
(the company’s CSO) received quite a few apologies. Immediately afterwards, he began
lobbying for stronger change controls and clearer separations of duties.

Three key metrics can help organizations understand the degree of change control an
organization possesses. All of these assume the organization keeps track of changes to
production systems:

• The number of production changes

• The number of exemptions

• The number of unauthorized changes (violations)

These metrics are typically tracked on a per-period basis, and for additional insights they
can be sliced by business unit or technology area. The latter two, exemptions and viola-
tions, are related. An “exemption” represents a change that was granted for exceptional
reasons and required implementation outside of normal maintenance hours. Emergency
fixes and other out-of-cycle changes require exemptions.

An interesting variation on the exemption metric is one that divides the number of
exemptions into the number of changes. This results in a percentage that shows how
many changes are made out-of-cycle. When grouped by business unit, this metric pro-
vides evidence that helps IT organizations finger the twitchiest and most cowboy-like
business units.

Unauthorized changes, also known as violations, measure the number of changes that
were applied without approval. This number, obviously, should be as close to zero as
possible.

APPLICATION SECURITY

Applications are the electronic engines that drive most businesses. Microsoft Office, web
servers, order-management software, supply chain management, and ERP systems are all
applications that businesses rely on every day. Applications automate firms’ workforce
activities, pay their bills, and serve customers. Applications come in many shapes and
sizes: in-house developed, packaged, outsourced, and served on demand.

As important as applications are to the fortunes of most organizations, they also rep-
resent points of potential weakness. Application threat vectors, although they are less
well understood than network-based threats, are just as important. As long ago as 2002,
Garter Group stated that 75 percent of attacks tunneled through or used application-
related threat vectors.27

APPLICATION SECURITY

73

27 D. Verton, “Airline Web Sites Seen as Riddled with Security Holes,” Computerworld, 4 Feb. 2002.

For companies with custom-developed applications, the manner in which the soft-
ware was developed matters. Software written without sufficient attention to security
issues carries much more risk than software that adheres to generally accepted principles
for coding secure software—as much as five times more risk, based on my previous
research.28

Measuring the relative security of application code is hard. The security industry has
not arrived at a consensus about exactly what it means to build a “secure application.”
Although definitions vary, there are at least three potential ways to measure application
security (see Table 3-5): by counting remotely and locally exploitable flaws without
knowledge of the code (black-box metrics), by counting design and implementation
flaws in the code (code security metrics), and by creating qualitative risk indices using a
weighted scoring system (qualitative process metrics and indices).

Table 3-5 Application Security Metrics

CHAPTER 3 DIAGNOSING PROBLEMS AND MEASURING TECHNICAL SECURITY

74

28 A. Jaquith, “The Security of Applications: Not All Are Created Equal,” @stake, Inc., 2002.

Metric Purpose Sources

Black-Box Defect Metrics

Defect counting Shows externally identified
defects due to implementation
or design flaws

Black-box testing tools

Vulnerabilities per application
(number [#])

• By business unit

• By criticality

• By proximity

Measures the number of
vulnerabilities that a potential
attacker without prior knowledge
might find

Black-box assessments by
security consultants

Qualitative Process Metrics and Indices

Business-adjusted risk Simple formula for scoring the
business impact and criticality
of vulnerabilities identified in
security assessments

Security assessments

Spreadsheets

Application conformance indices Creates a score for ranking
the overall security posture for
an application or group of
applications

Questionnaires

Spreadsheets

BLACK-BOX DEFECT METRICS

Perhaps the most dramatic and headline-grabbing type of application security metric is
of the black-box variety—that is, how many holes we can drill in one application com-
pared to another. Black-box testing involves assessing an application, typically remotely
via the web. The method of assessment varies. For high-volume testing, automated
black-box testing tools from SPI Dynamics, Cenzic, and Watchfire allow companies
(or consultants) to quickly scan a large number of deployed applications for potential
vulnerabilities.

APPLICATION SECURITY

75

Metric Purpose Sources

Code Security Metrics

Assessment frequency for
developed applications

• % with design reviews

• % with application
assessments

• % with code reviews (optional)
of sensitive functions

• % with go-live penetration tests

Measures how often security
quality assurance “gates”
are applied to the software
development life cycle for
custom-developed applications.

