
“My perspective is that the bulk of our industry is organized around the demonstra-

ble myth that we know what we want at the start, and how to get it, and therefore

build our process assuming that we will take an optimal, direct path to get there.

Nonsense. The process must reflect that we don’t know and acknowledge that the

sooner we make errors and detect and fix them, the less (not more) the cost.”

Bill Buxton

Phase I describes the planning aspects of prototyping.

Chapter 3: Verify prototype requirements

Chapter 4: Develop task flows and scenarios

Chapter 5: Define prototype components and content

Ch03-P088568.qxd 11/28/06 11:40 AM Page 28

PLAN YOUR PROTOTYPE
By recognizing, adopting, and adhering to a prototyping plan you can understand

and identify the requirements and assumptions of prototypes, develop task flows and
scenarios to set the context, and then decide on the mix of content and fidelity relative
to that context.

Because prototyping is a key design activity for transforming assumptions and
requirements into a software design solution, Phase I begins with validation of those
assumptions and requirements. This verification is an essential step in the prototyping
process and is used to inform the overall prototyping objective through focusing on
specific requirements.

Assumptions and requirements, however, are still not enough to create an effective
prototype. You need more context; that is, knowledge of how the requirements and
assumptions are handled and interpreted in the real world. The two proven methods for
obtaining this context are to first create a task flow and then write a scenario that
fulfills the task flow. If the task flow and accompanying scenario establish how the
prototype will work, content and fidelity of that content determine what will be
prototyped and the appropriate level of detail. A prototype can contain many different
kinds of content, including information, visuals, and navigation structure. Any mix of
content can be shown in a continuum from low fidelity to high fidelity. The higher the
fidelity, the more representational of the intended finished product it will be.

Although we discuss products from Adobe, Apple, and Microsoft we also have had success in using various open
source equivalents, such as OpenOffice products. The placement of commands often changes, but surprisingly
similar results can be achieved. Although we discuss the commercial products because of their ubiquity, we do
not advocate them as the only prototyping tools.

Ch03-P088568.qxd 11/28/06 11:40 AM Page 29

Plan1 Develop Task Flows2
S

TE
P

P
H

A
S

E

Specification2PHASE Choose a Method
ch 75

S
TE

P

Validate the Design
ch 1210

S
TE

P

Deploy the Design
ch 1311

S
TE

P

3 Create the Design
ch 108

S
TE

P

Design

ch 4

P
H

A
S

E

4Results

P
H

A
S

E

Choose a Tool
ch 86

Define Content and Fidelity
ch 53

S
TE

P
S

TE
P

Verify Requirements
ch 31

S
TE

P

Determine Characteristics
ch 64

S
TE

P

Select Design Criteria
ch 97

S
TE

P

Review the Design
ch 119

S
TE

P

The Effective Prototyping Process

CHAPTER

Ch03-P088568.qxd 11/28/06 11:40 AM Page 30

VERIFY PROTOTYPE
ASSUMPTIONS AND
REQUIREMENTS

3
This chapter focuses on transforming prototyping assumptions and require-
ments into a basis for a prototype design. Before you can effectively prototype,
the first important activity is reviewing the balance of assumptions and require-
ments, including business/marketing, functional, technical, and usability ones.
This review will help you determine whether you need more requirements before
proceeding to build a prototype. It is also the point where you and your team
can be clear about the assumptions (if any) being used as a basis for a software
concept. Prototypes allow these assumptions and requirements to be validated,
invalidated, modified, or substituted early in the software process thus helping
you avoid the risk and costs of making major modifications to your design after
discovering that the design concept and usability are faulty during the software
development stage.

Prototyping can track the software’s assumptions and requirements because
of the continuous interplay of testing assumptions against documented require-
ments until all the assumptions are satisfied and requirements are validated.
The nature of prototype iteration makes this interplay necessary. In one proto-
type iteration some requirements are validated while new questions arise to be
addressed in the next iteration. As often as we have seen only one prototype
produced in an entire software project, we have never seen that prototype
provide all the answers. Indeed, the first prototype, as the first visualization of
the software, invariably raises more questions about the requirements than it
resolves. Likewise we have also seen a prototype received poorly, and see whole
scale direction changes when only one or two of the key concepts needed
changing. By charting both requirements and assumptions you give your
next iteration a basis for keeping what is good (what was validated) and
discarding what was bad (what was invalidated).

