless its status is acceptable, other aspects of quality are not as signifi cant.
Unfortunately, many past and recent reports of system failures due to software
faults indicate that defects are the norm rather than the exception in software
products. They cause fi nancial losses [8,9], everyday inconvenience [10,11], and
even cost lives [12,13]. A comprehensive study conducted in 2002 by the NIST
(National Institute of Standards and Testing) states that software errors cost
the U.S. economy up to a staggering $59.5 billion per year [14].

As previously mentioned, one of the primary contributing factors to poor
software quality is its growing complexity. Multitier and multiplatform envi-
ronments, unmanageable sizes reaching millions of lines of code, creeping
requirements, and ever-changing underlying technology open the door for a
host of defects.

Unfortunately, not many people in the industry believe that defect preven-
tion in software is possible. The common claim is that because each piece of
software is different, the lessons learned from working on one project cannot
be effectively applied to others. Thus, instead of trying to prevent defects from
entering software, the conventional approach is to test defects out of software.
First, a product or its part is built, and then an attempt is made to use testing
to determine whether it works. Finally, defects exposed in the testing process
are gradually removed.

Yet defect prevention is not only possible, but also necessary in software
development. However, for defect prevention to be effective, a formalized
process for integrating this strategy into the software life cycle is needed. This
formalized approach must include both the application of industry best prac-
tices known to avert common problems, and the customization of organization-
specifi c practices to meet project needs. Additionally, in order to be sustainable,
this formalized approach must be supported by an adaptable infrastructure that
automates many repetitive tasks and that carries defect prevention practices
from one product release to the next, and from one project to another. More-
over, the role of testing should not be eliminated, but redefi ned. Although back-
end testing has proven to be an ineffective method of building quality into
software, testing can and should be used to help measure and verify product
quality. ADP defi nes such a formalized approach to defect prevention with the
ultimate goal of achieving high quality of the product.

1.2.3 Organization: Increased Productivity and
Operational Effi ciency

Companies are constantly rethinking how to maintain their competitive edge
by reducing operating and maintenance costs while attempting to deliver
increased value. In the software industry, this manifests itself through the fol-
lowing goals shared by many organizations:

● Cost reduction: controlling the spiraling software development and labor
costs, producing more with the same resources, and reducing the amount
of rework due to poor quality

● On-time product delivery: ensuring that projects deliver products on time
with the requested functionality

The inability to make effective software without incurring unreasonable
costs and delivery delays is blamed on operational ineffi ciency with its result-
ing low productivity. The fact that this inability often persists in the face of
increasing software development team expertise and resources indicates a

 WHAT ARE THE GOALS OF ADP? 5

6 THE CASE FOR AUTOMATED DEFECT PREVENTION

serious process problem that has little to do with insuffi cient resource
allocation.

Unfortunately, it is often not realized that the operational ineffi ciency of
organizations stems from the fact that in virtually any software development
80% of the resources are dedicated to identifying and fi xing defects, which leaves
only about 20% of the resources available for tasks that deliver value and
improve the business [14].

These defects span a wide spectrum from incorrectly implemented func-
tionality through performance problems and security vulnerabilities, to fail-
ures that crash an entire system. They essentially stifl e a team’s ability to
produce working software within a reasonable time and at acceptable costs.

These problems, coupled with the fact that the cost of identifying and
removing defects grows exponentially as a function of time in the development
cycle [15], lead to the conclusion that defect prevention is crucial to improving
productivity and operational effectiveness.

1.2.4 Process: Controlled, Improved, and Sustainable

A process is a series of step-by-step tasks necessary to reach a specifi ed goal.
Thus, depending on its goal, a process can be defi ned at different levels of
granularity. A complete software development cycle needs a process, and so
does each of its individual phases including requirements gathering, design,
and testing. While the ultimate goal is to create a high-quality product in a
timely manner, it is necessary to divide and refi ne each high-level goal into
many subgoals for which detailed step-by-step action plans have to be pre-
pared. For example, a software development life cycle process could consist
of a requirements specifi cation process, design process, testing process, and
deployment process. However, implementation of a well-defi ned process is
only the fi rst step toward software product quality. The fundamental problem
lies in whether and how this process can be controlled, sustained, and
improved.

