Chapter 4

Six Sigma Continuous Improvement

“*The significant problems we face cannot be solved at the same level of thinking we were at when we created them.”*
—Albert Einstein

4.1 SIX SIGMA CONTINUOUS IMPROVEMENT PRINCIPLES

Advancement to near perfection (maximum profitability) is virtually impossible without integration of proper engineering design, material, process, and control strategies—in other words, achieving higher standard deviations in existing and future production processes. *Six Sigma* tools uncover the unseen root causes of potential problems and attack them to eliminate defect opportunities. This means that *Six Sigma* takes the necessary measurements at the early stages of product or process development before the problem occurs. Alternatively, it will focus on the processes indicating that their sigma level is either too low and cannot improve or a high sigma level (5 or more), which is too challenging to improve. One should keep in mind that the cost of redesign or correcting aftermath problems is extremely high and costly. (See Chapter 8 for more details.)

Six Sigma can be achieved only with cross-functional groups or joint efforts throughout the organization with great intensity—that is, if it is required by corporate culture and deployed firmly. Indeed, *Six Sigma* has to be applied from raw material all the way to the finished product and the shipping department.
The performance of this is shown in Figure 4.1, the Six Sigma breakthrough model, with three main objectives: higher profit, increased value, and reduced variation. Six Sigma science of continuous improvement concentrates on two processes that each include three steps:

Process Characterization

1. Define project and process measurement (diagnosis)
2. Evaluate existing sigma (capability study)
3. Analyze process data

Process Optimization/Simulation

4. Improve and optimize process
5. Evaluate new sigma (capability study)
6. Control and maintain the process

Or the above steps can be summarized in DMAIC (define/measure [diagnosis], analyze, improve [optimize], control).

4.2 SIX SIGMA SYSTEMS

Six Sigma systems include the following concepts:

1. The fastest rate of improvement in customer satisfaction, cost, quality, process speed, and invested capital.
2. A business improvement and growth system, which leads to a new level of performance.
3. A systematic data-driven approach to analyzing the root cause of manufacturing, as well as business problems/processes and dramatically improving them.
4. Improved decisions based on knowledge and data.
5. A financial results-driven system ($ performance paramount).
6. A project-driven system based on customer needs.
7. A system applicable to all parts of a business.
8. Aimed at the problem where the solution is not known.
10. Improve customer satisfaction and supplier relationships.
11. Expand knowledge of product and processes.
12. Develop a common set of tools and improvement techniques.

Figure 4.2 illustrates the graphical representation of Six Sigma improvement steps.

4.3 SIX SIGMA IMPROVEMENT AND TRAINING MODELS

One may obtain Six Sigma training certification by completing the improvement models for Green Belt and Black Belt. These trainings are available through academic institutions, as well as quality societies or other certified organizations.
Figure 4.3 Six Sigma Green Belt improvement model.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Tools and Techniques</th>
</tr>
</thead>
</table>
| Define | Identify Business Drivers
Select Customer Critical Processes
Define Projects
Develop Implementation Plan
Affinity Diagram/
Interrelation Diagram
Quality Function Deployment
SIPOC Process Map
Project Charter |
| Measure | Develop Key Process Measures
Collect and Analyze Data
Identify the Vital Few that Have the Greatest Impact
Estimate Process Capability
Measurement Systems Analysis
Data Collection Plan
Check/Data Sheet
Pareto Chart
Pareto Chart
Gage R&R
Histogram
Process Capability |
| Analyze | Understand Cause and Effects
Create Multi-var Analysis
Determine Variance Components
Assess Correlation
Cause and Effect Diagram
Scatter Diagram |
| Improve | Develop and Evaluate Solutions
Implement Variation Reduction
Standardize Process
Assess Risk Factors
Deployment Flowchart
Tree Diagram
FMEA |
| Control | Implement Process Control
Implement Control Charts for Key Variables
Mistake Proof Processes
Evaluate Results
Process Control Plan
Control/Precontrol Chart
Poka-Yoke
Pareto Chart (ongoing)
Process Capability (ongoing) |
<table>
<thead>
<tr>
<th>Objective</th>
<th>Tools and Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define</td>
<td></td>
</tr>
<tr>
<td>Identify Business Drivers</td>
<td>Affinity Diagram</td>
</tr>
<tr>
<td>Select Customer Critical Processes</td>
<td>Interrelation Diagram</td>
</tr>
<tr>
<td>Define Projects</td>
<td>Quality Function Deployment</td>
</tr>
<tr>
<td>Develop Implementation Plan</td>
<td>SIPOC Process Map</td>
</tr>
<tr>
<td>Measure</td>
<td></td>
</tr>
<tr>
<td>Develop Key Process Measures</td>
<td>Data Collection Plan</td>
</tr>
<tr>
<td>Collect and Analyze Data</td>
<td>Check/Data Sheet</td>
</tr>
<tr>
<td>Identify the Vital Few that Have the Greatest</td>
<td>Gage R&R</td>
</tr>
<tr>
<td>Impact</td>
<td>Histogram</td>
</tr>
<tr>
<td>Estimate Process Capability</td>
<td>Process Capability</td>
</tr>
<tr>
<td>Measurement Systems Analysis</td>
<td></td>
</tr>
<tr>
<td>Analyze</td>
<td></td>
</tr>
<tr>
<td>Understand Cause and Effects</td>
<td>Cause and Effect Diagram</td>
</tr>
<tr>
<td>Create Multi-vari Analysis</td>
<td>Multi-vari Charts</td>
</tr>
<tr>
<td>Determine Variance Components</td>
<td>Scatter Diagram</td>
</tr>
<tr>
<td>Assess Correlation</td>
<td></td>
</tr>
<tr>
<td>Improve</td>
<td></td>
</tr>
<tr>
<td>Develop and Evaluate Solutions</td>
<td>Design of Experiments</td>
</tr>
<tr>
<td>Implement Variation Reduction</td>
<td>Deployment Flowchart</td>
</tr>
<tr>
<td>Standardize Process</td>
<td>Tree Diagram</td>
</tr>
<tr>
<td>Assess Risk Factors</td>
<td>FMEA</td>
</tr>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>Implement Process Control</td>
<td>Process Control Plan</td>
</tr>
<tr>
<td>Implement Control Charts for Key Variables</td>
<td>Control/Precontrol Chart</td>
</tr>
<tr>
<td>Mistake Proof Processes</td>
<td>Poke-Yoke</td>
</tr>
<tr>
<td>Evaluate Results</td>
<td>Process Chart (ongoing)</td>
</tr>
<tr>
<td></td>
<td>Process Capability (ongoing)</td>
</tr>
</tbody>
</table>

Figure 4.4 *Six Sigma* Black Belt improvement model.
On the other hand, you can apply all the procedures and guidelines of this book to any desired projects. Once you have knowledge and experience, you can participate in certified examinations through a quality organization. The training models for the Green Belt and Black Belt are cited in Figures 4.3 and 4.4. The details of these models are discussed in Chapter 8.