Manual tracking

Lines of code (LOC)

Thousand lines of code (KLOC) Shows the aggregate size of a
developed application

Code analysis software

Defects per KLOC Characterizes the incidence rate of
security defects in developed code

Code analysis software

Vulnerability density
(vulnerabilities per unit of code)

Characterizes the incidence rate of
security defects in developed code

Code analysis software

Known vulnerability density
(weighted sum of all known
vulnerabilities per unit of code)

Characterizes the incidence rate
of security defects in developed
code, taking into account the
seriousness of flaws

Code analysis software

Tool soundness Estimates the degree of error
intrinsic to code analysis tools

Code analysis software

Spreadsheets

Cyclomatic complexity Shows the relative complexity
of developed code. Indicates
potential maintainability issues
and security trouble spots.

Code analysis software

Automated tools are best suited to testing web applications. A typical black-box web
security testing tool “spiders” an application by starting at a known URL
(http://www.foo.com/myapp) and following every related hyperlink until it has discov-
ered all the website’s pages. After the spider enumerates the application’s pages, an auto-
mated “fuzzer” or “fault injector” examines the web forms on each page, looking for
weaknesses. For example, the fuzzer might see an account registration form that contains
a field into which a new user is meant to type her first name. The goal of the fault injec-
tor is to see what happens when it sets the field value to something the server-side logic
won’t expect—like 10,000 letter A’s, SQL statements, or shell code.

In the nonautomated camp are security consultants who conduct tests as part of a
formally scoped engagement. Consultants tend to be much more expensive than an
automated black-box tool but can find issues that the tools cannot. They can also exer-
cise their creativity to dig deeper and find root causes. On the other hand, the level of
analytical rigor and degree of methodological consistency vary from consultant to con-
sultant.

Regardless of the method used, the objective of testing is the same: to find vulnerabili-
ties (defects) that can be exploited to compromise the application’s integrity, confiden-
tiality, or availability. The categories of flaws that black-box tools and consultants tend to
find include:

• SQL injection: Manipulating submitted web form fields to trick databases into dis-
gorging sensitive information

• Command injection: Executing native operating system commands on the web
server

• Parameter tampering: Changing submitted web form fields to change the applica-
tion state

• Cross-site scripting: Submitting malformed input that will cause subsequent users
to execute malicious JavaScript commands that hijack their sessions or capture data

• Buffer overflows: Overfilling a server-side buffer in an effort to make the server
crash, or to take it over remotely

At the end of the assessment, the tool or consultant adds up and summarizes any defects
found for prioritization. Results of black-box tests are typically simple counts of what
defects were found, the category to which they belong, and where. Security consultants
generally, as part of the engagement, prioritize the vulnerabilities they find and assign
them a criticality rating (high, medium, low).

Enterprises that rely on black-box testing techniques to provide application security
metrics, in my experience, do not care too much about defects that aren’t marked as

CHAPTER 3 DIAGNOSING PROBLEMS AND MEASURING TECHNICAL SECURITY

76

http://www.foo.com/myapp

critical. They do fix severe issues that could lead to a remote compromise or disclose sen-
sitive data. Thus, in Table 3-5 we recommend that organizations group vulnerabilities by
criticality. Other cross sections that companies find useful include by business unit and
by proximity. Was the defect remotely exploitable, or could the exploit succeed only
when the attacker was logged in locally to the server?

QUALITATIVE PROCESS METRICS AND INDICES

Qualitative assessments earlier on in the application life cycle uncover issues before they
become bona fide vulnerabilities in the field. Assessments go by many names. During my
tenure at @stake, we performed all manner of application assessments at different stages
in the application development life cycle (see Table 3-6):

• Design reviews at the midpoint of the design stage

• Architecture assessments at the midpoint of development

• Code reviews (optional) at the end of development for sensitive functions

• Penetration tests prior to deployment

Table 3-6 Qualitative Assessments by Phase of Software Development

Design Review Architecture Code Review Penetration Test
Assessment

Test Type

Goals Validation of Verification of Focused Identification of
security implemented examination of deployment flaws
engineering security standards sensitive functions
principles

Identifies gaps Finds potential Finds Finds “real-world”
compared to architectural development flaws vulnerabilities
security standards weaknesses

