
2

 17

The Requirements Process

in which we look at a process for gathering
requirements and discuss how you might use it

The requirements process described in this book is the product of our expe-
rience. We developed the Volere Requirements Process and its associated
specification template from the activities and deliverables we have found
effective over years of working on projects and consulting with our clients.
The result of this experience is a requirements-gathering and specification
process whose principles can be applied to almost all kinds of application
types in almost all kinds of development environments. 

We want to stress from the very beginning that while we are presenting a
process, we are using it as a vehicle for finding requirements. That is, we do
not expect you to wave the process around and tell your coworkers that this
is “the way to do it.” We do expect you will find many useful things to do
within the process that will help you to gather requirements more produc-
tively and accurately. We are sure of this fact, because we have personally
seen hundreds of companies adapt the process to their own cultures and
organizations, and we know of thousands more that have done so. 

A requirements process is not just for waterfall development. Our clients
use XP, RUP, and many other acronyms, as well as traditional waterfall, incre-
mental, and all flavors of agile development processes. Over the years they
have agreed with us: If the right product is to be built, then the right require-
ments have to be discovered. But requirements don’t come about by  fortui-
tous accident. To find the correct and complete requirements, you need
some kind of systematic process. 

The Volere Requirements Process Model in Appendix A contains a
detailed model of all of the activities and the connections between them.
The model is very detailed. Rather than getting involved in that kind of

Whether you are 
building custom 
systems, building 
systems by 
assembling 
components, using 
commercial off-the-
shelf software, 
accessing open 
source software, or 
making changes to 
existing software, 
you still need to 
explore, understand, 
capture, and 
communicate the 
requirements.

See Appendix A for the 
complete Volere 
Requirements Process.

ch02.fm  Page 17  Monday, February 13, 2006  10:29 AM



18 ●  The Requirements Process

Design and
Build

Project
Blastoff

Requirements
Specification

Work

Domain
Knowledge

Stakeholders & Management

Reuse Library
Reusable

Requirements

Customer
Needs

Requirement for
Experiement

Product
Use and
Evolution

Risks and
Costs

Reviewed
Specification

Stakeholders

Wants and
Needs

Rejects

Customer

Missing
RequirementsRequirements

Template

Quality
Gateway Strategic

Plan for
Product

Stakeholders

Strategic
Plan for
Product

New Needs

Architecture

Require- 
ments 
Reuse

Protoype 
the 

Require- 
ments

Trawl for 
Require- 
ments

Review the 
Specifi- 
cation

Write the 
Require- 

ment

Major Risks &
Initial Costs

Product

Project

Potential
Requirement

Potential
Requirement

Formalized
Requirement

Accepted
Requirement

detail and complexity right away, let’s stand back and take a simpler view of
the overall process. This simplified view is shown in Figure 2.1.    

This simplified version of the process model will reappear at various places
throughout this book. For the most part, the simplified version is faithful
enough to the complete version in Appendix A. Sometimes, for the sake of
making an explanation simpler or clearer, we will make minor changes to the
model or show only part of it. Please be aware of this and use the detailed
model for any of your important implementation decisions. 

Figure 2.1

This simplified map of 
the Volere Requirements 
Process shows the 
activities and their 
deliverables. We have 
used a stylized data flow 
notation. When you are 
looking at this diagram, 
keep in mind that the 
process is iterative and 
evolutionary. Each 
activity (the bubbles) 
and its deliverables 
(arrows or documents) 
are explained in the text. 

ch02.fm  Page 18  Monday, February 13, 2006  10:45 AM



Agility Guide ●  19

Figure 2.1 shows all of the main activities in the Volere Requirements Proc-
ess, including how they are linked by their deliverables. The deliverables are
shown as moving from one activity to the next. For example, the Trawling for
Requirements activity would probably gather the requirements for one busi-
ness use case at a time. The requirements would be written to demonstrate
that they have been correctly understood and agreed, and then passed to the
Quality Gateway for testing prior to being included in the Requirements Speci-
fication. Any rejects would be sent back to the originator, who probably
would take them back to the trawling activity for clarification and further
explanation. Don’t take this apparent waterfall approach too literally—the
activities usually iterate and overlap before producing their final output. As
we go through this process in detail, we will explain where and how iteration
and incremental delivery can be used. 

Agility Guide

When referring to development processes, agility is normally taken to mean
the absence of a set process that must be followed regardless of the product
being developed. However, it does not mean the absence of all process. Agile
development means selecting the appropriate process, or parts of a process,
that are appropriate for the product and the project. 