The remainder of this chapter assumes you have the basic knowledge of
software requirements. It is outside the scope of a book on prototyping to go
into the details of requirements gathering; there are plenty of books on this
subject already. Refer to the sidebar on requirements gathering if you would like

Ch03-P088568.qxd 11/28/06 11:40 AM Page 31

In software creation, requirements arise from a number of different sources, such as businesses,
market places, end users, customers, and technical opportunities. From the perspective of design and
prototyping, requirements can be broken into four main categories: business/marketing, functional,
technical, and usability.

Business/marketing requirements–define the needs of business or the marketplace. They are
generally derived from any combination of the following: market field research, market analysis,
competitive analysis, domain expertise, sales force intelligence, and focus groups. The initial product
vision is often embodied in these requirements. A typical source for business and marketing require-
ments is a standard document, usually called a marketing requirements document (MRD), business
requirements document (BRD), or a product requirements document (PRD).

Functional requirements–define the functionality necessary to support the business or marketing
requirements. Similar to business/marketing requirements, functional requirements are generally derived
from any combination of the following: field research (best in conjunction with user research), market
analysis, competitive analysis, domain expertise, sales force intelligence, and focus groups. Usually,
functional requirements are investigated and defined in parallel with business/marketing requirements.
Functional requirements are also often identified as a result of user research and usability testing.
Because product sales influence these requirements, they often include more functions (a.k.a. features)

a brief review. The sidebar below is only a brief introduction to requirements; if
you are interested in more in-depth coverage of the topic, we suggest Courage
and Baxter [2004], Kuniavsky [2003], Holtzblatt [2005]. If you are also interested
in using personas to help drive requirements or to help drive prototyping defini-
tion, we would recommend the most complete reference for practical use of
personas, Pruitt and Adlin [2006].

PROTOTYPING REQUIREMENTS ARE NOT SOFTWARE
REQUIREMENTS
The basic prototyping strategy advocated in effective prototyping is the practice
of basing your prototype design on a mixture of requirements and assumptions.
You start with some requirement (even if it is only a vision) and prototype for
this requirement based on assumptions. Some assumptions will be validated,
others modified, and some others not evaluated. The results are documented,
leading to firmer requirements for the next round of prototyping. (See sidebar
for an example.) This iterative approach eventually leads to many firm require-
ments and few, if any, assumptions. The rest of this chapter assumes that your
requirements come from some legitimate source in the software-making process,
and in our example we also ask you to believe that when a requirement is
referred to as established, it has been validated through user research, marketing
research, technical investigation, or other legitimate means for establishing
software requirements.

32 | Chapter 3: Verify Prototype Assumptions and Requirements

Ch03-P088568.qxd 11/28/06 11:40 AM Page 32

than those needed to satisfy the business requirements. For example, a business requirement may
require form fill functionality. However, if the software is deployed internationally, it may require
multiple language support in which form filling in the Roman alphabet can be functionally different
from form filling in other languages, such as Asian languages based on ideograms. Functional require-
ments are usually found in a formal document, often called a functional requirements document or
other functional specification document. Functional specifications are typically reflected in a prototype.

Technical requirements–define the technology needed to implement the required functionality.
Functionality can often be compromised by the immaturity, prohibitive costs, or unavailability
of a required technology. Technical requirements are generally derived from any combination
of the following: technology research, technical analysis, competitive analysis, technology
expertise, sales force intelligence, and other similar means. Technical requirements are sometimes
articulated in a formal specification, such as a technical definition document, but they can
also be found in company-specific technology architecture documents or platform-specific
guidelines, such as the Windows User Experience Guidelines or the Macintosh OSX Human
Interface Guidelines.

Usability requirements–define the user experience and usability requirements needed for user
adoption of the software. They are generally derived from any combination of the following: user
research, task analysis, competitive analysis, domain expertise, sales force intelligence, customer
support intelligence, design and prototyping, usability testing, and other related means. Usability
requirements, in conjunction with the other requirements described above, are transformed into
user interface specifications, which are often embodied in high-fidelity interactive prototypes.