Quality initiatives, such as CMMI (Capability Maturity Model Integration)
[16], which set a framework for process improvement, do not provide suffi -
ciently practical and detailed guidelines to translate their models into actions
effectively. Thus, many organizations failed to achieve the desired results from
these initiatives because of the diffi culty of implementing and maintaining
them in realistic cost-effective development environments.

Some of the common objections to these initiatives are:

● They add a substantial overhead, which is very costly.
● They rely too much on manual labor to set up and maintain. Because of

the turnover in the workforce, it is hard to sustain such human-dependent
processes.

● They are diffi cult to automate, but without automation, they decay and
eventually become ineffective.

Thus, the goal of ADP is to address these concerns by implementing soft-
ware processes that are controllable and sustainable. This is accomplished by
defi ning a set of practices, explaining how they can be automated, and by
monitoring and controlling the status of the practice implementation using the
ADP infrastructure.

1.2.5 Project: Managed through Informed Decision Making

A quality product cannot be created without effective project management
techniques applied throughout its development. However, while project man-
agers and developers strive to make the software better and friendlier, the
economic pressures of the industry coupled with many external factors pose
a multitude of challenges.

Among the external factors are recent government regulations, which place
an additional burden on software teams responsible for such tasks as maintain-
ing fi nancial information, protecting human resources data, securing the
company’s product database and Web accesses, and many more. Current leg-
islation that affects software development includes Section 508 of the U.S.
Rehabilitation Act [17], the Sarbanes-Oxley Act of 2002 [18], the Health
Insurance Portability and Accountability Act (HIPAA) [19], the Gramm-
Leach-Bliley Act [20], and the Family Educational Rights and Privacy Act
(FERPA) [21]. For example, the Sarbanes-Oxley (SOX) Act requires that
public companies implement effective internal controls over their fi nancial
reporting, have auditors verify the existence and effectiveness of these internal
controls, and have executives certify that fi nancial reports are accurate.
Although SOX is fi nancial legislation, it places a tremendous burden on the
software teams of public companies because reliable fi nancial reporting is
inextricably linked to a well-controlled system environment and reliable,
secure software systems.

Additionally, ensuring application security has become one of the greatest
challenges in recent years. Although most organizations strive to release soft-
ware with zero defects, this rarely happens in reality. While in many cases little
harm comes from shipping software with a few functionality defects, security
weaknesses can result in great damage. Considering that attackers proactively
analyze software hoping to expose vulnerabilities that they can exploit, deploy-
ing software with even one security fl aw could pose a high risk. In fact, poten-
tial intruders are usually better at uncovering security defects than testing
teams themselves. As a result, a defect rate that might be acceptable for soft-
ware functionality could prove dangerously high for security fl aws in the same
application.

Another external factor affecting management of software projects is off-
shore outsourcing. Because of the large return on investment that outsourcing
promises, many companies elect to pursue such management strategies.
However, outsourcing comes with many potential risks stemming from cul-
tural and language barriers to legislative differences that make contractual

 WHAT ARE THE GOALS OF ADP? 7

8 THE CASE FOR AUTOMATED DEFECT PREVENTION

agreements diffi cult to enforce. The organization’s decision makers may fi nd
themselves pondering the possible disastrous consequences of the many
unknowns in outsourcing: lack of understanding of company’s business, geo-
graphical distance, and communication diffi culties.

In order to ameliorate project uncertainty caused by the above external
factors, one of the goals of ADP is to facilitate management decision making
through automated collection of data and through tracking and measurements
of the trends of the project status indicators. Analysis of these indicators
assists in evaluating the level of project quality, status of requirements imple-
mentation, and deployment readiness, and helps to reduce the risks and chal-
lenges posed by these and other external factors.

