
There’s a lot to know about how static analysis tools work. There’s
probably just as much to know about making static analysis tools work

as part of a secure development process. In this respect, tools that assist
with security review are fundamentally different than most other kinds of
software development tools. A debugger, for example, doesn’t require any
organization-wide planning to be effective. An individual programmer can
run it when it’s needed, obtain results, and move on to another program-
ming task. But the need for software security rarely creates the kind of
urgency that leads a programmer to run a debugger. For this reason, an
organization needs a plan for who will conduct security reviews, when the
reviews will take place, and how to act on the results. Static analysis tools
should be part of the plan because they can make the review process signifi-
cantly more efficient.

Code review is a skill. In the first part of this chapter, we look at what
that skill entails and outline the steps involved in performing a code review.
We pay special attention to the most common snag that review teams get
hung up on: debates about exploitability. In the second part of the chapter,
we look at who needs to develop the code review skill and when they need
to apply it. Finally, we look at metrics that can be derived from static analy-
sis results.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

Static Analysis as Part of the Code
Review Process

In preparing for battle, plans are useless
but planning is indispensable.

—Dwight Eisenhower

3

47

0321424778_c03.qxd 5/21/07 2:32 PM Page 47

3.1 Performing a Code Review

A security-focused code review happens for a number of different reasons:

• Some reviewers start out with the need to find a few exploitable vulnera-
bilities to prove that additional security investment is justified.

• For every large project that didn’t begin with security in mind, the team
eventually has to make an initial pass through the code to do a security
retrofit.

• At least once in every release period, every project should receive a secu-
rity review to account for new features and ongoing maintenance work.

Of the three, the second requires by far the largest amount of time and
energy. Retrofitting a program that wasn’t written to be secure can be a con-
siderable amount of work. Subsequent reviews of the same piece of code
will be easier. The initial review likely will turn up many problems that need
to be addressed. Subsequent reviews should find fewer problems because
programmers will be building on a stronger foundation.

Steve Lipner estimates that at Microsoft security activities consume
roughly 20% of the release schedule the first time a product goes through
Microsoft’s Security Development Lifecycle. In subsequent iterations, secu-
rity requires less than 10% of the schedule [Lipner, 2006]. Our experience
with the code review phase of the security process is similar—after the back-
log of security problems is cleared out, keeping pace with new development
requires much less effort.

The Review Cycle

We begin with an overview of the code review cycle and then talk about
each phase in detail. The four major phases in the cycle are:

1. Establish goals
2. Run the static analysis tool
3. Review code (using output from the tool)
4. Make fixes

Figure 3.1 shows a few potential back edges that make the cycle a little
more complicated than a basic box step. The frequency with which the cycle
is repeated depends largely upon the goals established in the first phase, but
our experience is that if a first iteration identifies more than a handful of
security problems, a second iteration likely will identify problems too.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

48 Chapter 3 Static Analysis as Part of the Code Review Process

0321424778_c03.qxd 5/21/07 2:32 PM Page 48

Figure 3.1 The code review cycle.

Later in the chapter, we discuss when to perform code review and who
should do the reviewing, but we put forth a typical scenario here to set the
stage. Imagine the first iteration of the cycle being carried out midway
through the time period allocated for coding. Assume that the reviewers are
programmers who have received security training.

1. Establish Goals

A well-defined set of security goals will help prioritize the code that should
be reviewed and criteria that should be used to review it. Your goals should
come from an assessment of the software risks you face. We sometimes hear
sweeping high-level objectives along these lines:

• “If it can be reached from the Internet, it has to be reviewed before it’s
released.”

or

• “If it handles money, it has to be reviewed at least once a year.”

We also talk to people who have more specific tactical objectives in mind. A
short-term focus might come from a declaration:

• “We can’t fail our next compliance audit. Make sure the auditor gives us
a clean bill of health.”

or

• “We’ve been embarrassed by a series of cross-site scripting vulnerabili-
ties. Make it stop.”

3. Review Code

4. Make Fixes 2. Run Tools

1. Establish
Goals

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.1 Performing a Code Review 49

0321424778_c03.qxd 5/21/07 2:32 PM Page 49

You need to have enough high-level guidance to prioritize your potential
code review targets. Set review priorities down to the level of individual pro-
grams. When you’ve gotten down to that granularity, don’t subdivide any
further; run static analysis on at least a whole program at a time. You might
choose to review results in more detail or with greater frequency for parts of
the program if you believe they pose more risk, but allow the tool’s results
to guide your attention, at least to some extent. At Fortify, we conduct line-
by-line peer review for components that we deem to be high risk, but we
always run tools against all of the code.

