
“There is nothing either good or bad,
but thinking makes it so.”

—William Shakespeare, English Dramatist and Poet
(1564–1616), Hamlet, Act 2, Scene 2.

What makes a good test? The question can be answered at a highly
technical level, but that’s not our goal here. In fact, it’s helpful to
step back from that debate and look at the question from a
management point of view. How can you know if testing is being
done well? How much credence can you put in test results?

You can never know for sure.

You may or may not agree with Hamlet that there is nothing either
good or bad. For the sake of argument, though, let’s suppose there
is such a thing as a “good” test and ask the question, How can one
know whether a particular test (or set of tests) is, indeed, good?

Let’s start with something even better than “good” by
looking at a definition of “perfect.” A perfect set of tests would
have the following characteristics:

a. It would detect every bug in a system.
b. It would never detect a non-bug as a bug.
c. It would give us complete confidence that it has done a

and b.
d. It would accomplish a, b, and c quickly and cheaply

enough for our needs.

67

8

What Makes a
Good Test?

Copyright ©2008 by Gerald M. Weinberg

Now consider a system under test. In the simplest case, if that
system were perfectly bug free (a situation likely to exist only in
our dreams), then any test that finds no bugs meets condition a.
Some tests that we would consider really lousy could meet that
condition as well, but when run against a bug-free, perfect system,
they would look pretty good.

Or would they? We don’t know in advance whether we’re
testing a bug-free system or a louse-y system. (If we did, why
would we need to test?) So, imagine two sets of tests: perfect tests
and lousy tests. When run against our bug-free, perfect system,
both sets of tests reveal no bugs. So, on the basis of their bug-
finding alone, we couldn’t tell the difference between a perfect test
and a lousy test.

In fact, what might be an adequate test for one implementa-
tion of a system might be a lousy test for another implementation
of the same system. In other words, “goodness” cannot be a prop-
erty of a test, but only a property of the relationship between a test
and an implementation.

Going one step further, the same test of the same implemen-
tation might be adequate for one organization but lousy for
another. For example, a test that is adequate for a system to be
used internally by a single organization might be totally inade-
quate if the same implementation were sold as a software product
to a thousand organizations. In other words, “goodness” cannot be
a property of tests and implementations, but only a property of the
relationship among tests, implementations, and situations.

So, you can never tell for sure, and you never can tell by
looking at a test in isolation, whether a test is good—but you do
have many ways to tell whether a test is likely to be bad. Meta-
tests play an important role. Later, in Chapter 9, we examine some
indicators of “bad” tests.

You can assess goodness only after the fact.

If you knew how many bugs were in a system, you could at least
begin to assess the goodness, or not-badness, of a set of tests. For
instance, after a system has been in use for a few years, a prudent
manager will have statistics on how many bugs were shipped with
the system. By keeping track of what bugs turn up in use, then

PERFECT SOFTWARE:AND OTHER ILLUSIONS ABOUT TESTING

68

Copyright ©2008 by Gerald M. Weinberg

analyzing them to see what they’re like, you will have at least some
kinds of information, such as,

• how good your testing was, and in what ways
• how testing might be improved in the future
• what kinds of bugs your testing characteristically missed

Knowing such information allows you to make better estimates in
the future, even if you don’t improve your testing process. Such
information may also be used to improve the development
process—although in this regard, most likely I’m dreaming again.

Unfortunately, you never know for sure how many bugs
were shipped because bugs can turn up in a product many, many
years later, or never. Thirty years after I wrote The Psychology of
Computer Programming, and after more than 200,000 copies of the
published book had been sold, I received a letter documenting an
“obvious” error that nobody else has ever pointed out to me. That
was a useful lesson in author humility, but it also suggests that
similar “obvious” errors can remain dormant in products—espe-
cially when the product is software—for a very long time. Soft-
ware may even have bugs that were not bugs when the system
shipped, such as functions that fail when an application is used
with new hardware or a new operating system.