1.3 HOW IS ADP IMPLEMENTED?

ADP is implemented by following a set of principles, practices, and policies.
The principles are high-level laws that form the basis of ADP methodology,
while the policies and practices comprise low-level development and manage-
ment rules and procedures at varying granularity. We will expand on each of
these in subsequent sections.

1.3.1 Principles

Principles are the foundation of the ADP methodology. They are the basic
laws that govern structuring and managing software projects. They correspond
to ADP’s goals at the highest level and they form the basis for the defi nition
of practices and policies, which are directly applicable to software projects.
(see Figure 1.2.)

There are six ADP principles, which will be explained in detail in the next
chapter. Each of these principles addresses one or more of the ADP goals.
For example, the principle on “incremental implementation of ADP’s prac-
tices and policies” assures that the organizational change that ADP brings is
introduced gradually, thereby minimizing people’s unease and apprehension.
The incremental, group-by-group and practice-by-practice approach to ADP
implementation is an attempt to minimize possible anxiety and resentment by
not overwhelming people and teams who apply it. Such a gradual introduction

Principles

Policies Practices

Figure 1.2 Principles, policies, and practices.

of ADP also assures that once the initial practices are mastered and accepted
by one group, they can be successfully propagated to the entire
organization.

1.3.2 Practices

Practices are functional embodiments of the principles. Depending on their
level of granularity, best practices can pertain to entire projects, processes, or
even individual tasks and people’s daily activities. There are two types of best
practices: general, which are based on issues common to all development
projects, and customized, which are adopted by the organization to meet the
needs of its unique projects and improve its processes. While the body of
general best practices is already defi ned and well accepted by the industry, the
body of customized best practices is created by the organization.

An example of a general best practice is managing requirements changes.
This best practice would defi ne a basic process for recording and tracking
updates in software requirements. At a fi ner level of the granularity, this best
practice would describe a specifi c format for recording such changes, along
with the required technology and change approval process.

A customized best practice is project or organization specifi c. For example,
a predefi ned set of coding standards adopted by the organization and applied
by the team to a specifi c project is a customized best practice. Similarly, a new
best practice introduced after identifying a defect in the product under devel-
opment is a customized best practice used for process improvement.

DEVELOPER’S TESTIMONIAL

Customized Best Practices

At my current job many of our senior developers have worked to put together a
document that has our C++ and CORBA best practices. This document helps our
junior engineers to learn from the years of experience of the senior engineers. This
has helped to reduce mistakes and make code easier to read and understand.

—William Mayville, Software Engineer I

1.3.3 Policies

Policies are managerial embodiments of the principles. They mostly pertain
to teamwork and defi ne how the team should interact with technology. They
are also used to assure that product- and process-related decisions are consis-
tently applied through the entire team, and usually take the form of written
documents.

An example is a design policy for the user interface, which should defi ne
the elements in the user interface of a product and details such as each ele-
ment’s location, appearance, name, and functionality. Another example is a

 HOW IS ADP IMPLEMENTED? 9

10 THE CASE FOR AUTOMATED DEFECT PREVENTION

policy for use of a requirements management system, which should defi ne how
individuals and teams use this system in order to most effectively organize and
track product requirements.

1.3.4 Defect Prevention Mindset

Successful implementation of ADP practices and policies requires that at least
one team member—preferably an architect, lead developer, or anyone else
with a deep understanding of the software’s requirements and design—assume
the responsibility of identifying and removing the root causes of severe defects
found. The proper mindset involves realizing that the apparent problems, such
as missing requirements, failed builds, unused variables, and performance
bottlenecks, are just specifi c symptoms of a larger, more general problem.
These problems can originate anywhere in the development process, from
requirements, through design and construction, to testing, and even in beta
tests or user feedback. In fact, warning signs often appear downstream from
the root cause, and each root cause may generate tens or hundreds of them.
If each specifi c symptom is addressed, but not the more general and abstract
root cause, the problem will persist. In the long term, it is much more effective
to address the root cause, thereby preventing all related defects, than to try
to tackle each one as it arises.

