
33

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

Chapter

 3
Six Forms of Software

 Cost Estimation

Among our clients about 80 percent of large corporations utilize auto-
mated software-estimation tools. About 30 percent utilize two or more
automated estimation tools, sometimes for the same project. About
15 percent employ cost-estimating specialists. In large companies,
manual estimates are used primarily for small projects below 500 func-
tion points in size or for “quick and dirty” estimates where high preci-
sion is not required.

However, for small companies with less than 100 software person-
nel, only about 25 percent utilize automated software-estimation tools.
The primary reason for this is that small companies only build small
software projects, where high-precision estimates are not as important
as for large systems.

Software cost estimates can be created in a number of different fash-
ions. In order of increasing rigor and sophistication, the following six
methods of estimating software costs are used by corporations and gov-
ernment groups that produce software.

■ Manual software-estimating methods

 1. Manual project-level estimates using rules of thumb

 2. Manual phase-level estimates using ratios and percentages

 3. Manual activity-level estimates using work-breakdown structures
■ Automated software-estimating methods

 1. Automated project-level estimates (macro-estimation)

 2. Automated phase-level estimates (macro-estimation)

 3. Automated activity-level or task-level estimates (micro-estimation)

ch03.indd 33 3/20/07 12:12:27 PM

34 Section 1: Introduction to Software Cost Estimation

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

The most accurate forms of software cost estimation are the last ones
in each set: cost estimating at either the activity or the task level. Only
the very granular forms of software cost estimation are usually rigor-
ous enough to support contracts and serious business activities. Let us
consider the pros and cons of each of these six estimating methods.

Overview of Manual Software-Estimating Methods

Manual estimates for software projects using simple rules of thumb con-
stitute the oldest form of software cost estimation, and this method is still
the most widely used, even though it is far from the most accurate.

An example of an estimating rule of thumb would be “Raising the
function point total of an application to the 0.4 power will predict the
schedule of the project in calendar months from requirements until
delivery.” Another and more recent example would be “for a story that
contains five story points, it can be coded in 30 hours of ideal time.”

Examples of rules of thumb using the lines-of-code-metrics might be
“JAVA applications average 500 non-commentary code statements per
staff month” or “JAVA applications cost an average of $10 per line of
code to develop.”

About the only virtue of this simplistic kind of estimation is that it is
easy to do. However, simplistic estimates using rules of thumb should not
serve as the basis of contracts or formal budgets for software projects.

Manual phase-level estimates using ratios and percentages are
another common and long-lived form of software estimation. Usually,
the number of phases will run from five to eight, and will include
such general kinds of software work as: (1) requirements gathering,
(2) analysis and design, (3) coding, (4) testing, and (5) installation and
training.

Manual phase-level estimates usually start with an overall proj-
ect-level estimate and then assign ratios and percentages to the vari-
ous phases. For example, suppose you were building an application of
100 function points, or roughly 10,000 COBOL source code statements
in size. Using the rules of thumb from the previous example, you might
assume that if this project will average 500 source code statements per
month, then the total effort will take 20 months.

Applying typical percentages for the five phases previously shown,
you might next assume that requirements would comprise 10 percent
of the effort, analysis and design 20 percent, coding 30 percent, testing
35 percent, and installation and training 5 percent.

Converting these percentages into actual effort, you would arrive at
an estimate for the project that showed the following:

ch03.indd 34 3/20/07 12:12:27 PM

Chapter 3: Six Forms of Software Cost Estimation 35

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

Requirements 2 staff months
Analysis and design 4 staff months
Coding 6 staff months
Testing 7 staff months
Installation 1 staff month
TOTAL 20 staff months

The problems with simple phase-level estimates using ratios and
percentages are threefold:

■ The real-life percentages vary widely for every activity.
■ Many kinds of software work span multiple phases or run the entire

length of the project.
■ Activities that are not phases may accidentally be omitted from the

estimate.

As an example of the first problem, for small projects of less than 1000
lines of code or 10 function points, coding can total about 60 percent of
the total effort. However, for large systems in excess of 1 million lines
of code or 10,000 function points, coding is often less than 15 percent
of the total effort. You cannot use a fixed percentage across all sizes of
software projects.

As an example of the second problem, the phase-level estimating
methodology is also weak for activities that span multiple phases or
run continuously. For example, preparation of user manuals often starts
during the coding phase and is completed during the testing phase.
Project management starts early, at the beginning of the requirements
phase, and runs throughout the entire development cycle.

As an example of the third problem, neither quality assurance nor
technical writing nor integration are usually identified as phases. But
the total amount of effort devoted to these three kinds of work can
sometimes top 25 percent of the total effort for software projects. There
is a common tendency to ignore or to underestimate activities that are
not phases, and this explains why most manual estimates tend toward
excessive optimism for both costs and schedules.

