

There are a lot of MDA
products, even though
MDA “compliance” is as
yet undefined

CHAPTER ONE
INTRODUCTION

This is a book of case studies in which each study is an example of how some
form of Model Driven Architecture® (MDA®) has been introduced into an orga-
nization to help solve a real-life business problem. These organizations include
three large corporations (two in Europe and one in the United States) whose
yearly revenues range from $450 million to $182 billion (U.S. dollars), as well as
three governmental agencies (two in the United States and one in Europe) whose
sizes span a similar range.

The respective projects involved are commercially important—in some cases
vital—to each of these organizations. Moreover, each organization made a
conscious and significant commitment to a new approach to managing their soft-
ware life cycle both when they first decided to use MDA and as they continued to
absorb the many implications of that decision. All of them have plans to expand
their use of MDA in the future, sometimes in ways they had not previously
considered. MDA, it seems, can be somewhat addictive.

So, what is MDA? At the conceptual level, MDA is a holistic approach to
improving the entire information technology (IT) life cycle—specification, archi-
tecture, design, development, deployment, maintenance, and integration—based
on formal modeling. More specifically, MDA is a framework of technical standards
progressively being developed by the members of the Object Management Group
(OMG)—an open industry consortium supporting this approach—along with a set of
usage guidelines for enabling the application of those standards with appropriate
tools and processes.

Exactly as intended, the release of MDA by the OMG has spawned a wide
variety of commercial products purporting to be “MDA compliant.” Exactly what
that label means is not clear, in that at the moment neither the OMG nor any other
organization has any formal mechanism for testing product compliance with any
specific MDA standard. There are also a number of vendors selling products that
purport to support a “model-driven approach” without specifically claiming to
implement or support MDA per se—that is, as defined by the OMG.

4 INTRODUCTION

Just as predictably, the increasing availability of MDA-based tools is spawning
a host of new books and articles about MDA and related approaches (including by
the authors of this book). Most of these focus on explaining the theory of MDA,
surveying the various standards, or describing in detail the features of specific
MDA-based products or techniques. We welcome these books, even if we don't
always agree with all of them, and hope for many more to come.

For this book, however, we decided on a different approach—to produce a
book about MDA based solely on real-life case studies. In our experience, a good
case study is the best (and easiest) way for most people to begin to determine
whether or not any particular approach is likely to work for themselves or their
organization. If they come to the conclusion that the approach will work for
them, they will more likely be willing to wade into the more formidable technical
details. Furthermore, by including a healthy half-dozen of such case studies in
a single book (drawn from a wide range of organizations and applications) we
hope that nearly every reader will be able to find examples that speak directly to
their own needs and experience.

So, rather than plunge into MDA per se we simply present the stories of six very
different organizations, each of which used MDA to address its business needs in
very different ways. For the most part, we believe these case studies stand on their
own and speak for themselves (both individually and collectively) and therefore
have not tried to embellish them with additional details. That is, what you will
read is pretty much just what we were told by the participants.

The really good news is that you don’t need to know much about MDA itself
to understand these case studies. Anyone with a general familiarity with typical
information technology (IT) issues and jargon will have no trouble identifying
with most, if not all, of the individuals and organizations involved. That said, for
those who might need it we have included a short MDA primer as an appendix,
a bibliography, and a glossary that should fill in any remaining conceptual or
buzzword gaps.

Otherwise, our primary purpose in writing this book is to “explain” MDA
through real-life examples in order to help you, the reader, consider the business
case for adopting MDA in your own organization. In each of our case studies,
there is an MDA “champion,” someone who sensed early on that MDA could really
make a difference and who pushed through its acceptance by the organization (at
least for the project in question). Perhaps you already are, or will soon be, that
person in your own organization.

As you will see in the case studies, that champion may come from IT or from
the business itself. He or she may be a C-level corporate officer, an enterprise
architect, or a program/project manager. But in every case that champion found a
way to demonstrate effectively how the introduction of MDA could substantially
benefit the business. Nobody described in the book was just trying to add another

Champions tout MDA’s
business benefits rather
than its shiny new
technology

MDA is about gaining
control over the life cycle
of business solutions

There, we said it: MDA is a
paradigm shift

| |
1 1
/ ' Introduction ' 5
1 1
1 1

acronym to his or her resume, or merely playing around with some sexy new
tools.