For example, assume that a development team member discovers that the
product’s automated build is not operating correctly because the wrong library
was integrated into the build and old versions of functions are being called
instead of the up-to-date versions. After spending signifi cant time and effort
investigating this situation, the team determines that, although the correct
version of the fi le was stored in the source control system, an incorrect version
was included in the build due to a clock synchronization problem. The build
machine’s clock was ahead of the source control system’s clock. Consequently,
the version of the fi le on the build machine had a more recent timestamp than
the fi le on the source control machine, so the fi le on the build machine was not
updated. The discrepancy in the clocks is just a symptom of the problem. Fixing
the time on all of the team’s computers might temporarily prevent failed fi le
updates, but it is likely that the clocks will become unsynchronized again. The
general, abstracted root cause is that there are conditions under which the most
recent fi les from the source control system will not be transferred to the build
system. This could be prevented by confi guring the build process to remove all
existing fi les on the build machine and then retrieve all of the most recent ver-
sions of the fi les from the source control system. Acquiring the proper mindset
requires realizing that even the most seemingly insignifi cant symptom may
result in a severe problem and point to a root cause that, if fi xed, can signifi -
cantly improve the process and all products affected by this process.

In this book we will give examples of how particular defects can be traced
back to root problems, which can then be avoided by developing and imple-
menting preventive action plans.

1.3.5 Automation

Automation is ADP’s overarching principle and is essential to making defect
prevention a sustainable strategy in software development. When key defect
prevention practices are automated, organizations can ensure that these prac-
tices are implemented with minimal disruption to existing processes and pro-
jects. Moreover, automation is the solution to ensuring that both the general
and customized defect prevention practices that the team decides to imple-
ment are applied thoroughly, consistently, and accurately.

In many cases, determining how to effectively automate the defect preven-
tion strategies is just as diffi cult as the root cause analysis required to develop
them. One of the other challenging aspects is determining how to integrate
new automated practices into the development process unobtrusively so that
day-to-day development activities are not disrupted unless a true problem is
detected.

1.4 FROM THE WATERFALL TO MODERN SOFTWARE
DEVELOPMENT PROCESS MODELS

ADP’s best practice approach does not depend on any specifi c life cycle
process model, although it is best suited for iterative and incremental develop-
ment. This type of development has become prevalent in recent years because
of the dynamic nature of the software industry. Due to perpetual technological
changes, it is often impossible to entirely defi ne the problem and implement
the complete software solution in one cycle. Therefore, an incremental
approach is taken, whereby the problem defi nition and solution construction
undergo several iterations. Thus, modern software development has become
a dynamic and living process, where modifi cations and reworking of project
artifacts within each phase and the entire cycle are the norm.

The iterative approach, regardless of its fl avor, lends itself to the application
of ADP. This is because defects identifi ed in each iteration of the life cycle or
phase can be prevented from reoccurring in subsequent iterations of the same
and future projects.

When defect prevention is built into the process and automated, process
improvement becomes an intrinsic part of software development. This results
in both a more effi cient methodology and higher-quality products.

In the past decade, the software development paradigm has moved away
from the traditional waterfall approach that features well-defi ned sequential
stages, beginning with communication with customers and requirements speci-
fi cation, progressing through planning, design, construction, and deployment,
and then eventually following with the maintenance of the fi nal product.
Despite its many supporters, this conventional, staged approach did not
provide suffi cient fl exibility to accommodate the dynamic needs of today’s
quick-to-market business pressures, where both the technology and the

FROM THE WATERFALL TO MODERN SOFTWARE DEVELOPMENT PROCESS MODELS 11

12 THE CASE FOR AUTOMATED DEFECT PREVENTION

customer requirements are subject to unending change. Even though the
original waterfall model proposed by Winston Royce [22] suggested “feedback
loops,” these were so imprecisely specifi ed that the vast majority of the orga-
nizations applied this method in a strictly linear manner.