The most that can be said about manual phase-level estimates is that
they are slightly more useful than overall project estimates and are
just about as easy to prepare. However, they are far from sufficient for
contracts, budgets, or serious business purposes.

The third form of manual estimation, which is to estimate each activ-
ity or task using a formal work-breakdown structure, is far and away
the most accurate of the manual methods.

ch03.indd 35 3/20/07 12:12:27 PM

36 Section 1: Introduction to Software Cost Estimation

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

This rigorous estimating approach originated in the 1960s for large
military software projects and has proven to be a powerful and effective
method that supports other forms of project management, such as criti-
cal path analysis. (Indeed, the best commercial estimating tools operate
by automating software estimates to the level of activities and tasks
derived from a work-breakdown structure.)

The downside of manual estimating via a detailed work-breakdown
structure of perhaps 50 activities, or 250 or so tasks, is that it is very
time consuming to create the estimate initially, and it is even more dif-
ficult to make modifications when the requirements change or the scope
of the project needs to be adjusted.

Overview of Automated Software-Estimating Methods

The first two forms of automated estimating methods are very similar
to the equivalent manual forms of estimation, only faster and easier to
use. The forms of automated estimation that start with general equa-
tions for the staffing, effort, and schedule requirements of a complete
software project are termed macro-estimation.

These macro-estimation tools usually support two levels of granular-
ity: (1) estimates to the level of complete projects, and (2) estimates to
the level of phases, using built-in assumptions for the ratios and per-
centages assigned to each phase.

Although these macro-estimation tools replicate the features of manual
estimates, many of them provide some valuable extra features that go
beyond the capabilities of manual methods.

Recall that automated software-estimation tools are built on a knowl-
edge base of hundreds, or even thousands, of software projects. This
knowledge base allows the automated estimation tools to make adjust-
ments to the basic estimating equations in response to the major factors
that affect software project outcomes, such as the following:

■ Adjustments for levels of staff experience
■ Adjustments for software development processes
■ Adjustments for specific programming languages used
■ Adjustments for the size of the software application
■ Adjustments for work habits and overtime

The downside of macro-estimation tools is that they do not usually
produce estimates that are granular enough to support all of the impor-
tant software-development activities. For example, many specialized
activities tend to be omitted from macro-estimation tools, such as the

ch03.indd 36 3/20/07 12:12:27 PM

Chapter 3: Six Forms of Software Cost Estimation 37

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

production of user manuals, the effort by quality-assurance personnel,
the effort by database administrators, and sometimes even the effort
of project managers.

The automated estimating tools that are built upon a detailed work-
breakdown structure are termed micro-estimating tools. The method of
operation of micro-estimation is the reverse of that of macro-estimation.

The macro-estimation tools begin with general equations for complete
projects, and then use ratios and percentages to assign resources and
time to specific phases.

The micro-estimation tools work in the opposite direction. They first
create a detailed work-breakdown structure for the project being esti-
mated, and then estimate each activity separately. When all of the activ-
ity-level or task-level estimates are complete, the estimating tool then
sums the partial results to reach an overall estimate for staffing, effort,
schedule, and cost requirements. The advantages of activity-based
micro-estimation are the following:

■ The granularity of the data makes the estimates suitable for contracts
and budgets.

■ Errors, if any, tend to be local within an activity, rather than global.
■ New or unusual activities can be added as the need arises.
■ Activities not performed for specific projects can be backed out.
■ The impact of specialists, such as technical writers, can be seen.
■ Validation of the estimate is straightforward, because nothing is

hidden.
■ Micro-estimation is best suited for Agile projects.

A critical aspect of software estimation is the chart of accounts used,
or the set of activities for which resource and cost data are estimated.
The topic of selecting the activities to be included in software project
estimates is a difficult issue and cannot be taken lightly. There are four
main contenders:

■ Project-level measurements
■ Phase-level measurements
■ Activity-level measurements
■ Task-level measurements

Before illustrating these four concepts, it is well to begin by defin-
ing what each one means in a software context, with some common
examples.

ch03.indd 37 3/20/07 12:12:27 PM

38 Section 1: Introduction to Software Cost Estimation

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

A project is defined as the implementation of software that satisfies a
cohesive set of business and technical requirements. Under this defini-
tion, a project can be either a standalone program, such as an account-
ing application or a compiler, or a component of a large software system,
such as the supervisor component of an operating system. The manager
responsible for developing the application, or one of the components of
larger applications, is termed the project manager.

Software projects can be of any size, but those where software cost-
estimating and project management tools are utilized are most com-
monly those of perhaps 1000 function points, or 100,000 source code
statements, and larger. Looking at the project situation from another
view, in a cost-estimating and project management context, formal proj-
ect estimates and formal project plans are usually required for projects
that will require more than five staff members and will run for more
than about six calendar months.