Not all projects can be as agile as others. Large numbers of stakeholders,
the need for documentation, scattered development teams, and other factors
will inevitably dictate the degree of agility that can be applied by the project
team. As a consequence, you must determine the degree of agility appropri-
ate to your current project. In Chapter 1, we introduced symbols to represent
your aspirations for agility. These symbols are intended to guide you as you
select the most appropriate way to use the information in this book. 

Rabbit projects are those where circumstances allow for the highest degree
of agility. They are typically, but not necessarily, smaller projects where close
stakeholder participation is possible. Rabbit projects usually include a smaller
number of stakeholders. 

Participants in rabbit projects may think it odd to consider using any kind
of process at all for requirements. However, as you look at the process in this
chapter, think not of a process that delivers a requirements specification, but
rather of a process that delivers a requirement, or at least requirements, one
use case at a time. If you are using eXtreme Programming (most likely with
rabbit projects), the fastest way to learn your customer’s and (importantly)
his organization’s requirements is not at the keyboard but at the whiteboard.
Pay particular attention to the part that prototyping and scenarios play in the
process and to the idea of essence of the system. It is crucial that you under-
stand the difference between a requirement and a solution. 

Rabbit projects are iterative. They gather requirements in small units
(probably one business use case at a time) and then implement the solution

The fastest way to 
learn your 
customer’s and his 
organization’s 
requirements is not 
at the keyboard but 
at the whiteboard.

ch02.fm  Page 19  Tuesday, February 7, 2006  1:51 PM



20 ●  The Requirements Process

piecemeal, using the implementation to get feedback from the stakeholders.
However, we stress that this feedback should not be used to find out what the
stakeholders wanted in the first place. That is the role of requirements, and
it is far more effective and efficient if done using requirements methods.
Read on. 

Horse projects are the “halfway house” of agility. They use as much agility
as possible, but have constraints imposed by the project and the organiza-
tion. Horse projects should use most of the process we are about to describe,
keeping in mind that you could easily use an iterative approach to require-
ments gathering. That is, the requirements for one unit of work—probably
one business use case—are gathered and then the designers start work on
those requirements. This strategy needs the overall architecture to be in place
before it can work. The advantage is that while the requirements analysts are
gathering the requirements for one business use case, the developers are busy
building a solution for the requirements from the previous business use case. 

The sections on trawling, writing, and the Quality Gateway will be of great
interest to horse projects. If these activities are done correctly and iteratively,
your project can achieve a considerable effectiveness without becoming
bogged down in its own process. 

Elephant projects are the least agile, but—like their namesake—are large,
are dependable, and have long memories. In such a case, your aspirations
toward agility may be limited by the organization of the project—for exam-
ple, you may have a large number of scattered stakeholders—or the need to
produce formal requirements documentation such as for pharmaceutical or
aeronautical projects, projects that entail some contractual obligation, or
projects where you are outsourcing some tasks to another organization. 

Most of the elements of the requirements process outlined in this chapter
are used by elephant projects. But always be on the lookout for opportunities
in your project to increase your agility by gathering requirements in an iter-
ative manner. 

Requirements Process in Context

There is no end to the requirements process. When a product, or partial
product, is delivered and your users start using it, evolution kicks in. As peo-
ple use the product, they discover new needs and uses for it, and they then
want it to be extended. This raises new requirements that, in turn, go
through the same requirements process. Just as the product evolves on its
own, so you may choose to make it evolve by building the early versions
with a minimal amount of functionality and later augmenting it by a
planned series of releases. The Volere Requirements Process is designed with
evolution in mind. 

Just as the product 
evolves on its own, 
so you may choose 
to make it evolve by 
building the early 
versions with a 
minimal amount of 
functionality, and 
later augmenting it 
by a planned series 
of releases

ch02.fm  Page 20  Tuesday, February 7, 2006  1:51 PM



The Process ●  21

The people around the periphery of the process play an important part
in it. These people supply information to the process or receive informa-
tion from it. They are some of the stakeholders—the people who have an
interest in the product, but not necessarily a financial one. They partici-
pate in the requirements process by providing requirements and receiving
deliverables from the process. Additionally, some stakeholders do not
show up on Figure 2.1—the consultants and other interested parties who
have knowledge needed to gather the requirements for the product. As we
discuss the requirements process throughout this book, we also discuss the
different stakeholder roles and responsibilities. 

The Process

The requirements process is not applicable just to new products you are
developing from the ground up. Most product development that is done
today is aimed at maintaining or enhancing an existing product or at making
a major overhaul to an existing product or suite of products. A lot of today’s
development involves commercial off-the-shelf (COTS) products, open
source products, or other types of componentware. Whatever your develop-
ment method, understanding the requirements for the final outcome is still
necessary. 

Let’s look briefly at each of the activities. Subsequent chapters cover them
in more detail. The intention of this chapter is to give you a gentle introduc-
tion to the process, its components, its deliverables, and the ways that they
fit together. If you want more detail on any of the activities, feel free to jump
to the relevant chapter before completing this overview. 