Recommended Testing

External public-facing Yes Yes Yes Yes

External partner-facing Yes Yes Yes Yes

Internal enterprise Yes Yes Optional Optional

Internal departmental Optional Yes Optional Optional

APPLICATION SECURITY

77

Enterprises that want to quantify the spread of secure development processes can meas-
ure the frequency with which they conduct these activities. Of these activities, penetra-
tion tests (also known as “ethical hacking” or “black-box testing”) are the best known.
Black-box testing uncovers issues in software that an organization has already deployed
or has in the field. But not all applications that need testing are always in the field;
indeed, one might argue that post-deployment black-box testing comes far too late to
uncover important issues. It is always best to detect potential design flaws as early as pos-
sible, either through qualitative assessments or via automated code security tools (which
I describe later in this chapter).

The first two activities, design reviews and architecture assessments and code, provide
qualitative measures of application security. When an organization embarks on a sub-
stantive effort to assess applications qualitatively, it must possess a defensible methodol-
ogy for evaluating and scoring defects. If it does not, the results of different assessments
will vary wildly, giving management an excuse not to trust the numbers they see.

Frankly, there is no easy solution for guaranteeing that all team members involved in
assessing applications will use the same methodology each time. Every person offers dif-
ferent experiences, creative urges, biases, and interpretations. However, organizations can
and should implement standard definitions for terms like “risk” and “impact” that are as
unambiguous as possible. In addition, managers should ask team members to agree to
use a standard formula for “scoring” application assessments. If an organization can
standardize on definitions and scoring formulas, it can partially mitigate the risk of
inconsistency.

Business-Adjusted Risk

A common scoring technique is to define an index formula that assigns an overall risk
number to defects. Here, I will discuss two that I am familiar with: the @stake business-
adjusted risk (BAR) formula for scoring vulnerabilities, and a broader, more general
application security index suitable for scoring applications as a whole.

BAR is a technique I invented along with colleagues at @stake, an Internet security
consultancy. During its life span from 1999 to 2004, @stake conducted hundreds of
application assessments using the exact same formula. BAR classifies security defects by
their vulnerability type, degree of risk, and potential business impact. When assessing an
application, for each security defect we calculated a BAR score as follows:

BAR (1 to 25) = business impact (1 to 5) × risk of exploit
(1 to 5, depending on business context)

Risk of exploit indicates how easily an attacker can exploit a given defect. A score of 5
denotes high-risk, well-known defects an attacker can exploit with off-the-shelf tools or

CHAPTER 3 DIAGNOSING PROBLEMS AND MEASURING TECHNICAL SECURITY

78

canned attack scripts. A score of 3 indicates that exploiting the defect requires inter-
mediate skills and knowledge, such as the ability to write simple scripts. Finally, only a
professional-caliber malicious attacker can exploit certain classes of defects; we give these
defects a score of 1.

Business impact indicates the damage that would be sustained if the defect were
exploited. An impact score of 5 represents a flaw that could cause significant financial
impact, negative media exposure, and damage to a firm’s reputation. A score of 3 indi-
cates that a successful exploit could cause limited or quantifiable financial impact, and
possible negative media exposure. Defects that would have no significant impact (mone-
tary or otherwise) receive a score of 1.

BAR is a simple tool for scoring applications: the higher the score, the higher the risk.
Because BAR includes relative ratings for both likelihood of occurrence and business
impact, it moves in the same direction as insurers’ annual loss expectancy calculations.

BAR suffers from several defects. First, its estimation method is fast and light rather
than precise, and it does not quantify risk in terms of time or money. Second, scores are
heavily biased by the availability (or lack thereof) of attack scripts and exploit code. BAR
scores, therefore, are necessarily temporal—when a hacker or researcher releases exploit
code, it changes the score. We believed that this quality was (and is) true to the way the
world works, but in practice it causes BAR scores to understate risks over time as new
exploits become available. Newer metrics like the Common Vulnerability Scoring System
(CVSS) explicitly support temporal adjustments and as such represent an improvement
over BAR.