When prototyping, not all (or any) of the above requirements may be available or in a form that
is helpful for prototyping. Therefore, it is important to share the prototype with key requirements stake-
holders to ensure complete coverage. For business requirements, it would be best to seek out product
management and marketing as these stakeholders. For functional requirements, a domain specialist or
anyone who has conducted user or market research can provide input. For technical requirements, either
a lead architect or software engineer can provide critical input. Usability requirements can come from
user research, task analysis, prior similar experience, and usability validation of your design. However,
despite coming from individual experts, all these requirements still need to be validated holistically
because software is never merely a sum of its requirements. Requirements may have unwanted side
effects that, before creation of the final product, only a prototype can expose.

TRANSFORMATION OF ASSUMPTIONS TO REQUIREMENTS
To illustrate a typical course for converting assumptions into requirements through
prototyping, we have outlined how requirements are first elicited in the form of
assumptions. These assumptions are then iteratively tested in a prototype. A proto-
type is completed in rounds of iterations until all the high priority assumptions are
validated into requirements. Per available time and resources, this is the process of
validating prototype directions to the extent allowed by a given prototyping method
that enables an iteration to proceed to the next step. The entire process is a repeat-
able series of three steps.

Transformation of Assumptions to Requirements | 33

Ch03-P088568.qxd 11/28/06 11:40 AM Page 33

(see sidebar on prior pages for some potential sources)

To begin these three steps for transforming assumptions into requirements, you
need to have the requirements necessary for proceeding with development of the
prototyping schema.

STEP 1: Gather Requirements

3

S
T

E
P2

S
T

E
P1

S
T

E
P

Gather
• Business/marketing
• Functional
• Technical
• Usability

Inventory
• Requirements
• Assumptions

Prioritize
• Worksheet 3.1

3
S

T
E

P

1

S
T

E
P

S
T

E
P2

Gather

• Business/ marketing
• Functional
• Technical
• Usability Inventory

• Requirements
• Assumptions

Prioritize
• Worksheet 3.1

The prototype should not undertake an entire requirements-gathering process,
which needs to be quite thorough; instead, it is assumed here that the software
requirements-gathering process is occurring in parallel and is incomplete. So the
gathering done here is just the current state of the requirements, as they are known
at this moment. Depending on your stage in the requirements-gathering process,
the list can be short and vague in the beginning to quite long and detailed at the
end. After these requirements are gathered, enter them into Worksheet 3.1, which
will look something like this.

34 | Chapter 3: Verify Prototype Assumptions and Requirements

Ch03-P088568.qxd 11/28/06 11:40 AM Page 34

WORKSHEET 3.1: Requirements

Project Name:
Project Date:
Product Name:
Current Phase: Design
Prototype Name:

Transformation of Assumptions to Requirements | 35

Requirement Name (Examples) Type Priority Validated? Y/N Results Requested Changes

INFORMAL PROCESS TIP
There are formal processes for software product development in almost every software company.
These processes guide you through the development process and help you determine at what stage
(usually extremely early) you can change requirements and when they should be frozen (usually
very early). By taking the inventory of requirements suggested in Step 1, you immediately discover
how far you have progressed in the software development process. Are all the requirements known
and worked out? Have they been validated? If so, you should be in the later stages of the process.

This worksheet lists requirements for time management software. The require-
ments are currently coming from two sources: a MRD and a presentation of a
wireframe sketch to a group of stakeholders.

Ch03-P088568.qxd 11/28/06 11:40 AM Page 35

36 | Chapter 3: Verify Prototype Assumptions and Requirements

If the list remains short and vague, regardless of where the company believes they are in their own
development roadmap, they are still in the early stages of the software creation process. The more
vague and general the requirements, the more they are open to interpretation and completion with
non-validated assumptions. Too often in the software process, design and creation are crammed
into the later stages when there is little time available for prototyping and validation, thus leading
to high-risk software development. As a general rule, the more you base software on assumptions,
the higher the risk. Conversely, the greater degree that software is based on validated assumptions,
the lower the exposure to risk.

STEP 2: Inventorize the Requirements

3
S

T
E

P1

S
T

E
P

2
S

T
E

P

Gather
• Business/marketing
• Functional
• Technical
• Usability

Inventory

• Requirements
• Assumptions

Prioritize
• Worksheet 3.1

Ch03-P088568.qxd 11/28/06 11:40 AM Page 36

Transformation of Assumptions to Requirements | 37

List the state of each requirement. Make note of each requirement’s origin
(preferably linked to the related document). You can usually judge by its
source whether a requirement is validated or just an assertion. If the
requirement is validated, note when it was validated. As contradictory or
complementary requirements arise later, it may become necessary to challenge
old requirements that have fallen back into assumptions. You may, at any point,
reclassify a requirement as an assumption if you believe that it has not been
adequately validated or has been invalidated in light of newly introduced
developments.