As we go through the process, we describe it as if you were working with a
brand-new product—that is, starting from scratch. We take this tack simply
to avoid becoming entangled in the constraints that are part of all mainte-
nance projects. For the latter kind of project, look ahead to Chapter 15,
Whither Requirements?, where we discuss projects that are already under
way and projects where the requirements are changing. 

A Case Study

We shall explain the Volere Requirements Process by talking you through a
project that uses it: The IceBreaker project is to develop a product that pre-
dicts when and where ice will form on roads, and that schedules trucks to
treat the roads with de-icing material. The product will enable road authori-
ties to be more accurate with their predictions, schedule road treatments
more precisely, and thus make the roads safer. The road authorities also antic-
ipate they can reduce the amount of de-icing materials used. 

The requirements 
process is not 
applicable just to 
new products.

‘‘ The likelihood of 

frost or ice forming is 

determined by the energy 

receipt and loss at the road 

surface. This energy flow is 

controlled by a number of 

environmental and 

meteorological factors 

(such as exposure, 

altitude, road 

construction, traffic, cloud 

cover, and wind speed). 

These factors cause 

significant variation in 

road surface temperature 

from time to time and from 

one location to another. 

Winter night-time road 

surface temperatures can 

vary by over 10 °C across 

a road network in a 

county. ’’Source: Vaisala News

ch02.fm  Page 21  Tuesday, February 7, 2006  1:51 PM



22 ●  The Requirements Process

Project Blastoff

Imagine launching a rocket. 10 – 9 – 8 – 7 – 6 – 5 – 4 – 3 – 2 – 1 – blastoff! If
all it needed was the ability to count backward from ten, then even Andorra1

would have its own space program. The truth of the matter is that before we
get to the final ten seconds of a rocket launch, a lot of preparation has taken
place. The rocket has been fueled, the course plotted—in fact, everything
that needs to be done before the rocket can be launched.

The blastoff meeting prepares the project and ensures its feasibility before
launching the detailed requirements effort. The principal stakeholders—the
client, the main users, the lead requirements analyst, technical and business
experts, and other people who are crucial to the success of the project—
gather to come to a consensus on the crucial project issues. For the IceBreaker
project, Saltworks Systems is the developer of the product, and its employees
are aiming for worldwide sales. Northumberland County Highways Depart-
ment has agreed to be the company’s first customer, and it is helping with
the requirements. Naturally, key Northumberland people are present at the
blastoff meeting.

In the blastoff meeting, the principals work together until they have
achieved the blastoff’s objectives. That is, they gather enough facts to ensure
the project has a clearly defined scope and a worthwhile objective, is possible
to achieve, and has commitment from the stakeholders. 

It is usually more convenient to define the scope of the business problem
first. The lead requirements analyst coordinates the group as they come to a
consensus on what the scope of the work is—that is, the business area to be
studied—and how this work relates to the world around it. The meeting par-
ticipants draw a context model on a whiteboard to show the functionality
included in the work, the items they consider to be outside the scope of the
ice forecasting business, and the connections between the work and the out-
side world. This model is illustrated in Figure 2.2. Later, as the requirements
activity proceeds, it will reveal the optimal product to help with this work.

Once they have reached a reasonable agreement on the scope of the busi-
ness area to be studied, the group identifies the stakeholders. The stake-
holders are the people who have an interest in the product, or who have
knowledge pertaining to the product, and thus have requirements. The
group identifies the various people who have some interest in IceBreaker: the
road engineers, the truck depot supervisor, weather forecasting people, road
safety experts, ice treatment consultants, and so on. They do so because if
they don’t identify all of the stakeholders, the requirements analysts won’t
find all of the requirements. The context diagram usually identifies many of
the stakeholders. We look at how this identification occurs in Chapter 3. 

FOOTNOTE 1:
Andorra is a tiny 
principality in the 
Pyrenees mountains 
between France and 
Spain. It became famous 
in the 1960s for having a 
defense budget of $4.50, 
a tale that has become the 
stuff of legend. Today 
Andorra’s defense budget 
is zero.

Blastoff is also 
known as “project 
initiation,” “kickoff,” 
“charter,” “project 
launch,” and many 
other things. We use 
the term “blastoff” 
to describe what we 
are trying to 
achieve—getting the 
project launched 
and flying.

Refer to Chapter 3 for a 
detailed discussion of 
project blastoff.