When we ask people what they’re looking for when they do code review,
the most common thing we hear is, “Uh, err, the OWASP Top Ten?” Bad
answer. The biggest problem is the “?” at the end. If you’re not too sure
about what you’re looking for, chances are good that you’re not going to
find it. The “OWASP Top Ten” part isn’t so hot, either. Checking for the
OWASP Top Ten is part of complying with the Payment Card Industry (PCI)
Data Security Standard, but that doesn’t make it the beginning and end of
the kinds of problems you should be looking for. If you need inspiration,
examine the results of previous code reviews for either the program you’re
planning to review or similar programs. Previously discovered errors have
an uncanny way of slipping back in. Reviewing past results also gives you
the opportunity to learn about what has changed since the previous review.

Make sure reviewers understand the purpose and function of the code
being reviewed. A high-level description of the design helps a lot. It’s also
the right time to review the risk analysis results relevant to the code. If
reviewers don’t understand the risks before they begin, the relevant risks
will inevitably be determined in an ad-hoc fashion as the review proceeds.
The results will be less than ideal because the collective opinion about what
is acceptable and what is unacceptable will evolve as the review progresses.
The “I’ll know a security problem when I see it” approach doesn’t yield
optimal results.

2. Run Static Analysis Tools

Run static analysis tools with the goals of the review in mind. To get started,
you need to gather the target code, configure the tool to report the kinds of
problems that pose the greatest risks, and disable checks that aren’t relevant.
The output from this phase will be a set of raw results for use during code
review. Figure 3.2 illustrates the flow through phases 2 and 3.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

50 Chapter 3 Static Analysis as Part of the Code Review Process

0321424778_c03.qxd 5/21/07 2:32 PM Page 50

Figure 3.2 Steps 2 and 3: running the tool and reviewing the code.

To get good results, you should be able to compile the code being ana-
lyzed. For development groups operating in their own build environment,
this is not much of an issue, but for security teams who’ve had the code
thrown over the wall to them, it can be a really big deal. Where are all the
header files? Which version of that library are you using? The list of snags
and roadblocks can be lengthy. You might be tempted to take some short-
cuts here. A static analysis tool can often produce at least some results even
if the code doesn’t compile. Don’t cave. Get the code into a compilable state
before you analyze it. If you get into the habit of ignoring parse errors and
resolution warnings from the static analysis tool, you’ll eventually miss out
on important results.

This is also the right time to add custom rules to detect errors that are
specific to the program being analyzed. If your organization has a set of
secure coding guidelines, go through them and look for things you can
encode as custom rules. A static analysis tool won’t, by default, know what
constitutes a security violation in the context of your code. Chances are
good that you can dramatically improve the quality of the tool’s results by
customizing it for your environment.

Errors found during previous manual code reviews are particularly use-
ful here, too. If a previously identified error can be phrased as a violation of
some program invariant (never do X, or always do Y), write a rule to detect

Human Review

Static Analysis

Perform Analysis

Raw
Results

Findings

Rules

2. Run Tools 3. Review Code

if (fgets (buf ,

sizeof(buf)

stdin) == buf) {

strcpy (othr , buf);

system (othr);

Source
Code

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.1 Performing a Code Review 51

0321424778_c03.qxd 5/21/07 2:32 PM Page 51

similar situations. Over time, this set of rules will serve as a form of institu-
tional memory that prevents previous security slip-ups from being repeated.

3. Review Code

Now it’s time to review the code with your own eyes. Go through the static
analysis results, but don’t limit yourself to just analysis results. Allow the
tool to point out potential problems, but don’t allow it to blind you to other
problems that you can find through your own inspection of the code. We
routinely find other bugs right next door to a tool-reported issue. This
“neighborhood effect” results from the fact that static analysis tools often
report a problem when they become confused in the vicinity of a sensitive
operation. Code that is confusing to tools is often confusing to program-
mers, too, although not always for the same reasons. Go through all the
static analysis results; don’t stop with just the high-priority warnings. If the
list is long, partition it so that multiple reviewers can share the work.

Reviewing a single issue is a matter of verifying the assumptions that the
tool made when it reported the issue. Do mitigating factors prevent the code
from being vulnerable? Is the source of untrusted data actually untrusted? Is
the scenario hypothesized by the tool actually feasible?1 If you are reviewing
someone else’s code, it might be impossible for you to answer all these ques-
tions, and you should collaborate with the author or owner of the code.
Some static analysis tools makes it easy to share results (for instance, by
publishing an issue on an internal Web site), which simplifies this process.

Collaborative auditing is a form of peer review. Structured peer reviews
are a proven technique for identifying all sorts of defects [Wiegers, 2002;
Fagan, 1976]. For security-focused peer review, it’s best to have a security
specialist as part of the review team. Peer review and static analysis are com-
plimentary techniques. When we perform peer reviews, we usually put one
reviewer in charge of going through tool output.

If, during the review process, you identify a problem that wasn’t found
using static analysis, return to step 2: Write custom rules to detect other
instances of the same problem and rerun the tools. Human eyes are great for
spotting new varieties of defects, and static analysis excels at making sure
that every instance of those new problems has been found. The back edge
from step 3 to step 2 in Figure 3.1 represents this work.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

52 Chapter 3 Static Analysis as Part of the Code Review Process

1. Michael Howard outlines a structured process for answering questions such as these in
a security and privacy article entitled “A Process for Performing Security Code Reviews”
[Howard, 2006].