Moreover, if you wait five years to assess the goodness of a
set of tests, what good is the information? Your testers, if they’re
still around, probably now use different tools and techniques. You
may not have the original source code or bug reports, or you may
have them and be unable to read or understand them. But if you
wait only six months or a year, and keep good records, you may be
able to assess the quality of a set of tests in time for the assessment
to be useful in improving future tests.

Can you do better than simply waiting for experience? You
can review your coverage and your oracles against your theories of
failure. You can vary your tests randomly or arbitrarily and notice
how problems emerge. You can compare different kinds of testing
in parallel, such as beta testing compared to internal testing, or
reviews compared to dynamic testing.

8 • WHAT MAKES A GOOD TEST?

69

Copyright ©2008 by Gerald M. Weinberg

You may want to insert bugs intentionally.

Sometimes, you can gain quantitative estimates of how many prob-
lems might remain in software by seeding (or “bebugging,” a term
I believe I coined—and wrote about—in The Psychology of Computer
Programming). Insert known bugs without telling the testers, then
estimate the number of remaining unknown bugs by the per-
centage of known bugs they find.

For bebugging to work at all reasonably, the distribution of
inserted bugs must closely match the (unknown) distribution of the
unknown bugs. What I learned to do was leave (but document
secretly) bugs that were made naturally but had been found by the
developers, perhaps in code reviews, perhaps in unit testing. This
gives the bugs a naturalness, but of course isn’t necessarily a reli-
able sample of not-found bugs. Still, the practice provides some
information if some known bugs aren’t found. Be careful,
though—it doesn’t give a great deal of reliable information even if
all the known bugs are found.

Estimates of goodness are always statistical.

In the end, though, an estimate of goodness is just that—an esti-
mate. We can only estimate goodness statistically, because we can
never know for sure how many bugs are, or were, in a given
system. The fewer bugs there actually are in a system, the more the
statistics are in our favor. For example, if there are ten bugs, a 50-
percent error means we might be off by five bugs, but for 14,000
bugs, we might be off by 7,000.

To make your testers look good, you may want to come into
test with as few bugs as they can reasonably manage. As an added
benefit, testers are free to look for the difficult bugs if they aren’t
spending time finding the easy ones—noise that should have been
removed during unit testing. Unfortunately, many managers judge
testers by how many bugs they find, which means that poor-
quality systems make testers look better. If they were testing a
perfect system, they’d never find any bugs, and probably would be
fired as incompetent. Under such a system of measurement, a
lousy developer is a tester’s best friend.

PERFECT SOFTWARE:AND OTHER ILLUSIONS ABOUT TESTING

70

Copyright ©2008 by Gerald M. Weinberg

Why, then, is this flawed system so popular? One reason is
the testers’ lack of effort to explain how they look for bugs and
why their strategy should inspire respect. Another reason is that
when managers and developers assume that a product works,
telling them it works seems to provide no information. That is, “no
information” seems to equal “no value.” It’s the same reason why
people don’t replace the batteries in their smoke alarms—most of
the time, a nonfunctioning smoke alarm is behaviorally indistin-
guishable from one that works. Sadly, the most common reminder
to replace the batteries is a fire.

You can estimate not-badness.

At its deepest technical level, testing involves some rather esoteric
mathematics and logic. To assess whether these esoteric activities
have been done well, most managers must rely on second and
third opinions from independent experts. There are, however,
many assessments of not-badness most managers can make them-
selves by answering the following kinds of questions:

• Does testing purport to give me the information I’m after? If
it doesn’t, it’s obviously not good.

• Is it documented? If not, have you personally observed
the testing, or is it observed, reported, or performed by
someone you trust?

• Is it honest? There are numerous ways test documenta-
tion can be fudged, intentionally or unintentionally.

• Can I understand it? If you can’t, how can you possibly
know whether it’s good or bad?

• Does it at least cover what matters most? You can’t gener-
ally test every path (remember the impossibility of
exhaustive testing), but at the very least, a set of tests
should visit each line of code once.