The project blastoff 
deliverables are the first 
of eight sections of the 
Volere Requirements 
Specification Template  
in Appendix B.

ch02.fm  Page 22  Tuesday, February 7, 2006  1:51 PM



A Case Study ●  23

The blastoff also confirms the goals of the project. The blastoff group
comes to an agreement on the business reason for doing the project, and it
derives a way to measure the advantage the new product will bring. The
group also must agree that the product is worthwhile, and that the organiza-
tion is capable of building and operating it. 

It is sensible project management practice at this stage to produce a pre-
liminary estimate of the costs involved for the requirements part of the
project. This can be done by using the information contained in the model
of the scope of the work. It is also sensible project management to make an
early assessment of the risks that the project is likely to face. Although these
risks may seem like depressing news, it is always better to get an idea of the
downside of the project (its risk and cost) before being swept away by the
euphoria of the benefits that the new product is intended to bring.  

Finally, the group members arrive at a consensus on whether the project
is worthwhile and viable. This is the “go/no go” decision. We know from bit-
ter experience that it is better to cancel a project at an early stage than to have
it stagger on for months or years consuming valuable resources with no
chance of success. The group must carefully consider whether the product is
viable and whether its benefits outweigh its costs. 

Alternatively, if many unknowns remain at this point, the blastoff group
may decide to start the requirements investigation. It can then review the
requirements in a month or so and reassess the value of the project. 

The work

The relevant part of the 
Volere Requirements 
Process model (Appendix 
A) is Project Blastoff 
(Diagram 1). 

It is always better to 
get an idea of the 
downside of the 
project (its risk and 
cost) before being 
swept away by the 
euphoria of the 
benefits that the new 
product is intended 
to bring.

Figure 2.2

The context model is 
used to build a 
consensus among the 
stakeholders as to the 
scope of the work that 
needs to be studied. The 
eventual product is used 
to do part of this work.

READING
DeMarco, Tom, and Tim 
Lister. Waltzing with Bears: 
Managing Risk on Software 
Projects. Dorset House, 
2003.

Yourdon, Ed. Death March 
(second edition). Prentice 
Hall, 2003. 

ch02.fm  Page 23  Tuesday, February 7, 2006  1:51 PM



24 ●  The Requirements Process

Trawling for Requirements

Once the blastoff is completed, the requirements analysts start trawling for
requirements. They learn the work being done by the business area identified
by the blastoff. For convenience and consistency, they partition the work
context diagram into business use cases. Each business use case is the func-
tionality needed by the work to make the correct response to a business
event. A requirements analyst is assigned to each of the business use cases
(the analysts can work almost independently of one another) for further
detailed study. The analysts use techniques such as apprenticing, scenarios,
and use case workshops, among many others, to discover the true nature of
the work. These techniques are described in Chapter 5, Trawling for Require-
ments, and are favored because they involve the stakeholders closely in cap-
turing their requirements. Once they understand the work, the requirements
analysts work with the stakeholders to decide the best product to help with
this work. That is, they determine how much of the work to automate or
change, and what effect those decisions will have on the work. Once they
know the extent of the product, the requirements analysts write its require-
ments. See Figure 2.3.

When they are trawling to discover the requirements, the analytical team
members sit with the hands-on users as they describe the work that they do
and the work that they hope to do. Some of the team members act as appren-
tices to the users: They learn how to do the work and, along the way, develop
ideas about how improve it. The requirements analysts also consult with
other interested stakeholders—usability people, security, operations, and so
on—to discover other requirements for the eventual product. 

Perhaps the hardest part of requirements gathering is discovering the

Refer to Chapter 4 for a 
detailed discussion of 
business events and use 
cases, and an exploration 
of how to use them.

Refer to Chapter 5 for 
details of the trawling 
activity. 

Figure 2.3

The blastoff determines 
the scope of the work to 
be studied. The business 
use cases can be formally 
derived from the scope. 
Each of the business use 
cases is studied by the 
requirements analysts and 
the relevant stakeholders 
to discover the desired 
way of working. When this 
is understood, the 
appropriate product can 
be determined and 
requirements written for it.

Business
Use Cases

1.
2.
3.
4.
5.
6.

Scenario
1.
2.
3.
4.
5.

Requirement

ch02.fm  Page 24  Tuesday, February 7, 2006  1:51 PM



Prototyping the Requirements ●  25

essence of the system. Many stakeholders inevitably talk about their perceived
solution to the problem. The essence, by contrast, is the underlying business
reason for having the product. Alternatively, you can think of it as the policy
of the work, or what the work would be if there were no technology (that
includes people). We will have more to say about essence in Chapter 5, Trawl-
ing for Requirements. 

The IceBreaker product must not be simply the automation of the proce-
dures that are done at the moment. To deliver a truly useful product, the ana-
lytical team should help to invent a better way to do the work, and build a
product that helps with this better way of working. With this goal in mind,
they hold creativity workshops where the team members use creative think-
ing techniques and creative triggers to generate new and better ideas for the
eventual product. 