A phase is a chronological time period during which much of the
effort of the project team is devoted to completing a major milestone or
constructing a key deliverable item. There is no exact number of phases,
and their time intervals vary. However, the phase concept for software
projects implies a chronological sequence starting with requirements
and ending with installation or deployment.

An example of a typical phase structure for a software project might
include the following:

1. The requirements phase

2. The risk analysis phase

3. The design and specification phase

4. The coding phase

5. The integration and testing phase

6. The installation phase

7. The maintenance phase

Of course, some kinds of work, such as project management, quality
assurance, and the production of user documents, span multiple phases.
Within a phase, multiple kinds of activities might be performed. For
example, the testing phase might have as few as one kind of testing or
as many as a dozen discrete forms of testing.

The phase structure is only a rough approximation that shows gen-
eral information. Phases are not sufficient or precise enough for cost
estimates that will be used in contracts or will have serious business
implications.

ch03.indd 38 3/20/07 12:12:28 PM

Chapter 3: Six Forms of Software Cost Estimation 39

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

An activity is defined as the sum of the effort needed to complete a
key milestone or a key deliverable item. For example, one key activity
is gathering user requirements. Other activities for software projects
would be completion of external design, completion of design reviews on
the external design, completion of internal or logical design, completion
of design reviews on the logical design, completion of database design,
completion of a test plan, completion of a user’s guide, and almost any
number of others.

There are no limits on the activities utilized for software projects,
but from about 15 to 50 key deliverables constitute a normal range for
software cost-estimating purposes. Activities differ from phases in that
they do not assume a chronological sequence; also, multiple activities
are found within any given phase. For example, during a typical soft-
ware project’s testing phase it would be common to find the following
six discrete testing activities:

1. New function testing

2. Regression testing

3. Component testing

4. Integration testing

5. Stress testing

6. System testing

A task is defined as the set of steps or the kinds of work necessary
to complete a given activity. Using the activity of unit testing as an
example, four tasks normally included in that activity might comprise
the following:

1. Test case construction

2. Test case running or execution

3. Defect repairs for any problems found

4. Repair validation and retesting

There is no fixed ratio of the number of tasks that constitute activi-
ties, but from 4 to perhaps 12 tasks for each activity are very common
patterns.

Of these four levels of granularity, only activity and task estimates will
allow estimates with a precision of better than 10 percent in repeated
trials. Further, neither project-level nor phase-level estimates will be
useful in modeling process improvement strategies, or in carrying out
“what if” alternative analysis to discover the impact of various tools,

ch03.indd 39 3/20/07 12:12:28 PM

40 Section 1: Introduction to Software Cost Estimation

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

methods, and approaches. This kind of modeling of alternative scenarios
is a key feature of automated software-estimating approaches, and a very
valuable tool for software project managers.

Estimating only at the level of full projects or at phase levels corre-
lates strongly with cost and schedule overruns, and even with litigation
for breach of contract.

This is not to say that phase-level or even project-level estimates have
no value. These concise estimating modes are very often used for early
sizing and estimating long before enough solid information is available
to tune or adjust a full activity-level estimate.

However, for projects that may involve large teams of people, have
expenses of more than $1 million, or have any kind of legal liabilities
associated with missed schedules, cost overruns, or poor quality, then a
much more rigorous kind of estimating and planning will be necessary.

A fundamental problem with the coarse estimating approaches at the
project and phase levels is that there is no way of being sure what activi-
ties are present and what activities (such as user manual preparation)
might have been accidentally left out.

Also, data estimated to the levels of activities and tasks can easily
be rolled up to provide phase-level and project-level views. The reverse
is not true: You cannot explode project-level data or phase-level data
down to the lower levels with acceptable accuracy and precision. If you
start an estimate with data that is too coarse, you will not be able to do
very much with it.

Table 3.1 gives an illustration that can clarify the differences. Assume
you are thinking of estimating a project such as the construction of a
small switching system. Shown are the activities that might be included
at the levels of the project, phases, and activities for the chart of accounts
used to build the final cost estimate.

Even more granular than activity-based cost estimates would be the
next level, or task-based cost estimates. Each activity in Table 3.1 can
be expanded down a level (or even more). For example, activity 16 in
Table 3.1 is identified as unit testing. Expanding the activity of unit
testing down to the task level might show six major tasks:

Activity Tasks

Unit testing 1. Test case creation
2. Test case validation
3. Test case execution
4. Defect analysis
5. Defect repairs
6. Repair validation

Assuming that each of the 25 activities in Table 3.1 could be expanded
to a similar degree, then the total number of tasks would be 150. This level

ch03.indd 40 3/20/07 12:12:28 PM

Chapter 3: Six Forms of Software Cost Estimation 41

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

of granularity would lead to maximum precision for a software project
estimate, but it is far too complex for manual estimating approaches, at
least for ease and convenience of use.