That is important to point out, because some people still believe that MDA is just
another technical approach for generating code—a new form of CASE (computer-
assisted software engineering) based on the popular Unified Modeling Language
(UML)—and therefore something far from the concerns of the business. It is true
that MDA was originally based on UML, and also true that it is often used to
automatically generate code and other software life cycle artifacts. To that extent,
MDA carries forward some of the ideas of CASE. But that’s really yesterday’s news.

Today, as our case studies clearly show, MDA is being applied as an overall
approach to gaining control over and systematically improving the entire life cycle
of IT solutions—from modeling the overall business and capturing specific solutions
requirements to developing, deploying, integrating, and managing many kinds of
software components. Today’s MDA is less about generating code per se and much
more about precisely capturing requirements, enforcing architectural standards,
maintaining traceability, and facilitating effective communication between the
business and IT (and between different parts of IT).

On the surface, MDA often seems to be different things to different people.
To some, MDA is still mainly about generating code from models. To others,
MDA is about capturing business requirements more precisely and completely. To
yet others, MDA is a way of managing the evolution and integration of existing
systems. And as in the story of the blind men and the elephant, all of these
perceptions—and more—are equally valid and equally incomplete. This suggests
that like the proverbial elephant MDA is already emerging to be much more than
the sum of its currently perceived parts.

We really believe that the emergence of MDA represents one of those so-called
paradigm shifts, and that it will eventually change everything about the way
software systems are specified and built. This is always a controversial position,
particularly in IT, which has seen so many supposedly revolutionary “paradigm
shifts” come and go. If the readers of this book ultimately reach the same conclu-
sion, it will be because of what they learn from our case studies rather than our
attempts to convince them with theory or technical details.

That said, before jumping into the case studies we would like to put our own
view about MDA in some type of perspective by way of an analogy. Reasoning by
analogy is always risky, but it can sometimes be useful where the very concepts
under discussion may be new or unfamiliar to the reader.

By now, most of you have probably already heard the term software factory. It
may even be that this beguiling label has led some of you to MDA, and even to
this very book. The term itself evokes the powerful image of developing software
as a form of “manufacturing.”

In this context, the “big idea” is that like a modern physical factory the workings
of a typical IT department may ultimately be reduced to a set of precisely defined

6 INTRODUCTION

processes supported by appropriate tooling, which can reliably produce high-
quality software at ever-decreasing costs and time-to-market. Now, who could
argue with that?

Let’s remember that the roots of the word manufacture are the Latin words for
“hand” (manus) and “make” (facere). Most modern manufacturing industries began
as “crafts,” in which the production of each unit of a given product was largely
a unique one-at-a-time process. The “factory” was just a convenient locale where
this took place, not a carefully constructed enabler of the manufacturing process
itself.

In the twenty-first century, we rightfully tend to think of the craft-based model
of physical production as slow and inefficient, suitable only when some form
of artistic output is desired. Moreover, even more serious drawbacks manifest
themselves later in a product’s life cycle, when it is time to repair or replace a
handcrafted unit or to integrate it with other units.

For this reason, the concept of a factory based on an “assembly line” (assem-
bling standardized parts) was invented, ultimately replacing the craft model in
nearly all forms of “manufacturing.” The current popular definition of manufac-
turing now almost completely belies its Latin etymology. Few today would expect,
or even want, most “manufactured” goods to be literally “handmade.”

The notion of assembling finished products from standardized parts is often
attributed to the American Eli Whitney (also of cotton gin fame). Whitney
famously demonstrated the idea to the U.S. Congress in the late 1790s as a more
efficient way of both manufacturing guns and maintaining them in the field. Of
course, the basic idea of standardization is much older than that, dating to classical
times and attributable to others (such as John Hall and Marc Isambard Brunel,
who deserve some of the credit for refining the idea in more modern times).

