Getting the Most Out of the Storage You Have: Avoiding the Expensive Headaches of ‘Rip & Replace’

Marc Staimer
President & CDS
Dragon Slayer Consulting
Dragon Slayer Consulting Intro

- Marc Staimer - President & CDS
 - 14 years consulting
 - Storage, SANS, SW, networks, server, data centers, MSPs
 - Consults vendors (> 200)
 - Consults end users (> 600)
 - Market and technology analysis
 - Publishes consistently with TechTarget
 - Periodically published for trade magazines
 - 32 years industry experience
Things Are Not Always How They Appear
Plethora of New Capacity & Performance Technologies
Big Problem: Requires “Rip-out & Replace”
Leveraging New Technologies w/o “Rip-Out-Replace”
Conclusions - Recommendations
How to Cost-Effectively Handle Exponential Data Growth

- Massive **EXponential** digital data growth*
 - Unstructured data
 - Today = ~60%
 - ~62% CAGR
 - Structured data
 - Today = ~40%
 - ~21% CAGR
 - Overall CAGR
 - ~54%
 - 1.8 ZBs 2011

*Source: IDC & DSC
Exponential Data Growth Led to Plethora of New Capacity & Performance Enhancement Tech

- Thin provisioning
- Data reduction
 - Secondary & primary storage
- Auto storage tiering
- Flash SSD caching/storage
- Cloud storage
Thin Provisioning

- Increases usable capacity
 - Eliminates overprovisioning of LUNs or file stores
 - Reduces raw capacity purchase requirements
Thin Provisioning Strengths

● Reduces storage over provisioning
 - Less underutilized usable capacity
 - More storage admin flexibility
Thin Provisioning Weaknesses

- Does not reduce usable capacity requirements
- Requires some form of fail-safes
 - Auto provisioning based on utilization policies
 - Annoying alarms when thresholds are met
Data Reduction

- 3 types
 - Lossy compression
 - Lossless compression
 - Deduplication
Lossy Compression

- Solves file bloat caused by inefficient software
 - Reads & decompresses MS PowerPoint, Word, Excel, JPEGs, PDFs
 - Removes superfluous unnecessary baggage
 - E.G. junk data, or excessive resolution without
 - Reducing visual content integrity, breaking files, removing content
 - Then re-compresses them in their native format
Independent Production Results

<table>
<thead>
<tr>
<th>File Type</th>
<th>Original</th>
<th>Optimized</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerPoint</td>
<td>110MB</td>
<td>17.4MB</td>
<td>84%</td>
</tr>
<tr>
<td>Excel</td>
<td>10MB</td>
<td>2.4MB</td>
<td>72%</td>
</tr>
<tr>
<td>Word</td>
<td>10MB</td>
<td>3.2MB</td>
<td>68%</td>
</tr>
</tbody>
</table>

Results on JPEGs and PDFs are significantly lower

- 50% data reduction or less

\(^1\) Average results source:
NXPowerLite Trident Warrior Results, FORCEnet
Lossy Compression Strengths

● Very effective with Office files
 - Reduces file size forever at a very affordable license cost
 - Readable by native applications & all users
 ● No reader software required AND no rehydration is required
 - Faster backups, transfers, migrations, reads, response times

● Works cooperatively with compression & dedupe
 - Not mutually exclusive
Lossy Compression Weaknesses

- Offline disruptive post processing only
 - After hours
- Limited file format support
- Combination of art & science
 - Can permanently corrupt a file
 - More the exception than the rule
- Only 2 vendors adds to risk
 - Neuxpower with over 1M users
 - Balesio with a few hundred
Lossless Compression

- Allows exact original data reconstruction
 - From compressed data
 - Contrast to lossy data compression
 - Allows an approximation of original data to be reconstructed
 - In exchange for better compression rates
 - Lossless compression techniques involve no loss of information
 - Data recovered exactly
 - From compressed data after a compress/expand cycle
 - Generally used for "discrete" data, such as:
 - Databases, spreadsheets, document, some image & video files
 - Lossless compression algorithms are required when
 - Reconstruction must be identical to the original
Lossless Compression Strengths

- It is very effective with:
 - Uncompressed files
 - Unstructured data (DBMS)
 - Golden images
 - Redundant ISO files
 - Virtual desktop
 - Structured data

- Expect storage consumption reduction
 - Ranging from 10% to 90% & in some cases, better
Lossless Compression Weaknesses