0321424778_c03.qxd 5/21/07 2:32 PM Page 52

Code review results can take a number of forms: bugs entered into the
bug database, a formal report suitable for consumption by both program-
mers and management, entries into a software security tracking system, or
an informal task list for programmers. No matter what the form is, make
sure the results have a permanent home so that they’ll be useful during the
next code review. Feedback about each issue should include a detailed
explanation of the problem, an estimate of the risk it brings, and references
to relevant portions of the security policy and risk assessment documents.
This permanent collection of review results is good for another purpose,
too: input for security training. You can use review results to focus training
on real problems and topics that are most relevant to your code.

4. Make Fixes

Two factors control the way programmers respond to the feedback from a
security review:

• Does security matter to them? If getting security right is a prerequisite
for releasing their code, it matters. Anything less is shaky ground
because it competes with adding new functionality, fixing bugs, and
making the release date.

• Do they understand the feedback? Understanding security issues
requires security training. It also requires the feedback to be written in
an intelligible manner. Results stemming from code review are not con-
crete the way a failing test case is, so they require a more complete
explanation of the risk involved.

If security review happens early enough in the development lifecycle,
there will be time to respond to the feedback from the security review. Is
there a large clump of issues around a particular module or a particular fea-
ture? It might be time to step back and look for design alternatives that could
alleviate the problem. Alternatively, you might find that the best and most
lasting fix comes in the form of additional security training.

When programmers have fixed the problems identified by the review,
the fixes must be verified. The form that verification takes depends on the
nature of the changes. If the risks involved are not small and the changes
are nontrivial, return to the review phase and take another look at the code.
The back edge from step 4 to step 3 in Figure 3.1 represents this work.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.1 Performing a Code Review 53

0321424778_c03.qxd 5/21/07 2:32 PM Page 53

Steer Clear of the Exploitability Trap

Security review should not be about creating flashy exploits, but all too
often, review teams get pulled down into exploit development. To under-
stand why, consider the three possible verdicts that a piece of code might
receive during a security review:

• Obviously exploitable
• Ambiguous
• Obviously secure

No clear dividing line exists between these cases; they form a spectrum.
The endpoints on the spectrum are less trouble than the middle; obviously
exploitable code needs to be fixed, and obviously secure code can be left
alone. The middle case, ambiguous code, is the difficult one. Code might be
ambiguous because its logic is hard to follow, because it’s difficult to deter-
mine the cases in which the code will be called, or because it’s hard to see
how an attacker might be able to take advantage of the problem.

The danger lies in the way reviewers treat the ambiguous code. If the
onus is on the reviewer to prove that a piece of code is exploitable before it
will be fixed, the reviewer will eventually make a mistake and overlook an
exploitable bug. When a programmer says, “I won’t fix that unless you can
prove it’s exploitable,” you’re looking at the exploitability trap. (For more
ways programmers try to squirm out of making security fixes, see the side-
bar “Five Lame Excuses for Not Fixing Bad Code.”)

The exploitability trap is dangerous for two reasons. First, developing
exploits is time consuming. The time you put into developing an exploit
would almost always be better spent looking for more problems. Second,
developing exploits is a skill unto itself. What happens if you can’t develop
an exploit? Does it mean the defect is not exploitable, or that you simply
don’t know the right set of tricks for exploiting it?

Don’t fall into the exploitability trap: Get the bugs fixed!
If a piece of code isn’t obviously secure, make it obviously secure. Some-

times this approach leads to a redundant safety check. Sometimes it leads to a
comment that provides a verifiable way to determine that the code is okay.
And sometimes it plugs an exploitable hole. Programmers aren’t always wild
about the idea of changing a piece of code when no error can be demon-
strated because any change brings with it the possibility of introducing a new
bug. But the alternative—shipping vulnerabilities—is even less attractive.

Beyond the risk that an overlooked bug might eventually lead to a new
exploit is the possibility that the bug might not even need to be exploitable

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

54 Chapter 3 Static Analysis as Part of the Code Review Process

0321424778_c03.qxd 5/21/07 2:32 PM Page 54

to cause damage to a company’s reputation. For example, a “security
researcher” who finds a new buffer overflow might be able to garner fame
and glory by publishing the details, even if it is not possible to build an
attack around the bug [Wheeler, 2005]. Software companies sometimes find
themselves issuing security patches even though all indications are that a
defect isn’t exploitable.

Five Lame Excuses for Not Fixing Bad Code

Programmers who haven’t figured out software security come up with some inspired rea-

sons for not fixing bugs found during security review. “I don't think that's exploitable” is

the all-time winner. All the code reviewers we know have their own favorite runners-up,

but here are our favorite specious arguments for ignoring security problems:

1. “I trust system administrators.”

Even though I know they’ve misconfigured the software before, I know they’re

going to get it right this time, so I don’t need code that verifies that my program is con-

figured reasonably.