However, neither Whitney nor anyone else actually succeeded in making the
idea of true “manufacturing” from standardized interchangeable parts practical until
the 1850s. The long delay between the concept and its practical realization had
several causes. Although Whitney et al. could design interchangeable parts, could
make prototypes of those parts, and could show how useful that would be, what
they could not do was reliably mass produce those parts or get anyone else to. The
measurement standards of the time were not precise enough, nor was sufficient
machining capability available, to make this possible.

In a nutshell, Whitney just didn’t have the tools needed to make the tools needed
to make the interchangeable parts. An entirely new industry—machine tools—had
to be invented before Whitney’s main idea of interchangeable parts could become
a reality. But once those machine tools—and all of the standardized processes they
required—became widely available every other form of manufacturing was soon
revolutionized.

What emerged is now commonly called the “factory model.” This factory
model is not just about putting raw materials in at one end of a building and

Eli Whitney had a lot of
help-and still did not
succeed at his stated goal

Current software
development practices
resemble those used by
seventeenth-century
craftsmen

| |
1 1
/ X Introduction ' 7
1 1
1 1

getting out finished product at the other end. After all, even the most hide-
bound traditional craft-based “factory” could do that. No, it’s about an entire
science of breaking the products down into standardized parts, while breaking
the production process down into standardized activities, all based on formal
specifications. Moreover, this componentization of both parts and activities is
applicable not just to assembly but to design, procurement, maintenance, and
other areas.

And it’s not just the end product that is ruthlessly componentized—it’s the
factory itself! Modern factories aren’t just designed to produce one product, or
even a predetermined set of products. Companies with those types of factories
go out of business quickly, the first time the market for their particular product
changes. Ergo, modern factories themselves must be able to change what they
manufacture at will, albeit within certain boundaries. This means the factories
themselves must be built from standardized parts, which can be changed or
upgraded using standardized processes.

So, what does all this have to do with today’s notion of “software manu-
facturing”? Unfortunately, by any reasonable standard the typical IT shop is still
stuck back in the craft-based world of manufacturing. That is, the specification,
development, and deployment of each new solution is still a one-off project,
whether we are starting from scratch or trying to integrate disparate systems.
This is true even though we may use some fancy tools, sit in a modern office
(the “factory”), and share some sophisticated technical infrastructure. From a
modern “manufacturing” point of view, though, we still develop software not
much differently than a group of craftsmen building custom firearms—one at a
time—in a seventeenth-century munitions workshop.

How does this relate to MDA and the more modern vision of a “software
factory”? In spite of the (at least) decade-old hype surrounding “reusable software
components” and “assembling software,” the truth is that nobody has yet been
able to fully deliver on that vision. In practice, you either find vendor-proprietary
sets of “components” or you don’t get real components at all.

In any case, even the most advanced software developers today still spend an
enormous amount of time and money patching together various tools, platforms,
and existing applications to build the “components” they need and then to inte-
grate them into a new solution. Most of them probably do not realize they are
following in the footsteps of gunsmiths who wore out numerous files in making
“standard” parts actually fit. The resulting modified “parts,” of course, are even
less “standard” than the originals.

Does that mean that the idea of a modern “software factory” can’t be achieved?
Not at all. It simply means is that the IT industry hasn’t yet fully defined the notion
of “machine tools” for software. Sure, we have some fancy development tools,
but as yet they are not standardized to the point that they can be easily and reliably

8 INTRODUCTION

configured to produce “interchangeable parts” or “components” that can then
reliably be combined into real solutions based on a set of formal specifications.

That’s where MDA comes in. MDA is an approach that focuses on the standards
and processes necessary to create true components and a reliable product life-
cycle process for software through formal specifications. In terms of achieving
industry-wide interoperability, MDA is still a work in progress. However, as these
case studies amply illustrate MDA can already be used to figure out the best way
for even a single company to architect a component-based strategy and to start
transitioning toward a factory model for its entire software life cycle. Today, that
MDA-based software factory might still have a few bottlenecks and shortcomings
but at least we can identify and focus our efforts on removing them.