Although some large software systems consisting of multiple com-
ponents may actually reach the level of more than 3000 tasks, this
is a misleading situation. In reality, most large software systems are
really comprised of somewhere between half a dozen and 50 discrete
components that are built more or less in parallel and are constructed
using very similar sets of activities. The absolute number of tasks, once
duplications are removed, seldom exceeds 100, even for enormous sys-
tems that may top 10 million source code statements or 100,000 func-
tion points.

Only in situations where hybrid projects are being constructed so that
hardware, software, microcode, and purchased parts are being simulta-
neously planned and estimated will the number of activities and tasks
top 1000, and these hybrid projects are outside the scope of software
cost-estimating tools. Indeed, really massive and complex hybrid proj-
ects will stress any kind of management tool.

Project level Phase level Activity level

Project 1. Requirements 1. Requirements
2. Analysis 2. Prototyping
3. Design 3. Architecture
4. Coding 4. Planning
5. Testing 5. Initial design
6. Installation 6. Detail design

7. Design review
8. Coding
9. Reused code acquisition

10. Package acquisition
11. Code inspection
12. Independent verification and validation
13. Configuration control
14. Integration
15. User documentation
16. Unit testing
17. Function testing
18. Integration testing
19. System testing
20. Field testing
21. Acceptance testing
22. Independent testing
23. Quality assurance
24. Installation
25. Management

TABLE 3.1 Project-, Phase-, and Activity-Level Estimating Charts of Accounts

ch03.indd 41 3/20/07 12:12:28 PM

42 Section 1: Introduction to Software Cost Estimation

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

For day-to-day software estimation, somewhere between 10 and 30
activities and perhaps 30 to 150 tasks will accommodate almost any
software application in the modern world and will allow estimates with
sufficient precision for use in contracts and business documents.

Estimating to the activity level is the first level suitable for contracts,
budgets, outsourcing agreements, and other serious business purposes.
Indeed, the use of simplistic project or phase-level estimates for soft-
ware contracts is very hazardous and may well lead to some kind of
litigation for breach of contract.

Estimating at the activity level does not imply that every project
performs every activity. For example, small MIS projects and client/
server applications normally perform only 10 or so of the 25 activities
that are shown previously. Systems software such as operating sys-
tems and large switching systems will typically perform about 20 of the
25 activities. Only large military and defense systems will routinely
perform all 25.

However, it is better to start with a full chart of accounts and elimi-
nate activities that will not be used. That way you will be sure that
significant cost drivers, such as user documentation, are not left out
accidentally because they are not part of just one phase.

Table 3.2 illustrates some of the activity patterns associated with six
general kinds of software projects:

■ Web-based applications
■ Management information systems (MIS)
■ Contract or outsourced projects
■ Systems software projects
■ Commercial software projects
■ Military software projects

As can be seen from Table 3.2, activity-based costing makes visible
some important differences in software-development practices. This
level of granularity is highly advantageous in software contracts and is
also very useful for preparing detailed schedules that are not likely to be
exceeded for such trivial reasons as accidentally omitting an activity.

Now that the topic of activity-based estimating has been discussed,
it is of interest to illustrate some of the typical outputs that are avail-
able from commercial software-estimating tools. Table 3.3 illustrates a
hypothetical 1000–function point systems software project written in
the C programming language.

The granularity of the estimate is set at the activity level, and the
project is assumed to have started on January 6, 1997. In this example,

ch03.indd 42 3/20/07 12:12:28 PM

Chapter 3: Six Forms of Software Cost Estimation 43

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

the average burdened salary level for all project personnel is set at
$5000 per month.

Although most of the outputs from this illustrative example are
straightforward, several aspects might benefit from a discussion. First,
note that 20 out of the 25 activities are shown, which is not uncommon
for systems software in this size range.

Activities
performed

Web-based

MIS

Outsource

Commercial

Systems

Military

01 Requirements X X X X X
02 Prototyping X X X X X X
03 Architecture X X X X X
04 Project plans X X X X X
05 Initial design X X X X X
06 Detail design X X X X X
07 Design reviews X X X X
08 Coding X X X X X X
09 Reuse

acquisition
X X X X X

10 Package
purchase

X X X X

11 Code inspections X X X
12 Independent

verification and
validation

X

13 Configuration
management

X X X X X

14 Formal
integration

X X X X X

15 Documentation X X X X X X
16 Unit testing X X X X X X
17 Function testing X X X X X
18 Integration

testing
X X X X X

19 System testing X X X X X
20 Field testing X X X
21 Acceptability

testing
X X X X

22 Independent
testing

X

23 Quality
assurance

X X X X

24 Installation and
training

X X X X

25 Project
management

X X X X X

Activities 5 16 20 21 22 25

TABLE 3.2 Typical Activity Patterns for Six Software Domains

ch03.indd 43 3/20/07 12:12:29 PM

44 Section 1: Introduction to Software Cost Estimation

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

Second, note that the overlapped schedule and the waterfall sched-
ule are quite different. The waterfall schedule of roughly 120 calendar
months is simply the arithmetic sum of the schedules of the various
activities used. This schedule would probably never occur in real life,
because software projects always start activities before the previous
activities are completed. As a simple example, design usually starts
when the requirements are only about 75 percent complete. Coding usu-
ally starts when the design is less than 50 percent complete, and so on.