2. “You have to authenticate before you can access that page.”

How on earth would an attacker ever get a username and a password? If you have

a username and a password, you are, by definition, a good guy, so you won’t attack the

system.

3. “No one would ever think to do that!”

The user manual very clearly states that names can be no longer than 26 charac-

ters, and the GUI prevents you from entering any more than 26 characters. Why would

I need to perform a bounds check when I read a saved file?

4. “That function call can never fail.”

I’ve run it a million times on my Windows desktop. Why would it fail when it runs

on the 128 processor Sun server?

5. “We didn’t intend for that to be production-ready code.”

Yes, we know it’s been part of the shipping product for several years now, but when

it was written, we didn’t expect it to be production ready, so you should review it with

that in mind.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.1 Performing a Code Review 55

0321424778_c03.qxd 5/21/07 2:32 PM Page 55

3.2 Adding Security Review to an Existing
Development Process2

It’s easy to talk about integrating security into the software development
process, but it can be a tough transition to make if programmers are in the
habit of ignoring security. Evaluating and selecting a static analysis tool can
be the easiest part of a software security initiative. Tools can make program-
mers more efficient at tackling the software security problem, but tools
alone cannot solve the problem. In other words, static analysis should be
used as part of a secure development lifecycle, not as a replacement for a
secure development lifecycle.

Any successful security initiative requires that programmers buy into the
idea that security is important. In traditional hierarchical organizations, that
usually means a dictum from management on the importance of security, fol-
lowed by one or more signals from management that security really should be
taken seriously. The famous 2002 memo from Bill Gates titled “Trustworthy
Computing” is a perfect example of the former. In the memo, Gates wrote:

So now, when we face a choice between adding features and resolving
security issues, we need to choose security.

Microsoft signaled that it really was serious about security when it
called a halt to Windows development in 2002 and had the entire Windows
division (upward of 8,000 engineers) participate in a security push that
lasted for more than two months [Howard and Lipner, 2006].

Increasingly, the arrival of a static analysis tool is part of a security push.
For that reason, adoption of static analysis and adoption of an improved
process for security are often intertwined. In this section, we address the
hurdles related to tool adoption. Before you dive in, read the adoption suc-
cess stories in the sidebar “Security Review Times Two.”

Security Review Times Two

Static analysis security tools are new enough that, to our knowledge, no formal studies

have been done to measure their impact on the software built by large organizations.

But as part of our work at Fortify, we’ve watched closely as our customers have rolled

out our tools to their development teams and security organizations. Here we describe

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

56 Chapter 3 Static Analysis as Part of the Code Review Process

2. This section began as an article in IEEE Security & Privacy Magazine, co-authored with
Pravir Chandra and John Steven [Chandra, Chess, Steven, 2006].

0321424778_c03.qxd 5/21/07 2:32 PM Page 56

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.2 Adding Security Review to an Existing Development Process 57

the results we’ve seen at two large financial services companies. Because the companies

don't want their names to be used, we'll call them “East Coast” and “West Coast.”

East Coast

A central security team is charged with doing code review. Before adopting a tool, the

team reviewed 10 million lines of code per year. With Fortify, they are now reviewing

20 million lines of code per year. As they have gained familiarity with static analysis,

they have written custom rules to enforce larger portions of their security policy. The

result is that, as the tools do more of the review work, the human reviewers continue to

become more efficient. In the coming year, they plan to increase the rate of review to

30 million lines of code per year without growing the size of the security team.

Development groups at the company are starting to adopt the tool, too; more than

100 programmers use the tool as part of the development process, but the organization

has not yet measured the impact of developer adoption on the review process.

West Coast

A central security team is charged with reviewing all Internet-facing applications before

they go to production. In the past, it took the security team three to four weeks to perform

a review. Using static analysis, the security team now conducts reviews in one to two weeks.

The security team expects to further reduce the review cycle time by implementing a

process wherein the development team can run the tool and submit the results to the secu-

rity team. (This requires implementing safeguards to ensure that the development team runs

the analysis correctly.) The target is to perform code review for most projects in one week.

The security team is confident that, with the addition of source code analysis to the

review process, they are now finding 100% of the issues in the categories they deem

critical (such as cross-site scripting). The previous manual inspection process did not

allow them to review every line of code, leaving open the possibility that some critical

defects were being overlooked.

Development teams are also using static analysis to perform periodic checks before

submitting their code to the security team. Several hundred programmers have been

equipped with the tool. The result is that the security team now finds critical defects

only rarely. (In the past, finding critical defects was the norm.) This has reduced the

number of schedule slips and the number of “risk-managed deployments” in which the

organization is forced to field an application with known vulnerabilities. The reduction

in critical defects also significantly improves policy enforcement because when a secu-

rity problem does surface, it now receives appropriate attention.

As a side benefit, development teams report that they routinely find non-security

defects as a result of their code review efforts.