The sample worksheet lists a requirement already validated via an MRD
for a time-management application and includes a link to the wireframe and
the meeting minutes of the wireframe presentation. The validation also
uncovered a new assumption: that users may also need to enter project
information. It is listed as a direction because the assumption came from
a wireframe presentation, so it is a little firmer than just a mere assumption:
We know there is a need to enter project information but have no idea yet as to
how. If the analysis reveals that other assumptions are hidden in a requirement,

Requirement Name (Examples) Type Priority Validated? Y/N Results Requested Changes

User must be able to enter time Functional Y 1207minutes.doc Add ability to change
worked by week. 31 DEC 2005 project code for
MRD- Use Case 1.2 previous entries

User wants to optionally enter Usability N
project information

User wants excel interface Usability N

Time summary reports for Business N
managers

Project reports for project Business N
managers

Time entry reports for Business N
employees own data

WORKSHEET 3.1: Requirements [Example]

Project Name: Time Out
Project Date: Dec 2007
Product Name: Time Out Time Management For All
Current Phase: Design
Prototype Name: T55

Ch03-P088568.qxd 11/28/06 11:40 AM Page 37

The resulting worksheet from Step 2 is shown below. The last step in
transforming assumptions into requirements is their prioritization. The priority
refers to the priority for inclusion in the prototype, not priority for implementa-
tion in the software. Given that the first prototype is a storyboard, some
requirements that are very important for the software are not the main
concern of the prototype.

1

S
T

E
P

32
S

T
E

P S
T

E
P

Gather
• Business/marketing
• Functional
• Technical
• Usability

Inventory
• Requirements
• Assumptions

Prioritize

• Worksheet 3.1

they can be fleshed out in this worksheet. For example, the requirement states
time entered by week. This requirement may have additional dimensions:
Maybe time needs to be entered by a configurable time period? Or maybe just
by week or month? The worksheet helps to list explicit new assumptions as well
as the firm requirements. Finally, the worksheet shows an assumption that users
want to use an Excel-like interface because the program they are currently using
has a similar interface.

STEP 3: Prioritize Requirements and Assumptions

38 | Chapter 3: Verify Prototype Assumptions and Requirements

Ch03-P088568.qxd 11/28/06 11:40 AM Page 38

Iteration 1: From Idea to First Visualization | 39

Requirement Name Type Priority Validated? Results Requested Changes
(Examples) Y/N

User must be able Functional High Y 31 DEC 2005 1207minutes.doc Add ability to change
to enter time worked project code for
by week. previous entries
MRD- Use Case 1.2

User wants to Usability High Planned
optionally enter
project information

User wants excel Usability Medium N
interface

Time summary Business High Planned
reports for managers

Project reports for Business Medium N
project managers

Time entry reports Business Medium Planned
for employees
own data

WORKSHEET 3.1: Requirements [Example]

Project Name: Time Out
Project Date: Dec 2007
Product Name: Time Out Time Management For All
Current Phase: Design
Prototype Name: T55

REQUIREMENTS AND THE BIG PICTURE
Figure 3.1 shows how prototyping requirements all fit together holistically in the
software creation process. We demonstrate how assumptions are essential to the
prototyping process by tracing the diagram. Only when all major assumptions are
satisfied should prototyping end.

ITERATION 1: FROM IDEA TO FIRST VISUALIZATION
In the first prototype iteration, the product (or the function or new addition to
the existing product) is just an idea in a product manager’s or business ana-
lyst’s mind. Working interactively with a designer or by sketching the idea out
themselves, some of the assumptions can be visualized. This visualization
provides a vague idea of the business value (i.e., is the idea worth pursuing?).

Ch03-P088568.qxd 11/28/06 11:40 AM Page 39

FIGURE 3.1 Step-by-

step conversion of

assumptions to

validated requirements.

Note: The levels of gray

show how refinement

continues throughout

the process; the darker

the background, the

less (if any) validation

used.