Consequently, this very fi rst, classic life cycle model was replaced by the
iterative process approach, whereby the initial version of the system (some-
times also called a core product) is rapidly constructed, focusing on driving
requirements coupled with fundamental architecture. The software develop-
ment process then undergoes a series of iterations and increments, expanding
the core product until the desired levels of system functionality, performance,
reliability, and other quality attributes are achieved.

Usually fi ve generic phases are identifi ed in the modern life cycle: commu-
nication, planning, modeling, construction, and deployment, as shown in
Figure 1.3.

The principles of modern software processes focus on architecture, compo-
nent-based development, automation, risk and change management, model-
ing, and confi gurable infrastructure. The architecture-fi rst approach facilitates
time and cost estimation, while the iterative life cycle makes risk control pos-
sible by gradual increases in system functionality and quality.

Software development process models defi ne phases of software develop-
ment and the sequence of their execution. They include approaches such as
incremental [23], spiral [24], object-oriented unifi ed process [25], agile and
extreme [26], and rapid prototyping and application development [27]. Also,
formal methodologies have been proposed for life cycle descriptions [28,29].

At fi rst glance, these models might appear to be quite a departure from the
traditional waterfall approach (which has well-defi ned sequential stages) since
they blur the boundaries between development phases, often rely on close
interactions with the customer, and require multiple reworking of project

Planning

Modeling

Construction

Deployment

Communication

Figure 1.3 The waterfall model versus iterative process model.

artifacts within and between the development phases. Frequently customers
are not capable of precisely identifying their needs early in the project, and
multiple iterations of requirements defi nitions are essential to elicit the problem
completely. Yet, a closer analysis reveals that each of these models is a natural
and logical evolution of the waterfall model. In fact, these models stem from
constant progress in improving the software development process. This prog-
ress is the result of efforts to improve the existing development processes in
ways that would prevent the most common and disruptive problems that were
causing project setbacks and product failures. Moreover, each new model still
maintains the core element of the original waterfall model: a forward-moving
progression through a cycle that involves requirements analysis, specifi cation,
design, implementation, testing, and maintenance. The duration, scope, and
number of iterations through this cycle may vary from process to process, but
its presence is essential—because it represents the natural steps of developing
software. Consequently, the ability to execute the waterfall model successfully
remains a requirement for success, no matter what process is used.

More discussion about software development process models is included in
Appendix A.

1.5 ACRONYMS

CMMI Capability Maturity Model Integration
FERPA Family Educational Rights and Privacy Act
HIPAA Health Insurance Portability and Accountability Act
NIST National Institute of Standards and Testing
SOX Sarbanes-Oxley Act of 2002

1.6 GLOSSARY

agile programming process model A lightweight process model that consists
of the following cycle: analysis of the system metaphor, design of the plan-
ning game, implementation, and integration.

extreme programming An “agile” software development methodology char-
acterized by face-to-face collaboration between developers and an on-site
customer representative, limited documentation of requirements in the
form of “user stories,” and rapid and frequent delivery of small increments
of useful functionality. [26]

FERPA A federal law that protects the privacy of student education records.
FERPA gives parents certain rights with respect to their children’s education
records. These rights transfer to the student when he or she reaches the age
of 18 or attends a school beyond the high school level. [21]

 GLOSSARY 13

14 THE CASE FOR AUTOMATED DEFECT PREVENTION

Gramm-Leach-Bliley Act The Financial Modernization Act of 1999, which
includes provisions to protect consumers’ personal fi nancial information
held by fi nancial institutions. [20]

HIPAA An act to amend the Internal Revenue Code of 1986 to improve
portability and continuity of health insurance coverage in the group and
individual markets, to combat waste, fraud, and abuse in health insurance
and health care delivery, to promote the use of medical savings accounts,
to improve access to long-term care services and coverage, to simplify the
administration of health insurance, and for other purposes. [19]

incremental development A software development technique in which
requirements defi nition, design, implementation, and testing occur in an
overlapping, iterative (rather than sequential) manner, resulting in
incremental completion of the overall software product. [23]

prototype A preliminary type, form, or instance of a system that serves as a
model for later stages or for the fi nal, complete version of that system.