To extend the analogy a bit, we can loosely compare Whitney’s achievements
in the 1790s to the invention, some 200 years later, of interface definition
languages (IDLs) in the software industry. That is, Whitney could show standard
interfaces (interchangeable parts or components) and examples of those interfaces
(prototypes). He could show how you could in theory make a system (a rifle) if
you assembled those parts.

What he could not do with this equivalent of an IDL was reliably manufacture
the components/parts that could support those interfaces. The inability to make
those parts to the required tolerances in turn meant that there was no way to
manage the “rifle life cycle” other than by taking a file to a lot of not-quite-
interchangeable parts.

So, an IDL-style approach is necessary—but not sufficient—to support the factory
model for software. The MDA standards, in contrast, provide a much more robust
framework that will ultimately let us specify both the structure of a component
and all of the associated semantics related to the way a component must function
throughout its life cycle—a complete functional specification, if you will. The
precise semantics of an MDA model correspond to the precise tolerances in a
physical model because each determines whether the parts actually do what you
want them to do—as opposed to simply appearing to fit together.

So, like the proprietary software vendors of today, Eli Whitney was able to
show what could be done if you could make parts to certain specifications. He
successfully demonstrated being able to shoot the gun assembled from (prototype)
parts, replace a part, and then shoot again. At the time, it was an amazing feat, but
there were too many missing standards and tooling technologies for the vision to
be realized completely.

No matter how hard he tried, Whitney just could not build a factory—and
he could not describe how anyone else could build a factory either. He could
not describe a reliable process by which close-tolerance parts could be created,
and he could not tell you how to build a machine that could reliably support
the execution of such a process. More importantly, he did not yet even have a
language with which to describe any of this.

MDA focuses on the
environment-the standards
and processes-that enable
the creation of software
components

New capabilities enable
the creation of formerly
unimaginable things, and
we do not think that MDA
is an exception to this rule

MDA, although very
general today, will branch
into industry-specific
specialties over time

| |
1 1
/ ' Introduction ' 9
1 1
1 1

It took another 60 years to get to the point of a standardized manufacturing
model, and then about another 70 years to perfect the end-to-end technology
needed to support Whitney’s big idea across a wide range of industries. By the
1920s, innovators such as Henry Ford had worked out enough of the technical
and logistical kinks to support the production of automobiles—a far more complex
process than anything Whitney was thinking about in 1790. But once that powerful
blend of technology and logistics was generally understood, it ultimately enabled
not only the mass production of rifles but of infinitely more complicated and
sophisticated mechanisms. This is to be expected. New capabilities typically enable
the creation of formerly unimaginable things.

We believe that MDA now provides the foundations for achieving all of these
things in support of a true software factory. It has taken 15 years to get from IDL
to MDA, so—even giving our industry credit for operating in “Internet time”—we
are certainly still less than halfway to our ultimate goal of the universal software
factory.

That is, we are still at an early stage in developing and applying MDA tech-
nology, and we should not be shocked that we don’t yet have highly compo-
nentized interchangeable system modules available off the shelf for every kind of
application. Fortunately, with the emergence of MDA we are finally at the point
where we have a common language for defining true software components and
for adequately describing the tools and processes necessary to create and assemble
such components.

But look at what happened to the notion of the physical “factory” after it
reached a similar point! Today there are many different types of factories: contin-
uous process flow, factories that assemble parts from other factories, “lights-out”
factories with little or no human presence, and so on. Visionaries are talking about
factories that maintain themselves, and even factories that produce factories. With
nano-manufacturing, the concept is being brought down to the molecular and
even biological level. So, the general concept of the “factory” has grown along
with our overall capabilities, and has been adapted to the specific needs of various
industries.

It seems reasonable to expect the same sort of thing to happen to MDA tech-
nologies over time. As these case studies show, there are already many flavors of
MDA in the real world today, including MDA for real-time systems, for embedded
systems, for systems integration, and so on. We see no reason why this number
shouldn’t grow. Today, the general concept of MDA is still just being introduced
to the software industry, along with some general MDA tools. But each industry
always finds its own way of applying such things, just as industries applied the
notion of a factory in different ways.