Prototyping the Requirements

Sometimes requirements analysts get stuck. Sometimes there are require-
ments that are not properly formed, or the user can’t explain them, or the
requirements analysts can’t understand them. Or maybe the product is so
groundbreaking that nobody really knows the requirements. Or the analysts
and stakeholders just need to work with something more concrete than a
written requirement. This is when prototypes are the most effective require-
ments technique. 

A prototype is a quick and dirty representation of a potential product—
probably only part of the product. It is intended to present the user with
some kind of simulation of the requirements. There are two approaches to
building requirements prototypes: High-fidelity prototypes use specialized
software tools and result in a partially working piece of software, and low-
fidelity prototypes use pencil and paper, whiteboards, or some other familiar
means, as shown in Figure 2.4. Teams generally like using the low-fidelity
prototypes because they can generate them quickly and the users enjoy the
spontaneous nature and inventiveness of these prototypes. 

Scenarios

Scenarios are stories. The analysts use them when working with stakeholders
to arrive at an understanding of the functionality of a use case. The scenario
shows, step by step, how a business use case or a product use case is per-
formed. The analysts find that scenarios are a useful neutral language for talk-
ing to the relevant stakeholders about the use cases. The scenarios, once they
are agreed upon, form the foundation for the requirements. 

READING
Robertson, Suzanne, and 
James Robertson. 
Requirements-Led Project 
Management. Addison-
Wesley, 2005.

Maiden, Neil, Suzanne 
Robertson, Sharon 
Manning, and John 
Greenwood. Integrating 
Creativity Workshops into 
Structured Requirements 
Processes. Proceedings of 
DIS 2004, Cambridge, 
Mass., ACM Press.

We look at innovative 
products in Chapter 5, 
Trawling for 
Requirements.

Prototyping as a 
requirements-gathering 
technique is fully 
explained in Chapter 12, 
Prototyping the 
Requirements. 

This part of the process is 
shown in detailed model 
form in Prototype the 
Requirements (Diagram 
5) in the Volere 
Requirements Process 
model in Appendix A.

Refer to Chapter 6, 
Scenarios and 
Requirements, for a 
detailed discussion of 
scenario modeling.

ch02.fm  Page 25  Tuesday, February 7, 2006  1:51 PM



26 ●  The Requirements Process

Writing the Requirements

A major problem in system development is misunderstood requirements. To
avoid this dilemma, the analysts must write their requirements in a testable
manner and ensure that the originating stakeholder understands and agrees
with the written requirement before it is passed downstream. In other words,
the analysts are writing the requirements to ensure that all parties have
achieved the identical understanding of what is needed. Although the task of
writing down the requirements may seem an onerous burden, we have found
it is the only way to ensure that the essence of the requirement has been cap-
tured and communicated, and that the delivered product can be tested. (See
Figure 2.5.)

 The requirements analysts are writing for the stakeholders. That is, the
requirements are the business requirements, and they must be written using
business language so that the nontechnical stakeholders can understand
them and verify their correctness. Of course, the requirements also need to
be written so that the product designers and other technicians can build pre-
cisely what the client wants. To ensure this correctness, and to make the
requirement testable, the analysts add a fit criterion to each requirement. A fit
criterion is a quantification or measurement of the requirement so the testers
can determine precisely whether an implementation meets—in other words,
fits—the requirement.

   
   

   
   

District

All roads

Major roads

Roads not gritted

District

Weather forecast

Major roads

District

marker markermarker

Figure 2.4

A low-fidelity prototype 
built on a whiteboard to 
provide a quick visual 
explanation of some of 
the requirements, and to 
elicit misunderstood or 
missing requirements.

Chapter 9 describes fit 
criteria in detail. 

ch02.fm  Page 26  Tuesday, February 7, 2006  1:51 PM



Writing the Requirements ●  27

The analysts use two devices to make it easier to write a specification.
The first device, the requirements specification template, is an outline of a
requirements specification. The analysts use it as a checklist of which
requirements they should be asking for and as a guide to writing their spec-
ification documents. The second device is a shell, also known as a snow
card. Each requirement is made up of a number of components, and the
shell is a convenient layout for ensuring that each requirement has the cor-
rect constituents. 

Of course, the writing activity is not really a separate activity. In reality, it
is integrated with the activities that surround it—trawling, prototyping, and
the Quality Gateway. However, for the purposes of understanding what is
involved in getting the correct requirements in a communicable form, we
have chosen to look at it separately. 