Idea

1

2

3 4

5

6

Assumptions

Functional

Audience

User needs

Design

Technical
Development

Business

Legend

Firm
Vague

Unvalidated

Validated

Assumptions Requirements

Quick Wireframe

Functional

Audience

User needs

Design

Technical
Development

Assumptions Requirements

Software Prototype

Business
Functional

Audience

User needs

Design

Assumptions Requirements

Storyboard

Business
Functional

Audience

User needs
Design

Technical
Development

Assumptions Requirements

Wireframe

Functional

Audience

User needs

Design

Technical
Development

Assumptions Requirements

Paper Prototype

Business
Functional

Audience

User needs

User needs

Design

Technical
Development

Assumptions Requirements

Coded Prototype

Business
Functional

Audience

User needs

Design

Technical

Development
Business

Business

Technical
Development

So even a quickly developed prototype can validate assumptions by providing
visualizations to realize an idea. The visualization itself can communicate the
value of proceeding to the next step in the process: working out the idea even
further and validating its companion requirements. Also, through visualization
some competing assumptions can make an idea less desirable, thereby invali-
dating the business requirement.

The travel and expenses reports example shown in Figure 3.3 seems like a
plausible idea to the stakeholders. Starting as just an idea for travel reporting, the

40 | Chapter 3: Verify Prototype Assumptions and Requirements

Ch03-P088568.qxd 11/28/06 11:40 AM Page 40

Iteration 1: From Idea to First Visualization | 41

Assumptions

Functional

Audience

User needs
Design

Technical
Development

Business

Assumptions Requirements

Quick Wireframe

Functional

Audience

User needs

Design

Technical
Development

Business

FIGURE 3.2 First

iteration from idea to

a quick prototype

transforms business

assumptions to firm

requirements.

FIGURE 3.3 A quick

wireframe for a travel

and expense reporting

software.

visualization provided the product manager with the idea of a new assumption:
adding normal expenses in addition to travel expenses. The visualization of this
new assumption has not uncovered any undesirable effects, so the project
proceeds to the next step: working out the wireframe depicted in Figure 3.3 to
make other assumptions clearer.

Ch03-P088568.qxd 11/28/06 11:40 AM Page 41

The second round of iterations is performed similar to the first prototype iteration.
Assumptions and requirements are prototyped to either validate or invalidate them.
Through this second round, the requirements worksheet becomes more complete
and the direction of the product becomes clearer.

With the creation of the more refined wireframe shown in Figure 3.5, not only is
the business case a little clearer, but the functions needed to support this business
case also become clearer and better reflected in the buttons and navigation visible
in the wireframe.

Assumptions Requirements

Quick Wireframe

Functional

Audience

User needs

Design

Technical
Development

Business

Assumptions Requirements

Wireframe

Functional

Audience

User needs

Design

Technical
Development

Business

FIGURE 3.4 Second

round of iterations

verifies more require-

ments and makes other

assumptions clearer.

ITERATION 2: FROM QUICK WIREFRAME TO WIREFRAME

42 | Chapter 3: Verify Prototype Assumptions and Requirements

Ch03-P088568.qxd 11/28/06 11:40 AM Page 42

Iteration 3: From Wireframe to Storyboard | 43

ITERATION 3: FROM WIREFRAME TO STORYBOARD

Logo

Modify Time Report

Type of page

Home /Services / Solutions / My Dash / Add to my fav / Log out

General Information

General Information
Hours Status & Issues

Period Ending:
Version:

Comments:
Reference:
Last Updated:
By:

Status:
Default Location:
Post State:

Printable View (link) Forcast Time (link) User Defaults (link)

Travel and Expense - Report

PC BU Project

previous week next week Revise Go Reset to Defaults Check for errors

Personal Hours

Totals

Approvals
Routing

Routing Description

Name:
Comment:

Save for later Submit Return to T and E Center (link)

Name (sort) Status (sort) Date (sort)

Hours

Personal Hours

Report Total

Definition of Total (link) Update Totals

Activity Billing Type Mo4

Mo4

Tu5

Tu5

We6

We6

Th7

Th7

Fri8

Fri8

Sat 9

Sat 9

Sun10

Sun10

Totals

Totals

– +

– +

FIGURE 3.5 A wire-

frame showing more

functional assumptions

of the product.