Sarbanes-Oxley Act of 2002 An act to protect investors by improving the
accuracy and reliability of corporate disclosures made pursuant to the
securities laws, and for other purposes. [18]

Section 508 An amendment to the Rehabilitation Act of 1973 that requires
that any technology produced by or for federal agencies be accessible to
people with disabilities. It covers the full range of electronic and informa-
tion technologies in the federal sector. [17]

software life cycle The period of time that begins when a software product is
conceived and ends when the software is no longer available for use. The
software life cycle typically includes a concept phase, requirements phase, design
phase, implementation phase, test phase, installation and checkout phase, oper-
ation and maintenance phase, and, sometimes, retirement phase. [3]

software project management The process of planning, organizing, staffi ng,
monitoring, controlling, and leading a software project. [5]*

spiral model A model of the software development process in which the
constituent activities, typically requirements analysis, preliminary and
detailed design, coding, integration, and testing, are performed iteratively
until the software is complete. [3]

unifi ed process Also known as Rational Unifi ed Process, is a software
development approach that is iterative, architecture-centric, and use-case
driven. [25]

usability The ease with which a user can learn to operate, prepare inputs for,
and interpret outputs of a system or component. [3]*

use case A use case describes a sequence of actions that are performed by
an actor (e.g., a person, a machine, another system) as the actor interacts
with the software. An actor is a role that people or devices play as they
interact with the software. Use cases help to identify the scope of the
project and provide a basis for project planning. [25]

waterfall model A model of the software development process in which the
constituent activities, typically a concept phase, requirements phase, design
phase, implementation phase, test phase, and installation and checkout
phase, are performed in that order, possibly with overlap but with little or
no iteration. [3]*

* From IEEE Std. 1058.1-1987 Copyright 1987, IEEE and IEEE Std. 610.12-1990, Copyright 1990,
IEEE. All rights reserved.

1.7 REFERENCES

 [1] Kolawa, A., Automated Error Prevention: Delivering Reliable and Secure Software
on Time and on Budget, 2005, http://www.parasoft.com (retrieved: July 7, 2006).

 [2] Burnstein, I., Practical Software Testing: A Process Oriented Approach. Springer,
2002.

 [3] Institute of Electrical and Electronics Engineers, IEEE Standard 610.12-1990—
Glossary of Software Engineering Terminology, 1990.

 [4] Csikszentmihalyi, Mihaly, Flow: The Psychology of Optimal Experience. Harper
& Row, 1990.

 [5] Institute of Electrical and Electronics Engineers, IEEE Standard 1058.1-1987,
1987.

 [6] Pressman, R.S., Software Engineering: A Practitioner’s Approach. McGraw-Hill,
2005.

 [7] Armour, P. G., “The Learning Edge,” Communications of ACM, Vol. 49, No. 6,
June 2006.

 [8] Inquiry Board (Chairman: Prof. J.L. Lions), ARIANE 5—Flight 501 Failure, Paris,
July 19, 1996, http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
(retrieved: July 7, 2006).

 [9] National Aeronautics and Space Administration, Mars Climate Orbiter Mishap
Investigation Board Phase I Report, 1999, http://mars.jpl.nasa.gov/msp98/news/
mco991110.html (retrieved: July 7, 2006).

[10] “Maine’s Medical Mistakes,” CIO, April 15, 2006, http://www.cio.com/
archive/041506/maine.html (retrieved: July 7, 2006).

[11] “2005 Toyota Prius Recalls,” AutoBuy.com, 2005, http://www.autobuyguide.
com/2005/12-aut/toyota/prius/recalls/index.html (retrieved: July 7, 2006).

[12] General Accounting Offi ce—Information Management and Technology Division
Report, Patriot Missile Software Problem, 1992, http://www.fas.org/spp/starwars/
gao/im92026.htm (retrieved: on July 7, 2006).