An alternative to writing functional requirements is building models.
Numerous kinds of models are available, and we do not intend this book to
describe how to build all of them. While we encourage the use of models for
requirements work, we must issue a caution about the tendency of some
modelers, and some models, to leap straight into a solution without firstly
demonstrating an understanding of the problem. Also bear in mind that
models do not specify the nonfunctional requirements. As a result, any mod-
els you build must be augmented by written requirements for the nonfunc-
tional requirements.

Lastly, we must consider the primary reason for wanting written require-
ments. The point is not to have written requirements (although that is often
necessary), but rather to write them. The act of writing the requirement,
together with its associated fit criterion, means the analyst has to correctly

I want it easy enough so
my mother could use it.

The programmer doesn’t know
your mother. How about “A
truck driver shall be able to
select the correct route within
90 seconds of the first use
of the product” ?

See Appendix B, the 
Volere Requirements 
Specification Template.

Figure 2.5

The requirements are 
captured in written form 
so as to communicate 
effectively between the 
stakeholders and the 
analysts. Only by writing 
them down can the 
team ensure that the 
required product is built.

Refer to Chapter 10 for a 
detailed discussion of 
writing the 
requirements. 

ch02.fm  Page 27  Tuesday, February 7, 2006  1:51 PM



28 ●  The Requirements Process

understand the requirement. If the requirement is not correctly understood,
and agreed to by the relevant stakeholders, then any attempt to write it will
result in a nonsense—one that is quickly detected when the requirement
reaches the Quality Gateway. 

The Quality Gateway

Requirements are the foundation for all that is to follow in the product devel-
opment cycle. It therefore stands to reason that the requirements must be cor-
rect before they are given to the designers/developers. The Quality Gateway
(Figure 2.6) tests the requirements. It is a single point that every requirement
must pass through before it can become a part of the specification. Quality
Gateways are normally set up so that one or two people, probably the lead
requirements analyst and a tester, are the only people authorized to pass
requirements through the gateway. Working together, they check each require-
ment for completeness, relevance, testability, coherency, traceability, and sev-
eral other qualities before they allow it to become part of the specification.   

One of the tasks of the Quality Gateway is to ensure that each requirement
has a fit criterion attached to it. The fit criterion is a measurement of the
requirement that makes it both understandable and testable. The under-
standability is for the benefit of the client, who has on several occasions said,
“I am not going to have any requirements that I do not understand, nor will
I have any that are not useful or that don’t contribute to my work. I want to
understand the contributions that they make. That’s why I want to measure
each one.”

Description:                                                            

       
Rationale:                                                        

                                                               

               
Source:            

Fit Criteria:                                                            

                                                             

                                                       

Customer Satisfaction:  
Dependencies:    

Supporting Materials:
History:                       

Copyright © Atlantic Systems Guild

Requirement  #:   

Event/use case #:  

Customer Dissatisfaction:  Conflicts:    

l

Requirement Type:  

Description:   
 

             

        
Rationale:       

  
             

  

 

               

        

Requirement  #:   

Rejects 
returned to 

source

From 
trawling

Gateway 
process

Checklist of 
quality 

attributes

Accepted 
requirement

Requirements
specification

Requirement

Figure 2.6

The Quality Gateway 
ensures a rigorous 
specification by testing 
each requirement 
for completeness, 
correctness, measurability, 
absence of ambiguity, 
and several other 
attributes before allowing 
the requirement to be 
added to the 
specification.

The Quality Gateway is 
detailed in Diagram 4 of 
the Volere Requirements 
Process model in 
Appendix A.

We discuss 
measurements for 
requirements in 
Chapter 9, Fit Criteria.

ch02.fm  Page 28  Tuesday, February 7, 2006  1:51 PM



Reusing Requirements ●  29

The requirements analyst has a different, but complementary reason for
measuring and testing requirements: “I need to ensure that each requirement
is unambiguous; that is, it must have the same meaning to both the client
and the developer. I also need to measure the requirement against the client’s
expectations. If I can’t put a measurement to it, then I can never tell if we are
building the product the client really needs.” 

Another reason the project has a Quality Gateway is to prevent require-
ments leakage. Just as water seeps into a leaky rowing boat and you cannot tell
where it is coming from, requirements sometimes seem to leak into the spec-
ification without anyone really knowing where they came from or what
value they add to the product. By ensuring that the only way for require-
ments to get into the specification is through the Quality Gateway, the
project team is in control of the requirements, and not the other way around. 

Reusing Requirements

Requirements for any product you build are never completely unique. We
suggest that before starting on any new requirements project, you go
through the specifications written for previous projects and look for poten-
tially reusable material. Sometimes you may find dozens of requirements you
can reuse without alteration. More often you will find requirements that,
although they are not exactly what you want, are suitable as the basis for
some of the requirements you will write in the new project. 