Assumptions Requirements

Storyboard

Business
Functional

Audience

User needs
Design

Technical
Development

Assumptions Requirements

Wireframe

Functional

Audience

User needs

Design

Technical
Development

Business

FIGURE 3.6 End-user

focus in requirements

becomes visible as a

result of a storyboard

prototype.

Ch03-P088568.qxd 11/28/06 11:40 AM Page 43

By using the recommended Worksheet 3.1, we see a definite increase in
end-user–focused requirements when we get to the storyboard phase,
which attempts to tell the story of the software in context. During this phase,
new requirements will surface and other user requirements can be validated.
For example in the storyboard picture shown in Figure 3.7, the end user does
indeed need to track his project budget, validating not just optionally entering
project data in the time report but also the need to have a project time report
for the end user.

FIGURE 3.7 Storyboard

showing validation of

the need to enter

project data for an

archetypal end user.

ITERATION 4: FROM STORYBOARD TO PAPER PROTOTYPE

Assumptions Requirements

Storyboard

Business
Functional

Audience

User needs
Design

Technical
Development

Assumptions Requirements

Paper Prototype

Business
Functional

Audience

User needs

User needs

Design

Technical
Development

FIGURE 3.8 Given the

more visually explicit

and interactive nature

of a paper prototype,

requirements start

being validated in rapid

tempo.

44 | Chapter 3: Verify Prototype Assumptions and Requirements

Ch03-P088568.qxd 11/28/06 11:40 AM Page 44

Iteration 5: From Paper Prototype to Coded Prototype | 45

ITERATION 5: FROM PAPER PROTOTYPE TO CODED
PROTOTYPE

Assumptions Requirements

Paper Prototype

Business
Functional

Audience

User needs

User needs

Design

Technical
Development

Assumptions Requirements

Coded Prototype

Business
Functional

Audience

User needs

Design

Technical

Development

FIGURE 3.9 An

interactive paper

prototype.

FIGURE 3.10 Late

high-fidelity prototypes

come closer to

resembling a software

product as well as the

requirements.

As the prototypes progress and the audience shifts from internal to external
stakeholders, requirements start to be validated quickly, especially with direct
user contact. Designer “requirements” about the audience suddenly become
much clearer, and user needs becomes much more tangible. In the paper proto-
type shown in Figure 3.9, the assumption is that an Excel-like interface failed
miserably in usability testing. It invalidated an assumption of the end-user needs
and replaced it with a new model that fits better but will still need verification
(not pictured).

Ch03-P088568.qxd 11/28/06 11:40 AM Page 45

In the last stages of prototyping, many open design and technical questions can be
answered. The required functionality, the audience, and the business case are
already firm and no longer the source of focus. Now, a high-fidelity prototype is
used to firm up the remaining requirements and design details.

ITERATION 6: FROM CODED PROTOTYPE TO SOFTWARE
REQUIREMENTS
In the last step, specifying the requirements from a late high-fidelity user-facing
prototype (here in the form of a coded prototype) enables us to finally say we have
validated all the software requirements. The worksheet that was the basis for
evaluating the prototype requirements could now almost double for a table of
contents or central reference point for the software requirements. So the journey
from the interplay of assumptions and requirements is now complete; prototyping
has been the primary aid in validating assumptions and transforming them into
requirements. Although, it is important to note that prototyping has been an aid,
not the sole source of requirements validation, such as focus groups, usability test-
ing, market research, competitive analysis, etc.

FIGURE 3.11 Late

prototypes resemble

the real software as

the requirements

become firmer, and

more advanced

prototype development

can take place with

greater confidence.

46 | Chapter 3: Verify Prototype Assumptions and Requirements

Ch03-P088568.qxd 11/28/06 11:40 AM Page 46

Iteration 6: From Coded Prototype to Software Requirements | 47

Assumptions Requirements

Coded Prototype

Business
Functional

Audience

User needs

Design

Technical

Development

Assumptions Requirements

Software Prototype

Business
Functional

Audience

User needs

Design

Technical
Development

FIGURE 3.12 Only at

the end of the

prototyping process

do the assumptions

finally give way to

concrete data to base

the software creation

and development.

FIGURE 3.13 The final

end product for time

entry at the end of the

project.