The overlapped schedule of just over 18 months reflects a much more
common scenario, and assumes that nothing is really finished when the
next activity begins.

The third aspect of this example that merits discussion is the fact
that unpaid overtime amounts to almost 42 staff months, which is about
14 percent of the total effort devoted to the project. This much unpaid
overtime is a sign of three important factors:

■ The software personnel are exempt, and don’t receive overtime
payments.

■ Schedule pressure is probably intense for so much unpaid overtime
to accrue.

■ There are major differences between real and apparent productivity
rates.

If the unpaid overtime is left out (which is a common practice), then
the apparent productivity rate for this project is 3.78 function points per
staff month, or 473 source code statements per staff month.

If the unpaid overtime is included, then the real productivity rate for
this project is 3.27 function points per staff month, or 409 source code
statements per staff month. It can easily be seen that the omission or
inclusion of unpaid overtime can exert a major influence on overall
productivity rates.

Although coding is the most expensive single activity for this project,
and costs almost $322,200 out of the total cost of just over $1,320,000,
that is still only a little over 24 percent of the total cost for the project.

By contrast, the nine activities associated with defect removal (qual-
ity assurance, reviews, inspections, and testing) total to about $383,000
or roughly 29 percent of the overall development cost.

The activities associated with producing paper documents (plans,
requirements, design, and user manuals) total to more than $394,000
or about 30 percent of the development cost.

Without the granularity of going down at least to the level of activity-
based costs, the heavy proportion of non-coding costs might very well

ch03.indd 44 3/20/07 12:12:29 PM

Chapter 3: Six Forms of Software Cost Estimation 45

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

be underestimated, and it would be difficult to ascertain if these costs
were even present in the estimate. With activity-based costs, at least
errors tend to be visible and, hence, can be corrected.

The overlap in project schedules is difficult to see from just a list of
start and stop dates. This is why calendar intervals are usually shown
visually in the form of Gantt charts, critical path networks, or PERT
charts.

Figure 3.1 illustrates a Gantt chart that would accompany an activ-
ity-based cost estimate such as the one shown in Table 3.3. The provi-
sion of graphs and charts is a standard feature of a number of software
cost-estimating tools, because graphical outputs make the visualization
of key information easier to comprehend.

Many estimating tools allow users to switch back and forth between
numerical and graphical output, to print out either or both kinds, and in
some cases, to actually make adjustments to the estimate by manipulat-
ing the graphs themselves.

Analyzing the Gantt chart, it is easy to see why the waterfall schedule
and the overlapped schedule differ by a ratio of almost 8 to 1. The sum
of the schedules for the individual software activities is never equal to
the elapsed time, because most activities are performed in parallel and
overlap both their predecessor and their successor activities.

Incidentally, the kinds of Gantt chart information shown in both
Table 3.3 and Fig. 3.1 are standard output from such software-estimat-
ing tools as CHECKPOINT, KnowledgePlan, SLIM, and a number of
others.

However, if schedule information were needed down to the level of
tasks, or even below that to the level of individual employees, then
the data would usually be exported from a cost-estimating tool and
imported into a project-planning tool, such as Microsoft Project.

The kinds of information shown in Table 3.3 and Figure 3.1 are only a
few of the kinds of data that modern software cost-estimating tools can
provide. Many of the other capabilities will be illustrated later in this
book, as will some of the many other kinds of reports and analyses.

For example, software cost-estimating output reports also include
quality and reliability estimates, maintenance and enhancement
estimates, analyses of risks, and sometimes even evaluations of the
strengths and weaknesses of the methods and tools being applied to the
software project being estimated.

Strength and weakness analysis is also a useful capability for other
purposes, such as moving up the Software Engineering Institute (SEI)
capability maturity model. Since modern software cost-estimation tools,
many of which include measurement capabilities, can include as many
as a hundred or more influential factors, their ability to focus on topics

ch03.indd 45 3/20/07 12:12:29 PM

46 Section 1: Introduction to Software Cost Estimation

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

F
ig

u
re

 3
.1

S

am
pl

e
G

an
tt

 c
h

ar
t

ou
tp

u
t

fr
om

 a
 s

of
tw

ar
e

co
st

-e
st

im
at

in
g

to
ol

.

ch03.indd 46 3/20/07 12:12:30 PM

Chapter 3: Six Forms of Software Cost Estimation 47

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

where the project is either better or worse than industry norms is a
great asset for process-improvement work.