That said, at @stake we were able to successfully and consistently replicate the BAR
method over hundreds of engagements. To give you an idea of how BAR works in prac-
tice, in 2002 I released a paper called “The Security of Applications: Not All Are Created
Equal,” which analyzed 45 e-business applications (commercial packages, middleware
platforms, and end-user e-commerce applications). We used outlier analysis on 23 of the
assessments in our survey. For each engagement, we calculated an overall business risk
index, based on the sum of the individual BAR scores. We ranked engagements by their
index scores (highest to lowest) and divided them into quartiles. Engagements with the
lowest business risk index formed the first quartile; those with the highest formed the
fourth. The most-secure applications in our analysis contained, on average, one-quarter
of the defects found in the least-secure. The top performers’ reduced defect rates also
translated into much lower risk scores. The least-secure applications had a BAR score six
times that of the most-secure: the fourth quartile had an average BAR score of 332, and
the first had an average score of 60. (You can see a graphical depiction of the BAR scores
in Figure 6-8 in Chapter 6, “Visualization.”)

APPLICATION SECURITY

79

Application Scoring Indices

Variations on indices for counting and rating specific application defects, such as the
BAR technique I described, are common ways to “score” application security. As I men-
tioned, however, any risk index technique that relies on humans to discern between qual-
itative levels of risk is prone to inconsistencies.

An alternative technique to the various vulnerability-rating methods is a scoring tech-
nique that eliminates considerations for things that might happen (such as a vulnerabil-
ity that “could result in financial damage to multiple business units”) and replaces them
with simple, declarative statements about things that do happen (“the server encrypts
sensitive data”). Although some subjectivity remains, it is easier to debate about facts
instead of hypothetical outcomes. Scoring systems do not necessarily linearly relate to
risk; they sacrifice a certain amount of precision for speed and repeatability.

A sample scoring technique that focuses on factual questions is something I have
loosely called the Application Insecurity Index (AII).29 The idea is to create a fast and
lightweight application scoring method that assigns points based on whether particular
applications meet (or do not meet) specific guidelines and practices. Fact-based ques-
tions that result in binary yes/no answers serve as the basis of the score. Figure 3-1 shows
the Application Insecurity Index components. The potential score ranges from 8 to 48;
lower scores are better.

The AII contains three primary areas: business importance, technology alignment (or
lack thereof), and assessment oversight activities:

• Business importance scores consider the application’s importance to the organiza-
tion: whether the application faces the Internet, contains sensitive data, costs the
organization money when down, or processes business transactions.

• Technology outlier scores put a number on the degree to which the application fol-
lows prescribed organizational guidelines for eight security topics, including authen-
tication, data classification, validation of user input and output, role-based access
control, and identity management.

• Assessed risk scores highlight the application’s relative riskiness based on whether
the application might be considered subject to regulatory inspection or review, such
as Sarbanes-Oxley or the European Union Privacy Directive. It also scores whether
the application carries any risks associated with third-party code development
or data storage, and whether the application has received a technical security
assessment.

CHAPTER 3 DIAGNOSING PROBLEMS AND MEASURING TECHNICAL SECURITY

80

29 Feel free to scream.

Figure 3-1 Application Insecurity Index

By design, AII gives the highest scores to applications that serve the most critical business
functions, deviate the most from appropriate technical security standards, and have the
highest exposures to regulations and identified security vulnerabilities. Also by design,
AII focuses on facts that can be quickly ascertained through a lightweight interview
process or questionnaire. An application:

• Processes customer transaction data—or not

• Faces the Internet—or not

• Meets requirements for role-based access control to govern authorization—or not

• Handles sensitive data properly—or not

• Has been assessed for application vulnerabilities—or not

• Contains code developed offshore—or not

Criteria for judging standards compliance are likewise straightforward (see Table 3-7).
For example, an organization’s identity management standard might specify that appli-
cations must authenticate users against a centralized LDAP directory, and that external
applications used by contractors and partners must be authenticated against a separate
directory replica. Scoring compliance for these criteria is easy—the application architects
and system administrators will know the answers, and they will not be subject to ambi-
guity or interpretation.