0321424778_c03.qxd 5/21/07 2:32 PM Page 57

Adoption Anxiety

All the software development organizations we’ve ever seen are at least a
little bit chaotic, and changing the behavior of a chaotic system is no mean
feat. At first blush, adopting a static analysis tool might not seem like much
of a problem. Get the tool, run the tool, fix the problems, and you’re done.
Right? Wrong. It’s unrealistic to expect attitudes about security to change
just because you drop off a new tool. Adoption is not as easy as leaving a
screaming baby on the doorstep. Dropping off the tool and waving goodbye
will lead to objections like the ones in Table 3.1.

Table 3.1 Commonly voiced objections to static analysis and their true meaning.

Objection Translation

"It takes too long to run." "I think security is optional, and since it requires
effort, I don't want to do it."

"It has too many false positives." "I think security is optional, and since it requires
effort, I don't want to do it."

"It doesn't fit in to the way I work." "I think security is optional, and since it requires
effort, I don't want to do it."

In our experience, three big questions must be answered to adopt a tool
successfully. An organization’s size, along with the style and maturity of its
development processes, all play heavily into the answers to these questions.
None of them has a one-size-fits-all answer, so we consider the range of
likely answers to each. The three questions are:

• Who runs the tool?
• When is the tool run?
• What happens to the results?

Who Runs the Tool?

Ideally, it wouldn’t matter who actually runs the tool, but a number of prac-
tical considerations make it an important question, such as access to the
code. Many organizations have two obvious choices: the security team or
the programmers.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

58 Chapter 3 Static Analysis as Part of the Code Review Process

0321424778_c03.qxd 5/21/07 2:32 PM Page 58

The Security Team
For this to work, you must ensure that your security team has the right skill
set—in short, you want security folks with software development chops.
Even if you plan to target programmers as the main consumers of the infor-
mation generated by the tool, having the security team participate is a huge
asset. The team brings risk management experience to the table and can
often look at big-picture security concerns, too. But the security team didn’t
write the code, so team members won’t have as much insight into it as the
developers who did. It’s tough for the security team to go through the code
alone. In fact, it can be tricky to even get the security team set up so that
they can compile the code. (If the security team isn’t comfortable compiling
other people’s code, you’re barking up the wrong tree.) It helps if you
already have a process in place for the security team to give code-level feed-
back to programmers.

The Programmers
Programmers possess the best knowledge about how their code works.
Combine this with the vulnerability details provided by a tool, and you’ve
got a good reason to allow development to run the operation. On the flip
side, programmers are always under pressure to build a product on a dead-
line. It’s also likely that, even with training, they won’t have the same level
of security knowledge or expertise as members of the security team. If the
programmers will run the tool, make sure they have time built into their
schedule for it, and make sure they have been through enough security
training that they’ll be effective at the job. In our experience, not all pro-
grammers will become tool jockeys. Designate a senior member of each
team to be responsible for running the tool, making sure the results are
used appropriately, and answering tool-related questions from the rest of
the team.

All of the Above
A third option is to have programmers run the tools in a mode that pro-
duces only high-confidence results, and use the security team to conduct
more thorough but less frequent reviews. This imposes less of a burden on
the programmers, while still allowing them to catch some of their own mis-
takes. It also encourages interaction between the security team and the
development team. No question about it, joint teams work best. Every so

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.2 Adding Security Review to an Existing Development Process 59

0321424778_c03.qxd 5/21/07 2:32 PM Page 59

often, buy some pizzas and have the development team and the security
team sit down and run the tool together. Call it eXtreme Security, if you like.

When Is the Tool Run?

More than anything else, deciding when the tool will be run determines the
way the organization approaches security review. Many possible answers
exist, but the three we see most often are these: while the code is being writ-
ten, at build time, and at major milestones. The right answer depends on
how the analysis results will be consumed and how much time it takes to
run the tool.

While the Code Is Being Written
Studies too numerous to mention have shown that the cost of fixing a bug
increases over time, so it makes sense to check new code promptly. One way
to accomplish this is to integrate the source code analysis tool into the pro-
grammer’s development environment so that the programmer can run on-
demand analysis and gain expertise with the tool over time. An alternate
method is to integrate scanning into the code check-in process, thereby cen-
tralizing control of the analysis. (This approach costs the programmers in
terms of analysis freedom, but it’s useful when desktop integration isn’t fea-
sible.) If programmers will run the tool a lot, the tool needs to be fast and
easy to use. For large projects, that might mean asking each developer to
analyze only his or her portion of the code and then running an analysis of
the full program at build time or at major milestones.

At Build Time
For most organizations, software projects have a well-defined build process,
usually with regularly scheduled builds. Performing analysis at build time
gives code reviewers a reliable report to use for direct remediation, as well
as a baseline for further manual code inspection. Also, by using builds as a
timeline for source analysis, you create a recurring, consistent measure of
the entire project, which provides perfect input for analysis-driven metrics.
This is a great way to get information to feed a training program.