In spite of the advantages derived from using software cost-estima-
tion tools, surveys by the author at software project management and
metrics conferences indicate that the most accurate forms of software
cost estimation are not the most widely used.

The frequency of use among a sample of approximately 500 project
managers interviewed during 2004 and 2005 is as shown in Table 3.4.

Activity

Start
date

End
date

Schedule,
months

Effort,
months

Staffing

Cost, $

Planning 1/6/97 6/29/98 17.71 13.54 0.76 67,700
Management 1/6/97 8/15/98 17.40 19.45 1.12 97,250
Requirements 2/14/97 4/4/97 1.61 6.86 4.26 34,300
Prototyping 2/27/97 3/30/97 1.02 2.39 2.34 11,950
Configuration
 management

3/15/97 7/20/98 16.50 8.50 0.52 42,500

Functional design 3/6/97 5/12/97 2.20 15.72 7.15 78,600
Design reviews 1 3/24/97 5/12/97 1.61 3.92 2.43 19,600
Detail design 4/29/97 8/7/97 2.27 16.07 7.08 80,350
Design reviews 2 6/9/97 7/7/97 0.92 4.20 4.57 21,000
Quality assurance 4/3/97 7/28/98 15.80 5.50 0.35 27,500
Coding 5/15/97 4/15/98 9.01 64.44 7.15 322,200
Reuse acquisition 7/1/97 7/13/97 0.39 0.29 0.74 1,450
Code inspections 11/1/97 3/25/98 3.37 11.60 3.44 58,000
Unit test 11/13/97 4/8/98 4.89 5.19 1.06 25,950
Function test 1/30/98 5/5/98 5.01 16.08 3.21 80,400
System test 2/13/98 4/25/98 4.07 20.57 5.05 102,850
Field test 4/20/98 6/1/98 1.45 4.28 2.95 21,400
User documents 11/15/97 5/25/97 6.20 26.70 4.31 133,500
Document reviews 2/1/98 5/5/98 5.65 5.27 0.93 26,350
Installation 4/15/98 7/20/98 3.10 13.43 4.33 67,150
Average staff level 14.47
Overlapped
 schedule

18.24

Waterfall schedule 120.18
Paid effort and
 costs

264.00 1,320,000

Unpaid overtime 41.64
Total effort 305.64
Cost per function
 point

1,320.00

Cost per SLOC 10.56

TABLE 3.3 Example of Activity-Based Software Cost Estimating
Project type: Systems software of 1000 function points (125,000 C statements)
Project start: January 6, 1997
First delivery: July 15, 1998

ch03.indd 47 3/20/07 12:12:30 PM

48 Section 1: Introduction to Software Cost Estimation

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

The fact that manual estimating methods, which are known to be
inaccurate, are still rather widely utilized is one of the more troubling
problems of the software project management domain.

Comparison of Manual and Automated
Estimates for Large Software Projects

A comparison by the author of 50 manual estimates with 50 automated
estimates for projects in the 5000–function point range showed interest-
ing results. The manual estimates were created by project managers
who used calculators and spreadsheets. The automated estimates were
also created by project managers or their staff estimating assistants
using several different commercial estimating tools. The comparisons
were made between the original estimates submitted to clients and
corporate executives, and the final accrued results when the applica-
tions were deployed.

Only four of the manual estimates were within 10 percent of actual
results. Some 17 estimates were optimistic by between 10 percent
and 30 percent. A dismaying 29 projects were optimistic by more than
30 percent. That is to say, manual estimates yielded lower costs and
shorter schedules than actually occurred, sometimes by significant
amounts. (Of course several revised estimates were created along the
way. But the comparison was between the initial estimate and the final
results.)

By contrast 22 of the estimates generated by commercial software-
estimating tools were within 10 percent of actual results. Some 24 were
conservative by between 10 percent and 25 percent. Three were con-
servative by more than 25 percent. Only one automated estimate was
optimistic, by about 15 percent.

(One of the problems with performing studies such as this is the fact
that many large projects with inaccurate estimates are cancelled with-
out completion. Thus for projects to be included at all, they had to be
finished. This criterion eliminated many projects that used both manual
and automated estimation.)

Interestingly, the manual estimates and the automated estimates
were fairly close in terms of predicting coding or programming effort.

Estimating methodology Project management usage

Manual software estimating 42%
Automated software estimating 58%
Total 100%

TABLE 3.4 Frequency of Usage of Software Cost-Estimating Methods

ch03.indd 48 3/20/07 12:12:31 PM

Chapter 3: Six Forms of Software Cost Estimation 49

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

But the manual estimates were very optimistic when predicting require-
ments growth, design effort, documentation effort, management effort,
testing effort, and repair and rework effort. The conclusion of the com-
parison was that both manual and automated estimates were equiva-
lent for actual programming, but the automated estimates were better
for predicting noncoding activities.