APPLICATION SECURITY

81

erocSksiRtnemssessAerocSreiltuOygolonhceTerocSecnatropmIssenisuB

tnemssessalacinhceT)stniop2-0(noitacitnehtuA)stniop4-1(noitcnufssenisuB
4 Customer account processing 2 Does not meet requirements 8 Not assessed

dnuofseitilibarenluvksir-hgiH6nwonknurossenisuberoc/lanoitcasnarT3
dnuofseitilibarenluvksir-muideM4enilesabsteemyllaitraP1gnissecorp

dnuofseitilibarenluvksir-woL2tnemeriuqerenilesabsteemylluF0gnicaf-cilbup,lennosreP2
1 Departmental/back office

Data classification (0-2 points) Regulatory exposure
Access scope (1-4 points) weiveryrotalugeron/nwonknU4…
4 External public-facing Input/output validation (0-2 points) 3 Subject to Sarbanes-Oxley, EU

ycavirPenilnOainrofilaC,evitceriDycavirP…gnicaf-rentraplanretxE3
2 Internal enterprise Role-based access control (0-2 pts) Protection Act (SB 68)

snoitalugerrehtoottcejbuS2…latnemtrapedlanretnI1
Security requirements 1 Not subject to regulation

)stniop2-0(noitatnemucod)stniop4-1(ytivitisnesataD
…ottcejbus/atadremotsuC4 Third-party risks

regulator fines Sensitive data handling (0-2 points) 4 Code and data offshore
3 Company proprietary & confi erohsffoedoC3…laitned
2 Company non-public User identity management (0-2 pts) 2 Outsourced development (US)

tnempolevedesuoh-nI1…cilbuP1
Network/firewall architecture

Availability impact (1-4 points) (0-2 pounts)
4 > $10m loss, serious damage to

reputation
3 > $2m loss, minor damage to reputation
2 < $2m loss, mimimal damage to reputation
1 Limited or no losses

)stniop61-4(latoT)stniop61-0(latoT)stniop61-4(latoT

Lightweight scoring systems like AII should be just that: lightweight. They should take
only a few minutes to complete and need not exhaustively score every possible technical
or business criterion. When designing such a system, be careful not to rate everything—
just high-priority items. It is also important to keep baseline criteria concise and objec-
tive. Speed trumps precision.

Table 3-7 Technology Outlier Criteria

Criterion Standard

Authentication Sensitive applications require multifactor authentication
(username, password, token). Web-based applications require
form-based authentication over SSL.

Data classification The application provides controls for managing different classes
of information sensitivity, as appropriate.

Input/output validation User-supplied input is sanitized before use by the application.
Data sent to users are cleansed of malformed or malicious
output.

Network/firewall environment Externally facing Internet applications use a DMZ for web
servers, with a separate zone for application servers and
databases. Internal core business application servers reside in
protected internal subnetworks.

Role-based access control The application provides separate roles for general users, admin-
istrators, and line-of-business roles. Access control rules are
expressed as appropriate for roles rather than for named users.

Security requirements documentation Requirements for authentication, data classification, and so
on are explicitly defined in the work order or design
documentation.

Sensitive data handling User credentials are encrypted when in transit. Passwords and
sensitive data are encrypted when in storage.

User identity management For corporate applications, user identities are stored in corporate
LDAP or Active Directory. External/partner identities are stored
in a dedicated LDAP/AD replica.

AII is not a standard—it is my own interpretation of a method organizations can use to
quickly get a handle on potential trouble spots in their application portfolios. More for-
mal methods for assessing application risk exist, of course.

CHAPTER 3 DIAGNOSING PROBLEMS AND MEASURING TECHNICAL SECURITY

82

More formal methods for assessing and scoring application risk include the Relative
Attack Surface Quotient (RASQ) methodology popularized by Microsoft’s Michael
Howard and two researchers from Carnegie-Mellon, Jon Pincus and Jeannette Wing.
Carnegie-Mellon’s OCTAVE method is another.

RASQ attempts to quantify the number and kinds of vectors available to an attacker.30

At a system level, analysts identify the relative “attackability” of an application by model-
ing the potential targets, channels facilitating the attack, and access rights. The net result
is a single number capturing the relative size of the attack surface. The advantage of
RASQ is that it benefits from a formally developed threat model. Howard, Pincus, and
Wing’s papers contain good discussion and labeling of generic attack vectors, which
helps practitioners.

That said, certain aspects of RASQ make it less suitable as an enterprise scoring
method for a portfolio of applications. Critically, RASQ works best when it analyzes a
single application over time. But its metrics are not comparable across multiple
applications (hence the “Relative” part of the name). In short, RASQ has lots of promise,
but it is not a useful metric—yet—that can be consistently measured and cheaply gath-
ered. Research continues, however.