At Major Milestones
Organizations that rely on heavier-weight processes have checkpoints at
project milestones, generally near the end of a development cycle or at some
large interval during development. These checkpoints sometimes include

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

60 Chapter 3 Static Analysis as Part of the Code Review Process

0321424778_c03.qxd 5/21/07 2:32 PM Page 60

security-related tasks such as a design review or a penetration test. Logically
extending this concept, checkpoints seem like a natural place to use a static
analysis tool. The down side to this approach is that programmers might
put off thinking about security until the milestone is upon them, at which
point other milestone obligations can push security off to the sidelines. If
you’re going to wait for milestones to use static analysis, make sure you
build some teeth into the process. The consequences for ignoring security
need to be immediately obvious and known to all ahead of time.

What Happens to the Results?

When people think through the tool adoption process, they sometimes for-
get that most of the work comes after the tool is run. It’s important to decide
ahead of time how the actual code review will be performed.

Output Feeds a Release Gate
The security team processes and prioritizes the tool’s output as part of a
checkpoint at a project milestone. The development team receives the priori-
tized results along with the security team’s recommendations about what
needs to be fixed. The development team then makes decisions about which
problems to fix and which to classify as “accepted risks.” (Development
teams sometimes use the results from a penetration test the same way.) The
security team should review the development team’s decisions and escalate
cases where it appears that the development team is taking on more risk
than it should. If this type of review can block a project from reaching a
milestone, the release gate has real teeth. If programmers can simply ignore
the results, they will have no motivation to make changes.

The gate model is a weak approach to security for the same reason that
penetration testing is a weak approach to security: It’s reactive. Even though
the release gate is not a good long-term solution, it can be an effective step-
ping stone. The hope is that the programmers will eventually get tired of
having their releases waylaid by the security team and decide to take a more
proactive approach.

A Central Authority Doles Out Individual Results
A core group of tool users can look at the reported problems for one or
more projects and pick the individual issues to send to the programmers
responsible for the code in question. In such cases, the static analysis tools
should report everything it can; the objective is to leave no stone unturned.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.2 Adding Security Review to an Existing Development Process 61

0321424778_c03.qxd 5/21/07 2:32 PM Page 61

False positives are less of a concern because a skilled analyst processes the
results prior to the final report. With this model, the core group of tool users
becomes skilled with the tools in short order and becomes adept at going
through large numbers of results.

A Central Authority Sets Pinpoint Focus
Because of the large number of projects that might exist in an organization,
a central distribution approach to results management can become con-
strained by the number of people reviewing results, even if reviewers are
quite efficient. However, it is not unusual for a large fraction of the acute
security pain to be clustered tightly around just a small number of types of
issues. With this scenario, the project team will limit the tool to a small
number of specific problem types, which can grow or change over time
according to the risks the organization faces. Ultimately, defining a set of in-
scope problem types works well as a centrally managed policy, standard, or
set of guidelines. It should change only as fast as the development team can
adapt and account for all the problems already in scope. On the whole, this
approach gives people the opportunity to become experts incrementally
through hands-on experience with the tool over time.

Start Small, Ratchet Up

Security tools tend to come preconfigured to detect as much as they possibly
can. This is really good if you’re trying to figure out what a tool is capable
of detecting, but it can be overwhelming if you’re assigned the task of going
through every issue. No matter how you answer the adoption questions, our
advice here is the same: Start small. Turn off most of the things the tool
detects and concentrate on a narrow range of important and well-under-
stood problems. Broaden out only when there’s a process in place for using
the tool and the initial batch of problems is under control. No matter what
you do, a large body of existing code won’t become perfect overnight. The
people in your organization will thank you for helping them make some pri-
oritization decisions.

3.3 Static Analysis Metrics

Metrics derived from static analysis results are useful for prioritizing reme-
diation efforts, allocating resources among multiple projects, and getting
feedback on the effectiveness of the security process. Ideally, one could use

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

62 Chapter 3 Static Analysis as Part of the Code Review Process

0321424778_c03.qxd 5/21/07 2:32 PM Page 62

metrics derived from static analysis results to help quantify the amount of
risk associated with a piece of code, but using tools to measure risk is tricky.
The most obvious problem is the unshakable presence of false positives and
false negatives, but it is possible to compensate for them. By manually audit-
ing enough results, a security team can predict the rate at which false posi-
tives and false negatives occur for a given project and extrapolate the
number of true positives from a set of raw results. A deeper problem with
using static analysis to quantify risk is that there is no good way to sum up
the risk posed by a set of vulnerabilities. Are two buffer overflows twice as
risky as a single buffer overflow? What about ten? Code-level vulnerabilities
identified by tools simply do not sum into an accurate portrayal of risk. See
the sidebar “The Density Deception” to understand why.

Instead of trying to use static analysis output to directly quantify risk,
use it as a tactical way to focus security efforts and as an indirect measure of
the process used to create the code.