Ch03-P088568.qxd 11/28/06 11:40 AM Page 47

SUMMARY
We reviewed requirements setting for prototyping as the first step toward collecting
prototype content. We have seen that prototyping requirements try to come as close
as necessary to the actual business, functional, technical and usability require-
ments. However, a prototype also has the flexibility to be based on assumptions.
In fact, prototyping can be used to play with assumptions while being gradually
turned into concrete validated requirements. For this validation, a worksheet
template supports the three-step process:

Following this validation process and using the worksheet template, you can be
assured that your prototype will address exactly the right assumptions and require-
ments your team judges to be important. The worksheet, with the prioritization of
requirements and assumptions, also helps others understand what they should and
should not be looking for when reviewing your prototype.

ARNOSOFT GOES THROUGH THE REQUIREMENTS

“We should do a wireframe!” insisted Art.
“No, we should do a paper prototype, so we can conduct usability testing with it,” argued Ina.
“No, we should do a proof of concept that will help us code the product; this will help my team
and that is what we need in this time crunch situation, full stop,” demanded Dirk Spine.
“I think all Reed wants is some proof of concept. Maybe Ina can do something in Flash for it?”
asked Alfredo.
“Why should we just give Reed what he wants? If we can find some way the prototype can help
the team, we should do that instead,” countered Dirk.
Maybe we can find a win–win situation here. Let’s start with the first step in the effective pro-
totyping process and try to establish the requirements of the prototype as well as any assump-
tions.

The team starts with trying to decide the prototype requirements. They notice immediately
a huge gulf between the requirements they need and the ones they have in hand. All they really
have are the brainstormed business requirements. Because Reed participated in the
brainstorming, the business and functional requirements are considered validated.
Nevertheless, the team decided to use the step-by-step method described above by first
gathering requirements as well as listing any assumptions.

48 | Chapter 3: Verify Prototype Assumptions and Requirements

3

S
T

E
P2

S
T

E
P1

S
T

E
P

Gather
• Requirements

Inventory
• Requirements
• Assumptions

Prioritize
• Worksheet 3.1

Ch03-P088568.qxd 11/28/06 11:40 AM Page 48

References | 49

REFERENCES
Apple Computer. Inside Macintosh: Macintosh Human Interface Guidelines. Boston:
Addison-Wesley, 1996.

Bill Buxton. Software design. Proceedings of the Second International Conference on
Usage-Centered Design, Portsmouth, NH, October 26–29, 2003, pp. 1–15.

Bill Buxton, R. Sniderman. Iteration in the design of the Human-Computer Interface.
Proceedings of the 13th Annual Meeting, Human Factors Association of Canada, 1980,
pp. 72–81.

Catherine Courage, Kathy Baxter. Understanding Your Users: A Practical Guide to User
Requirements Methods, Tools, and Techniques. The Morgan Kaufmann Series in Interactive
Technologies. Amsterdam: Elsevier/Morgan Kaufmann, 2004.

William Cushman, Daniel Rosenberg. Human Factors in Product Design. Amsterdam:
Elsevier, 1991.

Karen Holtzblatt. Rapid Contextual Design. San Francisco: Morgan-Kaufman, 2005.

Mike Kuniavsky. Observing the User Experience. San Francisco: Morgan-Kaufman, 2003.

Scott MacKenzie, R. William Soukoreff. Card, English, and Burr (1978)–25 years later.
Extended Abstracts of the ACM Conference on Human Factors in Computing Systems–CHI
2003. New York: ACM Press, 2003, pp. 760–761.

John Pruitt, Tamara Adlin. The Persona Lifecycle. San Francisco: Morgan-Kaufman, 2006.

Bruce Tognazzini. First principles of interaction design.
http://www.asktog.com/basics/firstPrinciples.html. Accessed June 17, 2005.

Many of the requirements for the ceramic ware site are being extrapolated from the existing
gardening equipment site. In the words of the CEO, Valmar Vista, “think of it as indoor gardening.”

The team also decided to prioritize the business, functional, and technical requirements
because a planned user research project is meant to address many of the usability require-
ments. After a brainstorming meeting the following worksheet was developed. After following
the steps of the requirements process, a storyboard prototype was chosen because it could be
quickly created and “clicked through.” The results of the storyboard exercise are also reflected
in the spreadsheet.

Ch03-P088568.qxd 11/28/06 11:40 AM Page 49