CODE SECURITY METRICS

So far I have discussed qualitative metrics for measuring the security of applications.
These qualitative metrics are best used to estimate the risk exposure of applications as a
whole. They do not assume any particular inside knowledge about the stuff that applica-
tions are actually made of: software code.

Code security metrics tackle measurement of software quality directly. A great body of
software development metrics, generally speaking, has sprung up over the last twenty
years, and many of these are finding their way into security.

First, consider “code volume” metrics. These count the number of lines or code in an
application, or the discrete number of features and functions it provides. One of the
most common code-volume metrics is “lines of code” (LOC); many people prefer to
measure code by thousands of lines as well (KLOC). As an alternative to LOC counting,
some methods simply count “statements” instead of lines of code.31

APPLICATION SECURITY

83

30 M. Howard, J. Pincus, and J. Wing, “Measuring Relative Attack Surfaces,” 2003, http://www.cs.cmu.edu/
~wing/publications/Howard-Wing03.pdf. Manadhata and Wing, “Measuring a System’s Attack Surface,”
2004, http://reports-archive.adm.cs.cmu.edu/anon/2004/CMU-CS-04-102.pdf.

31 Methodology issues occasionally arise with respect to pure LOC counting. Specifically, what constitutes a
“line of code”? Does a single statement, split for readability, count for multiple lines? For this reason, the
popular Java tool CheckStyle measures code volume by counting statements rather than lines of code.
http://checkstyle.sourceforge.net/.

http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf
http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2004/CMU-CS-04-102.pdf
http://checkstyle.sourceforge.net/

A more subjective metric is “Use Case Points,” which counts the number of “use cases”
an application supports by analyzing functions with respect to who uses them and under
what scenarios. Use Case Points suffer from methodological inconsistencies and the rela-
tively high amount of effort needed to count them, whereas KLOC can be counted easily
by machine.

Code volume metrics are not directly related to security, but they provide texture,
depth, and context. They become much more interesting when combined with statistics
about security defects. By “defect,” we mean a flaw in the code as detected by an auto-
mated code-scanning program like RATS, ITS4 (open-source) or Klocwork, Coverity,
Ounce Labs, or Fortify Software. Typical flaws detected by these programs include unsafe
memory handling, lack of validation of user input, and dead (unreachable) code blocks.
Thus, a common code security metric is “defect density,” defined as the number of
defects per unit of code (such as KLOC). In August 2005, The Software Assurance
Metrics and Tool Evaluation (SAMATE) working group, a project of NIST, identified
defect density as an important metric.32

Defect density is not perfect, because it characterizes only raw ratios of flaws in appli-
cations. Density numbers do not prioritize issues or difficulty of exploit, as colleague
Adam Shostack explains:

“I think defect density is hard. I’ll trade just about anything for a gets on a socket. So

if program A has a strcpystrcpySTEST of some data, and program B has a getsgets on that data, I

think there’s a qualitative difference. Is it quantifiable? Hard to say. You could say

either will get you rootroot, but maybe one is easier to exploit. Five minutes versus ten is a

two-to-one difference.”33

Other variations on defect density include “known vulnerability density,” defined as the
number of known vulnerabilities per unit of code, and Ounce Labs’ “V-density” metric,
which is a weighted sum of all known vulnerabilities. V-density corrects for the rawness
of pure defect density numbers by giving heavier weights to the most serious security
flaws.

Vulnerability density metrics provide rough quantitative scores of software quality.
The primary benefit of density metrics is that they can be calculated consistently across
an organization’s application development portfolio. On the flip side, critics of vulnera-
bility density metrics contend that the state of the art in code scanning is not very good

CHAPTER 3 DIAGNOSING PROBLEMS AND MEASURING TECHNICAL SECURITY

84

32 “Metrics for Software and Metrics for Tools,” 10 August 2005, SAMATE, Paul Black (PPT), as reported
and retyped by Chris Wysopal. A majority of the metrics in the Code Security section are derived from
SAMATE’s excellent summation.