This “branching” of MDA was actually anticipated by the OMG, which assumed
that many special interest groups (SIGs) and task forces (TFs) would emerge,
each with its own flavor of MDA. As of this writing, there are already nine

10 INTRODUCTION

such MDA SIGs and TFs formally operating within the OMG: Business Enterprise
Integration; Consultation, Command, Control, Communications, and Intelligence
(C4I); Finance; Healthcare; Life Science Research; Manufacturing Technology
and Industrial Systems (ManTIS); Software-based Communications; Space; and
Transportation.

The case studies in this book are another type of real-life demonstration of this
branching of MDA. They illustrate and inform us about all of the elements that go
into using MDA to guide the building of business solutions in various environ-
ments. Because we are still in the relatively early stages of MDA’s development,
these case studies are perhaps the best way to present the emerging big picture,
including which parts of that picture are not quite yet in focus.

When you read these case studies, you begin to see what people have to think
about when they try to apply MDA to real-life problems. Someday, this will be
second nature. Everyone will be attuned to modeling, to the process of modeling,
and even to modeling the process of modeling, and so on. As the standards mature,
more and more support will be built into the supporting “machine tools.” Today,
people still have to work their way through the overall approach and adapt it to
their specific needs “by hand.” But even so, these case studies show that they can
still gain great advantages and benefits in the process of doing so.

So this is where we are with respect to MDA today. The industry is still in the
early introductory period of MDA adoption. We are at the point where, if you
are willing to fill in some of the blanks yourself, there are some very interesting
proto-tools available and great benefits to be gained by applying them correctly.

Eventually, the early adopters who take this approach will not only be contin-
uously rewarded (that is already happening as we type) but will be moving faster
than their competition in the global race toward a brave new model-driven world.
They are already gaining hard-earned knowledge about what it takes to develop
using an MDA-based approach. So, as the MDA tools and standards continue
to improve these people will be in the best position to rapidly exploit those
improvements as well.

These are exactly the types of things the people in our case studies have told us:
“We realized the important things were people and process,” and “We realized
this would allow us to sell a whole different kind of product to our customers.”
More than anything else, these case studies are examples of organizations that in
going through the process of adopting—and adapting—MDA are coming up with
innovations that not only give them a competitive advantage but help drive the
global MDA revolution.

Here’s one final thought before you proceed to the case studies themselves. In
this early phase of MDA’s own development, its current rapid dissemination must
be credited not only to the OMG, to the emerging class of MDA tool vendors,
and of course to the brave end users but also to the many consultants who are
now introducing their clients to the benefits of a model-driven approach. In each

Modeling will someday be
second nature-to
practitioners and tools

Each case study
showcases not only a
satisfied end user but a
dedicated consulting
organization

11

|
1
/ ' Introduction
1
1

of our case studies, there is not only a generally satisfied end user but also a
dedicated professional services provider helping that end user learn the ropes and
avoid the pitfalls that inevitably come with transitioning to a new approach.

At a higher level, these MDA consultants are playing a key role in making
MDA work in the overall marketplace. Fortunately, very early in MDA’s life cycle
a group of such consultants took the step of banding together to create an OMG-
sponsored program—MDA FastStart—specifically designed to help end users new to
MDA begin their transition to a model-driven approach.

At this writing, the MDA FastStart program has grown to include more than 30
consulting organizations, each of whom the OMG recognizes as a Qualified Service
Provider (QSP). Every one of the consultants involved in our case studies comes
from this group of QSPs. As much as anyone else, their dedication to helping
others learn about and correctly apply MDA is making a major contribution to the
upcoming MDA revolution.

We want to personally thank those consultants, and their end users, for
contributing their very valuable time and attention to this book. As you can
imagine, none of these folks have a lot of free time to spare. Yet, for each case
study they agreed to sit through several hours of interviews over a several-week
period. In addition, each participant agreed to review the resulting transcripts and
provide additional comments and clarifications. We hope you will agree with us
that, judged by the results, it was time well spent.