For example, in the IceBreaker project, the rules for road engineering do
not change between products, so the requirements analysts do not have to
rediscover them. They also know that the business of vehicle scheduling does
not radically change every year, so their trawling process can take advantage
of some requirements from previous projects. Similarly, on many projects
within an organization, the nonfunctional requirements are fairly standard,
so analysts can start with a specification from one of the previous projects
and use it as a checklist. 

The point about reusing requirements is that once a requirement has been
successfully specified for a product, and the product itself is successful, the
requirement does not have to be reinvented. In Chapter 13, we discuss how
you can take advantage of the knowledge that already exists within your
organization and how you can save yourself time by recycling requirements
from previous projects.

Reviewing the Specification

The Quality Gateway exists to keep bad requirements out of the specification.
But it does this one requirement at a time. When you think your require-
ments specification is complete, you should review it. This final review

Chapter 11 describes 
how the Quality Gateway 
tests the requirements for 
these qualities. 

See Chapter 13 for more 
on reusing requirements.

This topic is the subject 
of Diagram 7 of the 
Volere Requirements 
Process model in 
Appendix A.

ch02.fm  Page 29  Tuesday, February 7, 2006  1:51 PM



30 ●  The Requirements Process

checks that there are no missing requirements, that all the requirements are
consistent with one another, and that any conflicts between the require-
ments have been resolved. In short, the review confirms that the specifica-
tion is really complete and suitable so that you can move on to the next stage
of development.

This review also offers you an opportunity to reassess the costs and risks
of the project. Now that you have a complete specification, you know a lot
more about the product than you did at blastoff time. Once the requirements
specification is complete, you have a precise knowledge of the scope and
functionality of the product, so this is the time to remeasure its size. From
that size, and from your knowledge of the project’s constraints and solution
architecture, you can estimate the cost to construct the product. 

You also know at this stage which types of requirements are associated with
the greatest risks. For example, the users may have asked for an interface that
their organization has not built before. Or perhaps they want to use untried
technology to build the product. Does the developer have the people capable
of building the product as specified? By reassessing the risks at this point, you
give yourself a better chance to build the desired product successfully. 

Iterative and Incremental Processes

One common misconception in the requirements world is that you have to
gather all the requirements before moving on to the next step of design and
construction. In some circumstances this is necessary, but not always. On the
one hand, if you are outsourcing or if the requirements document forms the
basis of a contract, then clearly you need to have a complete requirements
specification. On the other hand, providing the overall architecture is
known, construction can often begin before all the requirements are gath-
ered. We suggest that you consider this point when working on your own
requirements projects. 

Let’s go back to the IceBreaker project. The developers are ready to start
building the product, so right after the blastoff meeting the key stakeholders
select a few (let’s say three or four) of the highest-priority business use cases.
The requirements analysts gather the requirements for only those business
use cases, ignoring the remainder for the meantime. It is feasible to ignore
them because there is always a minimal functional connection between the
business use cases, so the analysts do not interfere with one another’s work.
Then, when the first tranche of requirements have successfully passed the
Quality Gateway, the developers can start their work. The intention is to
implement a small number of use cases as early as possible to get the reaction
of the stakeholders. If there are to be nasty surprises, then the IceBreaker
team members want to get them as early as possible. While the first use cases

See Chapter 14 for more 
on reviewing the 
specification.

ch02.fm  Page 30  Tuesday, February 7, 2006  1:51 PM



Requirements Retrospective ●  31

are being developed and delivered, the analysts are working on the require-
ments for the next-highest-priority ones. Soon they have established a
rhythm for delivery, with new use cases being delivered every few weeks. 

Requirements Retrospective

You are reading this book about a requirements process, presumably with the
intention of improving your own process. Retrospectives are one of the most
effective tools for discovering the good and bad of a process, and suggesting
remedial action. Retrospectives for requirements projects consist of a series of
interviews with stakeholders and group sessions with the developers. The
intention is to canvas all the people involved in the process and ask tough
questions:

● What did we do right?

● What did we do wrong?

● If we had to do it again, what would you do differently?

By looking for honest answers to these questions, you give yourself the
best chance of improving your process. The idea is very simple: Do more of
what works and less of what doesn’t. 

Keep a record of the lessons learned from your retrospective. The next
project can then use that record as a starting point, so the lessons learned
from previous projects are passed along. 

Your retrospective can be very informal: a coffee-time meeting with the
project group, or the project leader collecting e-mail messages from the par-
ticipants. Alternatively, if the stakes are higher, it can be formalized to the
point where it is run by an outside facilitator who canvases the participants,
both individually and as a group, and publishes a retrospective report. 

The most notable feature of retrospectives is this: Companies that regu-
larly conduct retrospectives consistently report significant improvements in
their processes. Retrospectives are probably the cheapest investment you can
make in your own process. 