33 Adam Shostack, e-mail to securitymetrics.org mailing list, 19 September 2005

and suffers from two problems: accuracy and lack of knowledge of certain classes of
flaws. With respect to the first problem, most tools tend to overstate the number of vul-
nerabilities present in code. Fred Cohen explains why accuracy has long been an issue:

“The automated code base checking market is still pretty immature and problematic in

several ways, most notably the large number of false positives for most tools. The tools

really don’t seek to understand the code, they tend to be syntactic-based or based on

following paths through execution, but they fail to handle lots of things well. . . . Folks

at big software companies have programmers that intentionally avoid the stronger

solutions in favor of what they understand or what is easier—seat of the pants, so to

speak. But still, [the tools] do successfully find the really obvious ones that cause most

of the currently exploited errors.”34

Chris Wysopal makes the same point more concisely, and wonders whether automated
tools will ever be good enough to detect all the serious types of flaws:

“The challenge with vulnerability density scores is this: how do you work in false posi-

tive and false negative rates, especially the fact that the tool may not have the capabil-

ity of detecting many classes of security flaws?”

Both of these gentlemen, whose opinions I respect greatly, have a point. If you cannot
trust the tools, can you trust the metric? Generally, the answer is no.

Thus, to complement (and correct for) vulnerability density metrics, SAMATE rec-
ommends a metric called “soundness,” which denotes the number of correct defect clas-
sifications minus the false positives and false negatives, divided by the total number of
defects detected. This metric helps put the defect numbers in perspective by assigning a
potential range to the tools’ error rate. No tool can calculate soundness metrics automat-
ically. Users must work out these numbers on their own, based on their experiences with
the tools.

Sampling methods work well for calculating soundness. Users should select several
“typical” code modules and compare the results of a manual code review against an
automated scan. To calculate soundness, users count the number of defects the scanner
missed and add to this result the number of things the scans flagged incorrectly as
defects. Dividing this figure by the number of defects identified by the scan yields the
“unsoundness” metric; subtracting this percentage from 100% returns the soundness
figure.

APPLICATION SECURITY

85

34 Fred Cohen, e-mail to securitymetrics.org mailing list, 23 December 2005.

Beyond the direct security issues that scanning products can find and enumerate in
code modules, organizations should also consider the broader issue of code complexity.
Both Bruce Schneier and Dan Geer are fond of pointing out that “complex systems fail
complexly.” Modern applications are typically complex code edifices constructed with
care, built for extensibility, and possessed of more layers than a Herman Melville novel.
This is not necessarily a bad thing, but it makes it harder to find and eliminate the root
causes of security problems. Thus, if complexity contributes to insecurity, we ought to
devise methods for measuring code complexity as a leading indicator of future security
problems. Fortunately, the academy is way ahead of us.

The last twenty years have witnessed quite a bit of prior academic research into the
relationship between software complexity, defect rates, and reliability. Researchers have
theorized that complexity metrics ought to be a good predictor of reliability and the
degree to which a module is prone to faults. For example, in a study of a large telecom-
munications software project, Koshgoftaar, Allen, Kalaichelvan, and Goel concluded
that “design product metrics based on call graphs and control-flow graphs can be useful
indicators of fault-prone modules. . . . The study provided empirical evidence that in a
software-maintenance context, a large system’s quality can be predicted from measure-
ments of early development products and reuse indicators.”35 Other researchers have
arrived at similar conclusions.36

Although different schools of thought each have their favorites, many researchers feel
McCabe’s “cyclomatic complexity” metric provides an effective measure of complexity in
code. Cyclomatic complexity for a code module is defined as the minimum number of
paths that in linear combination generate all possible paths through the module.37

Modules with a high number of branching instructions, excessive nesting, or ifif/then
statements generate higher scores than simpler modules do. A cyclomatic complexity of
1 to 4 denotes relatively low complexity, 5 to 7 suggests moderate complexity, 8 to 10
denotes high complexity, and anything over 10 is considered highly complex.

Many common development tools can create cyclomatic complexity metrics. An
open-source toolkit that works well for Java code, for example, is the Project Mess

CHAPTER 3 DIAGNOSING PROBLEMS AND MEASURING TECHNICAL SECURITY

86

35 T. Koshgoftaar, E. Allen, K. Kalaichelvan, and N. Goel, “Early Quality Prediction: A Case Study in
Telecommunications,” IEEE Software, January 1996.

36 See http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/appendix.htm#418907 for a list of empiri-
cal studies investigating the relationship between complexity metrics and reliability. For a contrasting
view, see F. Lanubile and G. Visaggio, “Evaluating Predictive Quality Models Derived from Software
Measures: Lessons Learned,” January 1996, http://www2.umassd.edu/SWPI/ISERN/isern-96-03.pdf.