The Density Deception

In the quality assurance realm, it’s normal to compute the defect density for a piece of

code by dividing the number of known bugs by the number of lines of code. Defect

density is often used as a measure of quality. It might seem intuitive that one could use

static analysis output to compute a “vulnerability density” to measure the amount of

risk posed by the code. It doesn’t work. We use two short example programs with some

blatant vulnerabilities to explain why. First up is a straight-line program:

1 /* This program computes Body Mass Index (BMI). */

2 int main(int argc, char** argv)

3 {

4 char heightString[12];

5 char weightString[12];

6 int height, weight;

7 float bmi;

8

9 printf("Enter your height in inches: ");

10 gets(heightString);

11 printf("Enter your weight in pounds: ");

12 gets(weightString);

13 height = atoi(heightString);

14 weight = atoi(weightString);

15 bmi = ((float)weight/((float)height*height)) * 703.0;

16

17 printf("\nBody mass index is %2.2f\n\n", bmi);

18 }

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.3 Static Analysis Metrics 63

Continues

0321424778_c03.qxd 5/21/07 2:32 PM Page 63

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

64 Chapter 3 Static Analysis as Part of the Code Review Process

The program has 18 lines, and any static analysis tool will point out two glaring

buffer overflow vulnerabilities: the calls to gets() on lines 10 and 12. Divide 2 by 18

for a vulnerability density of 0.111. Now consider another program that performs

exactly the same computation:

1 /* This program computes Body Mass Index (BMI). */

2 int main(int argc, char** argv)

3 {

4 int height, weight;

5 float bmi;

6

7 height = getNumber("Enter your height in inches");

8 weight = getNumber("Enter your weight in pounds");

9 bmi = ((float)weight/((float)height*height)) * 703.0;

10

11 printf("\nBody mass index is %2.2f\n\n", bmi);

12 }

13

14 int getNumber(char* prompt) {

15 char buf[12];

16 printf("%s: ", prompt);

17 return atoi(gets(buf));

18 }

This program calls gets(), too, but it uses a separate function to do it. The result

is that a static analysis tool will report only one vulnerability (the call to gets() on line

17). Divide 1 by 18 for a vulnerability density of 0.056. Whoa. The second program is

just as vulnerable as the first, but its vulnerability density is 50% smaller! The moral to

the story is that the way the program is written has a big impact on the vulnerability

density. This makes vulnerability density completely meaningless when it comes to

quantifying risk. (Stay tuned. Even though vulnerability density is terrible in this context,

the next section describes a legitimate use for it.)

Metrics for Tactical Focus

Many simple metrics can be derived from static analysis results. Here we
look at the following:

• Measuring vulnerability density
• Comparing projects by severity
• Breaking down results by category
• Monitoring trends

Continued

0321424778_c03.qxd 5/21/07 2:32 PM Page 64

Measuring Vulnerability Density
We’ve already thrown vulnerability density under the bus, so what more
is there to talk about? Dividing the number of static analysis results by the
number of lines of code is an awful way to measure risk, but it’s a good way
to measure the amount of work required to do a complete review. Compar-
ing vulnerability density across different modules or different projects helps
formulate review priorities. Track issue density over time to gain insight into
whether tool output is being taken into consideration.

Comparing Projects by Severity
Static analysis results can be applied for project comparison purposes.
Figure 3.3 shows a comparison between two modules, with the source code
analysis results grouped by severity. The graph suggests a plan of action:
Check out the critical issues for the first module, and then move on to the
high-severity issues for the second.

Comparing projects side by side can help people understand how much
work they have in front of them and how they compare to their peers.
When you present project comparisons, name names. Point fingers. Some-
times programmers need a little help accepting responsibility for their code.
Help them.

Figure 3.3 Source code analysis results broken down by severity for two subprojects.

0

10

20

30

40

50

Critical High Medium Low

Orion Project
Tilde Project

Is
su

es

Severity

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.3 Static Analysis Metrics 65

0321424778_c03.qxd 5/21/07 2:32 PM Page 65

Breaking Down Results by Category
Figure 3.4 presents results for a single project grouped by category. The pie
chart gives a rough idea about the amount of remediation effort required
to address each type of issue. It also suggests that log forging and cross-site
scripting are good topics for an upcoming training class.

Figure 3.4 Source code analysis results broken down by category.

Source code analysis results can also point out trends over time. Teams
that are focused on security will decrease the number of static analysis find-
ings in their code. A sharp increase in the number of issues found deserves
attention. Figure 3.5 shows the number of issues found during a series of
nightly builds. For this particular project, the number of issues found on
February 2 spikes because the development group has just taken over a
module from a group that has not been focused on security.

Figure 3.5 Source code analysis results from a series of nightly builds. The spike in issues
on February 2 reflects the incorporation of a module originally written by a different team.