This is an important issue for estimating large software applications.
For software projects below about 1000 function points in size (equiva-
lent to 125,000 C statements), programming is the major cost driver, so
estimating accuracy for coding is a key element. But for projects above
10,000 function points in size (equivalent to 1,250,000 C statements),
both defect removal and production of paper documents are more expen-
sive than the code itself. Thus accuracy in estimating these topics is a
key factor.

Software cost and schedule estimates should be accurate, of course.
But if they do differ from actual results, it is safer to be slightly con-
servative than it is to be optimistic. One of the major complaints about
software projects is their distressing tendency to overrun costs and
planned schedules. Unfortunately, both clients and top executives tend
to exert considerable pressures on managers and estimating personnel
in the direction of optimistic estimates. Therefore a hidden corollary of
successful estimation is that the estimates must be defensible. The best
defense is a good collection of historical data from similar projects.

References

Barrow, Dean, Susan Nilson, and Dawn Timberlake: Software Estimation Technology Report,
Air Force Software Technology Support Center, Hill Air Force Base, Utah, 1993.

Boehm, Barry: Software Engineering Economics, Prentice-Hall, Englewood Cliffs, N.J.,
1981.

———: Software Cost Estimation with COCOMO II, Prentice-Hall, Englewood Cliffs,
N.J.; 2000.

Brown, Norm (ed.): The Program Manager’s Guide to Software Acquisition Best Practices,
Version 1.0, U.S. Department of Defense, Washington, D.C., July 1995.

Charette, Robert N. Software Engineering Risk Analysis and Management, McGraw-Hill,
New York, 1989.

———: Application Strategies for Risk Analysis, McGraw-Hill, New York, 1990.
Cohn, Mike: Agile Estimating and Planning (Robert C. Martin Series), Prentice-Hall PTR,

Englewood Cliffs, N.J., 2005.
Coombs, Paul: IT Project Estimation: A Practical Guide to the Costing of Software,

Cambridge University Press, Melbourne, Australia, 2003.
DeMarco, Tom: Controlling Software Projects, Yourdon Press, New York, 1982.
———: Deadline, Dorset House Press, New York, 1997.
Department of the Air Force: Guidelines for Successful Acquisition and Management of

Software Intensive Systems; vols. 1 and 2, Software Technology Support Center, Hill
Air Force Base, Utah, 1994.

Dreger, Brian: Function Point Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1989.
Galorath, Daniel D. and Michael W. Evans: Software Sizing, Estimation, and Risk

Management, Auerbach, Philadelphia PA, 2006.

ch03.indd 49 3/20/07 12:12:31 PM

50 Section 1: Introduction to Software Cost Estimation

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

Garmus, David, and David Herron: Measuring the Software Process: A Practical Guide to
Functional Measurement, Prentice-Hall, Englewood Cliffs, N.J., 1995.

———: Function Point Analysis: Measurement Practices for Successful Software Projects,
Addison-Wesely, Boston, Mass., 2001.

Grady, Robert B.: Practical Software Metrics for Project Management and Process
Improvement, Prentice-Hall, Englewood Cliffs, N.J., 1992.

——— and Deborah L. Caswell: Software Metrics: Establishing a Company-Wide Program,
Prentice-Hall, Englewood Cliffs, N.J., 1987.

Gulledge, Thomas R., William P. Hutzler, and Joan S. Lovelace (eds.): Cost Estimating
and Analysis—Balancing Technology with Declining Budgets, Springer-Verlag,
New York, 1992.

Howard, Alan (ed.): Software Metrics and Project Management Tools, Applied Computer
Research (ACR), Phoenix, Ariz., 1997.

IFPUG Counting Practices Manual, Release 4, International Function Point Users Group,
Westerville, Ohio, April 1995.

Jones, Capers: Critical Problems in Software Measurement, Information Systems
Management Group, 1993a.

———: Software Productivity and Quality Today—The Worldwide Perspective, Information
Systems Management Group, 1993b.

———: Assessment and Control of Software Risks, Prentice-Hall, Englewood Cliffs, N.J.,
1994.

———: New Directions in Software Management, Information Systems Management
Group, ISBN 1-56909-009-2, 1994.

———: Patterns of Software System Failure and Success, International Thomson Computer
Press, Boston, 1995.