• Is it actually finished? Anyone can check a box on a test
plan. Do you have ways of knowing what was actually
done?

• Can I tell the difference between a test and a demonstration?
Demonstrations are designed to make a system look

8 • WHAT MAKES A GOOD TEST?

71

Copyright ©2008 by Gerald M. Weinberg

good. Tests should be designed to make it look the way
it truly is.

• Are trends and status reports overly simplistic and regular?
In real projects, tests and test activities come in many
sizes and shapes. If test status reports show extremely
predictable trends, testing may be shallow or the reports
may be leaving out something important.

• Are there inconsistencies between different kinds of test activi-
ties? For instance, if beta testers find bugs that the
internal test team doesn’t find, or if performance testing
finds functional bugs, that may be a sign that one or the
other process is not working well.

• Are managers visible? They shouldn’t hang over people’s
shoulders, but often testing can be improved simply by
the presence of a curious manager who is known for
paying attention.

Unfortunately, many fallacies and falsifications can distort tests,
causing testing to turn sour. Managers need to understand and
guard against them, possibly by applying methods detailed in the
next several chapters.

Summary

You’ll never know for sure whether your testing was done well,
but there are many ways to know or estimate if it was done badly.

Common Mistakes

1. Not thinking about what information you’re after: Testing is
difficult enough when you do think about what you’re after, and
more or less impossible when you don’t. You won’t often know in
advance what information you seek—in fact, in most instances,
you’ll have only an approximate idea. So, you need to think about
your ultimate testing goals and about how you’re going to learn
what other information you’re going to want.

2. Measuring testers by how many bugs they find: Testers will
respond to this kind of measurement, but probably not the way
you intend them to. The quantity of bugs found will increase, but
the quality of information harvested will diminish.

PERFECT SOFTWARE:AND OTHER ILLUSIONS ABOUT TESTING

72

Copyright ©2008 by Gerald M. Weinberg

3. Believing you can know for sure how good a test is: Be vigi-
lant and skeptical when evaluating the accuracy and appropriate-
ness of a test. If you aren’t, you’re going to get slapped down by
the nature of the universe, which doesn’t favor perfectionism.

4. Failing to take context into account: There are few, if any,
tests that are equally significant in all circumstances. If you don’t
take potential usage patterns into account, your tests will be inef-
fectual.

5. Testing without knowledge of the product’s internal structure:
There are an infinite number of ways to replicate specific behavior
on a finite series of tests. Knowing about the structure of the soft-
ware you’re testing can help you to identify special cases, subtle
features, and important ranges to try—all of which help narrow the
inference gap between what the software can do and what it will
do during actual use. Charles Babbage, the maker of the very first
computer, knew this almost 200 years ago, so there’s no reason for
you not to know it.

6. Testing with too much knowledge of the product’s internal
structure: It’s too easy to make allowances for what you think you
know is going on inside the black box. Typical users probably
won’t know enough to do that, so some of your tests had better
simulate activities likely to be performed by naïve users.

7. Giving statistical estimates of bugs as if the numbers were
fixed, certain numbers: Always give a range when stating the esti-
mated number of bugs (for example, say, “There are somewhere in
the range of thirty to forty bugs in this release.”). Even better, give
a statistical distribution, or a graph.

8. Failing to apply measures of “badness” to your tests: Use a
checklist, asking questions such as the ones in this chapter.

9. Not ensuring that development is done well: Poorly devel-
oped code needs good testing but usually receives poor testing,
thus compounding problems. What use are good tests of shoddy
code?

10. Not considering the loss of testing efficiency caused by
numerous found bugs: A “perfect” testing session is one entirely
dedicated to test design and execution (this is the exception, not
the rule). Set-up, bug investigation, and reporting take time away
from test design and execution. Finding lots of bugs might make
testers look good, but finding lots of bugs slows down testing,
reduces coverage, or both.

8 • WHAT MAKES A GOOD TEST?

73

Copyright ©2008 by Gerald M. Weinberg