29-Jan 30-Jan 31-Jan 1-Feb 2-Feb 3-Feb 4-Feb
0

10

20

30

40

50

Is
su

es

Date

Cross-Site Scripting (12)

Race Condition (2)
Privacy Violation (3)

Log Forging (12)

Password Management (1)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

66 Chapter 3 Static Analysis as Part of the Code Review Process

0321424778_c03.qxd 5/21/07 2:32 PM Page 66

Process Metrics

The very presence of some types of issues can serve as an early indicator of
more widespread security shortcomings [Epstein, 2006]. Determining the
kinds of issues that serve as bellwether indicators requires some experience
with the particular kind of software being examined. In our experience, a
large number of string-related buffer overflow issues is a sign of trouble for
programs written in C.

More sophisticated metrics leverage the capacity of the source code
analyzer to give the same issue the same identifier across different builds.
(See Chapter 4, “Static Analysis Internals,” for more information on issue
identifiers.) By following the same issue over time and associating it with
the feedback provided by a human auditor, the source code analyzer can
provide insight into the evolution of the project. For example, static analy-
sis results can reveal the way a development team responds to security
vulnerabilities. After an auditor identifies a vulnerability, how long, on
average, does it take for the programmers to make a fix? We call this vul-
nerability dwell. Figure 3.6 shows a project in which the programmers fix
critical vulnerabilities within two days and take progressively longer to
address less severe problems.

Figure 3.6 Vulnerability dwell as a function of severity. When a vulnerability is identified,
vulnerability dwell measures how long it remains in the code. (The x-axis uses a log scale.)

Vulnerability Dwell

60

25

4

2

100101

Low

Medium

High

Critical

S
ev

er
it

y

Days

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

3.3 Static Analysis Metrics 67

0321424778_c03.qxd 5/21/07 2:32 PM Page 67

Static analysis results can also help a security team decide when it’s time
to audit a piece of code. The rate of auditing should keep pace with the rate
of development. Better yet, it should keep pace with the rate at which poten-
tial security issues are introduced into the code. By tracking individual issues
over time, static analysis results can show a security team how many unre-
viewed issues a project contains. Figure 3.7 presents a typical graph. At the
point the project is first reviewed, audit coverage goes to 100%. Then, as
the code continues to evolve, the audit coverage decays until the project is
audited again.

Another view of this same data gives a more comprehensive view of
the project. An audit history shows the total number of results, number of
results reviewed, and number of vulnerabilities identified in each build.
This view takes into account not just the work of the code reviewers, but
the effect the programmers have on the project. Figure 3.8 shows results
over roughly one month of nightly builds. At the same time the code
review is taking place, development is in full swing, so the issues in the
code continue to change. As the auditors work, they report vulnerabilities
(shown in black).

Figure 3.7 Audit coverage over time. After all static analysis results are reviewed, the
code continues to evolve and the percentage of reviewed issues begins to decline.

1-
Feb

1-
M

ar

1-
Apr

0%

50%

100%

1-
Ja

n

Date

P
er

ce
n

t
Is

su
es

 R
ev

ie
w

ed

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

68 Chapter 3 Static Analysis as Part of the Code Review Process

0321424778_c03.qxd 5/21/07 2:32 PM Page 68

Figure 3.8 Audit history: the total number of static analysis results, the number of
reviewed results, and the number of identified vulnerabilities present in the project.

Around build 14, the auditors have looked at all the results, so the total
number of results is the same as the number reviewed. Development work is
not yet complete, though, and soon the project again contains unreviewed
results. As the programmers respond to some of the vulnerabilities identified
by the audit team, the number of results begins to decrease and some of the
identified vulnerabilities are fixed. At the far-right side of the graph, the
growth in the number of reviewed results indicates that reviewers are begin-
ning to look at the project again.

Summary

Building secure systems takes effort, especially for organizations that aren’t
used to paying much attention to security. Code review should be part of the
software security process. When used as part of code review, static analysis
tools can help codify best practices, catch common mistakes, and generally
make the security process more efficient and consistent. But to achieve these
benefits, an organization must have a well-defined code review process. At a
high level, the process consists of four steps: defining goals, running tools,
reviewing the code, and making fixes. One symptom of an ineffective
process is a frequent descent into a debate about exploitability.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Total Issues Found

Issues Reviewed

Vulnerabilities

Build Number

Is
su

es
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 S H O R

39 R E G

40 L O N G

Summary 69

0321424778_c03.qxd 5/21/07 2:32 PM Page 69

To incorporate static analysis into the existing development process, an
organization needs a tool adoption plan. The plan should lay out who will
run the tool, when they’ll run it, and what will happen to the results. Static
analysis tools are process agnostic, but the path to tool adoption is not.
Take style and culture into account as you develop an adoption plan.

By tracking and measuring the security activities adopted in the devel-
opment process, an organization can begin to sharpen its software security
focus. The data produced by source code analysis tools can be useful for
this purpose, giving insight into the kinds of problems present in the code,
whether code review is taking place, and whether the results of the review
are being acted upon in a timely fashion.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

H O R T 38
R E G 39

L O N G 40

70 Chapter 3 Static Analysis as Part of the Code Review Process

0321424778_c03.qxd 5/21/07 2:32 PM Page 70