Your Own Requirements Process

The itinerant peddler of quack potions, Doctor Dulcamara, sings the praises
of his elixir, which is guaranteed to cure toothache, make you potent, elimi-
nate wrinkles and give you smooth beautiful skin, destroy mice and bugs,
and make the object of your affections fall in love with you. The rather fan-
ciful libretto from Donizetti’s opera L’Elisir d’Amore points out something
that, although very obvious, is often disregarded: There is no such thing as
the universal cure. 

“If we did the project 
again tomorrow, 
what would we do 
differently?”

ch02.fm  Page 31  Monday, February 13, 2006  10:45 AM



32 ●  The Requirements Process

We really would like to be able to present you with a requirements process
that has all the attributes of Doctor Dulcamara’s elixir—a process that suits
all projects for all applications in all organizations. But we know from expe-
rience that every project has different needs. At the same time, we have
learned that some fundamental principles hold good for any project. Thus,
instead of attempting to provide you with a one-size-fits-all magic potion, we
have distilled our experiences from a wide variety of projects to provide you
with a set of foundation activities and deliverables that will apply to any
project. 

We are using a process here to describe the things that have to be done to
successfully gather requirements, and the deliverables that are the founda-
tion for any kind of requirements activity. As you read this book, think of
adapting them to your own culture, your own environment, your own
organizational structure, and your own chosen way of product development. 

For instance, projects using eXtreme Programming are not supposed to
produce a requirements specification, but there is still a clear need to under-
stand the requirements. This understanding cannot be achieved effectively
by writing code. To invest in writing an individual requirement, complete
with its fit criterion, remains the fastest way of understanding that require-
ment. (Writing code is building a solution to satisfy the requirement, and it
does not guarantee that the real requirement is ever discovered.) In the
Volere Requirements Process, we provide scenarios as a way of modeling the
functionality of the use case. This is almost always a quicker way to discover
requirements, particularly when you start to consider the exceptions and
alternatives for a use case. For a nonfunctional requirement, writing it down,
complete with its fit criterion, remains the fastest way of understanding it.

Defining the scope of the business area affected by the product is still the
most effective way of keeping the requirements and the development work
focused. Learning about the work, and not just the product, is the best way
of building a relevant product. Of course, we do not intend that you use the
Volere process straight out of the box. Instead, we urge you to adopt the most
beneficial practices, adapting the process as necessary to make it relevant to
your project and your organization. 

To adapt this process you need to understand each of the deliverables it
produces—the rest of this book will discuss these in detail. Once you under-
stand the content and purpose of each deliverable, ask how each one (pro-
vided it is relevant) would best be produced within your project environment
using your resources:

● What is the deliverable called within your environment? Use the defini-
tions of the terms used in the generic process model and identify the
equivalent deliverable in your organization.

We have distilled our 
experiences from a 
wide variety of 
projects to provide 
you with a set of 
foundation activities 
and deliverables 
that will apply to 
any project.

READING
Brooks, Fred. “No Silver 
Bullet: Essence and 
Accidents of Software 
Engineering” and “‘No 
Silver Bullet’ Refired.” The 
Mythical Man-Month: Essays 
on Software Engineering 
(twentieth anniversary 
edition). Addison-Wesley, 
1995.

ch02.fm  Page 32  Tuesday, February 7, 2006  1:51 PM



In Conclusion ●  33

● Is this deliverable relevant for this project?

● How much do you already know about this deliverable? Do you know
enough to be able to avoid devoting additional time to it?

● Who produces the deliverable? Understand which parts of the deliverable
are produced by whom. Also, when several people are involved, you need
to define the interfaces between them.

● When is the deliverable produced? Map your project phases to the generic
process.

● Where is the deliverable produced? A generic deliverable is often the result
of fragments that are produced in a number of geographical locations.
Define the interfaces between the different locations and specify how they
will work. 

● Who needs to review the deliverable? Look for existing cultural check-
points within your organization. Do you have recognized stages or phases
in your projects when peers, users, or managers must review your specifi-
cation? 

The generic model describes deliverables and procedures for producing
them. You decide how to use them. 

In Conclusion

We have described—rather briefly—a process for gathering and verifying
requirements. The remainder of this book describes the activities in detail,
along with their deliverables. Feel free to jump to any chapter that is of
immediate concern—we wrote the chapters in more or less the order in
which you would arrive at the activities, but you don’t have to read them
that way. 

Keep in kind that the model in Appendix A is a complete record of the
Volere Requirements Process. 

ch02.fm  Page 33  Tuesday, February 7, 2006  1:51 PM



ch02.fm  Page 34  Tuesday, February 7, 2006  1:51 PM