37 See NASA’s “IV&V Facility Metrics Data Program - Complexity Metrics” web page, at http://mdp.ivv.
nasa.gov/complexity_metrics.html.

http://www2.umassd.edu/SWPI/ISERN/isern-96-03.pdf
http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/235/appendix.htm#418907
http://mdp.ivv.nasa.gov/complexity_metrics.html
http://mdp.ivv.nasa.gov/complexity_metrics.html

Detector, aka PMD.38 The project’s slogan, amusingly enough, is “Don’t Shoot the
Messenger.” My own often over-engineered code—in case you were wondering—typi-
cally scores between a 4 and 6.

Cyclomatic complexity metrics have the advantage of being relatively easy to calculate.
This means that these metrics can be automated and compared across projects.
Cyclomatic complexity is the right metric for measuring control flow density on a per-
method and per-entity (or per-class) basis. Because security flaws are, at least some of
the time, implementation-related, cyclomatic complexity metrics can help predict which
classes/methods in an application might experience flaws. That said, the relationship of
complexity metrics to security is hypothetical rather than proven. As with any code vol-
ume metrics, organizations should consider cyclomatic complexity in the context of
additional environmental metrics to produce a true picture of risk.

Code security metrics is one of the most vibrant areas of security metrics. The metrics
I suggested in the “Code Security Metrics” section of Table 3-5 represent just a smatter-
ing of the ones that groups like SAMATE have been discussing lately. As the software
security industry comes closer to consensus on effective code security metrics, more will
emerge.

SUMMARY

Security analysts use metrics for many purposes, particularly for diagnosing problems
with their organizations’ security programs. Diagnostic security metrics borrow from
management consulting techniques by asking two questions: what hypothesis can be
formed about the efficiency or effectiveness of security controls, and what evidence can
be marshaled to support or disprove that hypothesis?

Technical security activities provide a wide variety of metrics that analysts can use as
diagnostics. Technical metrics include those that measure:

• Perimeter defenses: E-mail, antivirus software, antispam systems, firewalls, and
intrusion detection systems

• Coverage and control: The extent and reach of controls such as configuration,
patching, and vulnerability management systems

• Availability and reliability: Systems that ensure continuity and allow recovery from
unexpected security incidents

SUMMARY

87

38 “Project Mess Detector” is just one variation on the PMD acronym. See http://pmd.sourceforge.net/rules/
codesize.html for the tools—and for more amusing variants on the name.

http://pmd.sourceforge.net/rules/codesize.html
http://pmd.sourceforge.net/rules/codesize.html

• Application risks: Defects, complexity, and risk indices for custom and packaged
line-of-business applications

Technical security metrics should not simply be “fun facts” or “happy metrics” that
tell the CSO what a great job the security team is doing, such as the sheer number of
spam messages blocked by the firewall. They should reveal more interesting insights,
such as gaps in coverage (ratio of inbound to outbound viruses, patch latency), environ-
mental stability (firewall turbulence, net changes in vulnerability incidence, patches
within SLA windows), or problems with change controls (number of change control
exemptions per period, unauthorized production changes). For all these metrics, histori-
cal measurement allows analysts to trace performance over time and detect outliers.

Application security metrics represent an entirely separate measurement domain with
its own diagnostics. Black-box metrics count defects detected by scans. Process metrics
about the frequency of security reviews and go-live assessments help measure the spread
of secure development processes. Application security indices allow organizations to
quickly “score” application security risk across an entire portfolio of applications. Code
metrics such as vulnerability density and cyclomatic complexity provide raw measures of
how secure and reliable code modules are likely to be.

Technical activity metrics are ideally suited to serve as diagnostic metrics because they
fulfill many of the qualities that good metrics should have. They are expressed as num-
bers, incorporate clear units of measure, and can generally be computed on a frequent
basis because their data flow from deployed IT and security software packages.

Technical metrics are not the only ones worth considering, of course. Security pro-
gram metrics incorporate the overall processes that technical systems participate in. We
turn to these in the next chapter, “Measuring Program Effectiveness.”

CHAPTER 3 DIAGNOSING PROBLEMS AND MEASURING TECHNICAL SECURITY

88