———: Applied Software Measurement, 2d ed., McGraw-Hill, New York, 1996.
———: The Economics of Object-Oriented Software, Software Productivity Research,

Burlington, Mass., April 1997a.
———: Software Quality—Analysis and Guidelines for Success, International Thomson

Computer Press, Boston, 1997b.
———: The Year 2000 Software Problem—Quantifying the Costs and Assessing the

Consequences, Addison-Wesley, Reading, Mass., 1998.
———: Software Assessments, Benchmarks, and Best Practices, Addison-Wesley, Boston,

Mass, 2000.
Kan, Stephen H.: Metrics and Models in Software Quality Engineering, 2nd edition,

Addison-Wesley, Boston, Mass., 2003.
Kemerer, C. F.: “Reliability of Function Point Measurement—A Field Experiment,”

Communications of the ACM, 36: 85–97 (1993).
Keys, Jessica: Software Engineering Productivity Handbook, McGraw-Hill, New York,

1993.
Laird, Linda M. and Carol M. Brennan: Software Measurement and Estimation: A practi-

cal Approach; John Wiley & Sons, New York, 2006.
Lewis, James P.: Project Planning, Scheduling & Control, McGraw-Hill, New York,

2005.
Marciniak, John J. (ed.): Encyclopedia of Software Engineering, vols. 1 and 2, John Wiley

& Sons, New York, 1994.
McConnell, Steve: Software Estimation: Demystifying the Black Art, Microsoft Press,

Redmond, WA, 2006.
Mertes, Karen R.: Calibration of the CHECKPOINT Model to the Space and Missile

Systems Center (SMC) Software Database (SWDB), Thesis AFIT/GCA/LAS/96S-11, Air
Force Institute of Technology (AFIT), Wright-Patterson AFB, Ohio, September 1996.

Ourada, Gerald, and Daniel V. Ferens: “Software Cost Estimating Models: A Calibration,
Validation, and Comparison,” in Cost Estimating and Analysis: Balancing Technology
and Declining Budgets, Springer-Verlag, New York, 1992, pp. 83–101.

Perry, William E.: Handbook of Diagnosing and Solving Computer Problems, TAB Books,
Blue Ridge Summit, Pa., 1989.

Pressman, Roger: Software Engineering: A Practitioner’s Approach with Bonus Chapter
on Agile Development, McGraw-Hill, New York, 2003.

ch03.indd 50 3/20/07 12:12:31 PM

Chapter 3: Six Forms of Software Cost Estimation 51

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3

Putnam, Lawrence H.: Measures for Excellence—Reliable Software on Time, Within
Budget: Yourdon Press/Prentice-Hall, Englewood Cliffs, N.J., 1992.

———, and Ware Myers: Industrial Strength Software—Effective Management Using
Measurement, IEEE Press, Los Alamitos, Calif., 1997.

Reifer, Donald (ed.): Software Management, 4th ed., IEEE Press, Los Alamitos, Calif.,
1993.

Rethinking the Software Process, CD-ROM, Miller Freeman, Lawrence, Kans., 1996. (This
CD-ROM is a book collection jointly produced by the book publisher, Prentice-Hall,
and the journal publisher, Miller Freeman. It contains the full text and illustrations of
five Prentice-Hall books: Assessment and Control of Software Risks by Capers Jones;
Controlling Software Projects by Tom DeMarco; Function Point Analysis by Brian
Dreger; Measures for Excellence by Larry Putnam and Ware Myers; and Object-Oriented
Software Metrics by Mark Lorenz and Jeff Kidd.)

Rubin, Howard: Software Benchmark Studies for 1997, Howard Rubin Associates, Pound
Ridge, N.Y., 1997.

Roetzheim, William H., and Reyna A. Beasley: Best Practices in Software Cost and
Schedule Estimation, Prentice-Hall PTR, Upper Saddle River, N.J., 1998.

Stukes, Sherry, Jason Deshoretz, Henry Apgar, and Ilona Macias: Air Force Cost
Analysis Agency Software Estimating Model Analysis—Final Report, TR-9545/008-2,
Contract F04701-95-D-0003, Task 008, Management Consulting & Research, Inc.,
Thousand Oaks, Calif., September 1996.

Stutzke, Richard D.: Estimating Software-Intensive Systems: Projects, Products, and
Processes; Addison-Wesley, Boston, Mass, 2005.

Symons, Charles R.: Software Sizing and Estimating—Mk II FPA (Function Point
Analysis), John Wiley & Sons, Chichester, U.K., 1991.

Wellman, Frank: Software Costing: An Objective Approach to Estimating and Controlling
the Cost of Computer Software, Prentice-Hall, Englewood Cliffs, N.J., 1992.

Yourdon, Ed: Death March—The Complete Software Developer’s Guide to Surviving
“Mission Impossible” Projects, Prentice-Hall PTR, Upper Saddle River, N.J., 1997.

Zells, Lois: Managing Software Projects—Selecting and Using PC-Based Project
Management Systems, QED Information Sciences, Wellesley, Mass., 1990.

Zvegintzov, Nicholas: Software Management Technology Reference Guide, Dorset House
Press, New York, 1994.

ch03.indd 51 3/20/07 12:12:31 PM

Professional Engineering 6X9 / Estimating Software Costs / Jones / 48300-4 / Chapter 3
Blind Folio 52

ch03.indd 52 3/20/07 12:12:31 PM