[13] Leveson, N. and Turner, C.S., “An Investigation of the Therac-25 Accidents,”
IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18–41.

[14] National Institute of Standards and Technology, The Economic Impacts of Inad-
equate Infrastructure for Software Testing, Washington D.C., 2002, http://www.
nist.gov/director/prog-ofc/report02-3.pdf (retrieved: July 7, 2006).

[15] Boehm, B. and Basili, B., “Software Defect Reduction Top 10 List,” IEEE Com-
puter, Vol. 34, No. 1, January 2001.

 REFERENCES 15

16 THE CASE FOR AUTOMATED DEFECT PREVENTION

[16] Chrissis, M.B., Konrad, M., and Shrum, S., CMMI—Guidelines for Process Inte-
gration and Product Improvement, Addison Wesley, February 2005.

[17] Government Services Administration, Summary of Section 508 Standards, January
23, 2006, http://www.section508.gov/index.cfm?FuseAction=Content&ID=11
(retrieved: April 3, 2006).

[18] The American Institute of Certifi ed Public Accountants, Sarbanes-Oxley Act of
2002, January 23, 2002, http://frwebgate.access.gpo.gov/cgibin/getdoc.cgi?dbname=
107_cong_bills&docid=f:h3763enr.txt.pdf (retrieved: June 15, 2006).

[19] United States Department of Health and Human Services, Public Law 104–191:
Health Insurance Portability and Accountability Act of 1996, August 21, 1996,
http://aspe.hhs.gov/admnsimp/pl104191.htm (retrieved: July 25, 2006).

[20] Federal Trade Commission, Privacy Initiatives: The Gramm-Leach-Bliley
Act, 1999, http://www.ftc.gov/privacy/privacyinitiatives/glbact.html (retrieved:
July 25, 2006).

[21] United States Department of Education, Family Educational Rights and Privacy
Act (FERPA), February 17, 2005, http://www.ed.gov/policy/gen/guid/fpco/ferpa/
index.html (retrieved: July 25, 2006).

[22] Royce, W.W., “Managing the Development of Large Software Systems: Concepts
and Techniques,” Proceedings of IEEE WESCON, Vol. 26, August 1970, pp. 1–9.

[23] Schach, S.R., Object-Oriented and Classical Software Engineering. McGraw Hill,
2002.

[24] Boehm, B.W., “A Spiral Model of Software Development and Enhancement,”
IEEE Computer, Vol. 21, No. 5, May 1988, pp. 61–72.

[25] Jacobson, I., Booch, G., and Rumbaugh, J., The Unifi ed Software Development
Process. Addison-Wesley, 1999.

[26] Beck, K. and Andres, C., Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2nd ed., 2004.

[27] Martin, J., Rapid Application Development. Prentice-Hall, 1991.
[28] Choi, J.S. and Scacchi, W., “E3SD: An Environment Supporting the Structural

Correctness of SLC Descriptions,” Proceedings of the IASTED—International
Conference on Software Engineering and Applications, Las Vegas, Nevada, USA,
Nov. 6–9, 2000, pp. 80–85.

[29] Choi., J.S. and Scacchi, W., “Formal Analysis of the Structural Correctness of
SLC Descriptions,” International Journal of Computers and Applications, Vol. 25,
No. 2, 2003, pp: 91–97.

1.8 EXERCISES

 1. What factors have infl uenced the development of ADP?

 2. What are the goals of ADP?

 3. Why is understanding of human nature, especially psychology of learning,
essential in software development?

 4. In what sense does psychology of “fl ow” apply to software
development?

 5. Why is it diffi cult to control modern processes?

 6. Give examples of recent software “disasters” not listed in the book and
explain their causes.

 7. Give examples of recent legislation not listed in the book that might affect
the IT industry and explain what kind of effect they might have.

 8. What are the primary differences between ADP principles, practices, and
policies?

 9. Why is modern software iterative and incremental?

10. What are the key lessons to be learned from the past 35 years of software
development?

 EXERCISES 17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