● Additional write & read latency =
 - Longer response times
 - Compression on writes takes time
 ● There’s no free lunch
 - Data must be “rehydrated” to be read

● Compressing compressed files produces limited results
 - Office XML JPEGs PDFs CATIA CAD/CAM MP3s MP4s Zip etc.
 ● Data can actually end up being bigger
 - Encrypted data

● Doesn’t reduce duplicate data between files

\(^1\)IBM realtime compression is the exception. Add’l latency is nominal. Also works with deduped data.
Deduplication – Also Lossless

- 3 different types
 - File
 - Block or blocklet
 - Content aware
1. Storage Based File Based Dedupe

- Reduces duplicate files
- Reduces primary storage consumption by:
 - Eliminating duplicate identical files
 - Coarse granularity approach
 - Identical files
 - Any difference what-so-ever does not get deduped
File Dedupe Strengths

● Inexpensive
 - Often available @ no license fee w/some storage systems

● Very effective on:
 - Duplicate email attachments
 - Duplicate ISO files
 - Golden images (as NAS files)
 - Virtual desktop images (as NAS files)

● Usable storage capacity increases
 - Can range from 10% to 800%
 ● Depending on data type
 ● Much more for secondary versus primary storage
File Dedupe Weaknesses

- Granularity is at the file level or coarse grain
 - Only dedupes identical files
 - Any change eliminates ability to be deduped
- Add’l write & read latency = longer response times
 - File dedupe takes time
 - Data must be “rehydrated” to be read – more time
- Does not work with most compressed or encrypted files
 - Previously compressed data such as
 - MS Office, JPEGs, MP3s, MP4s, Zip, etc.
2. Storage Block or Blocklet Based Dedupe

● Reduces storage consumption by eliminating:
 - Duplicate data blocks or blocklets
 - Blocklets are sub-blocks
 ● Fewer than 512 bytes
 ● Fine granularity approach

● Similar to lossless compression
 - Except is works cross files
 ● Blocks or blocklets deduped across files
Block or Blocklet Dedupe Strengths

- Excellent dedupe
 - App, protocol, file, pathname, & block address independent

- Very effective on backup data, less so on primary
 - Duplicate email attachments
 - Duplicate ISO files
 - Golden images
 - Virtual desktop images
 - Structured data

- Market-proven

- Storage usable capacity increases
 - Can range from 20% to 1000%
 - Depending on data type
Block & Blocklet Dedupe Weaknesses

- Add’l write & read latency = longer response times
 - Block & blocklet dedupe takes time
 - Data rehydration for reads also takes time
- Does not work with most compressed or encrypted files
 - Previously compressed data such as
 - MS Office, JPEGs, MP3s, MP4s, Zip, etc.
- Designed primarily for secondary data
 - Backup, replication, etc.
 - Much lower reduction ratios with primary data
 - Tends to have a relatively high cost premium

NOTE: Inline dedupe add’l latency on new SSD systems is often insignificant
3. Content Aware Based Storage Dedupe

- Unstructured file storage object deduplication
 - Reads & decompresses files
 - Removes duplicate storage objects
 - Replaces them with pointers
 - Optimizes remaining storage objects
 - Then re-compresses them in their native format
Content Aware Dedupe Strengths

- Incredibly effective on most file types
 - 100s of different already compressed file types
 - MPEGs, JPEGs, Office, Zip, PDFs, etc.
 - Duplicate email attachments
 - Duplicate ISO files
 - Golden images (as NAS files)
 - Virtual desktop images (as NAS files)
- Storage usable capacity increases
 - Can range from 20% up to 800%
 - Depending on file & compression types
Content Aware Dedupe Weaknesses

- Post processing only
 - Must be scheduled and performed after hours
 - Requires additional storage for caching before dedupe
- Higher response times (latency) for reading files
 - Data must be “rehydrated” to be read
- Doesn’t work so well with structured data
- Requires unique “reader” software
 - On user desktop, server, or NAS to read deduped files
- Only available from one vendor (Dell)
 - Relatively high licensing costs
 - Vendor lock-in
Auto Storage Tiering

- Data value-storage cost alignment
 - Moves data from higher performance higher cost storage
 - To lower performance lower cost storage
 - As data ages or becomes less valuable
Auto Storage Tiering Strengths

- Optimizes SSD performance w/high capacity HDDs
 - Reduces HDD count while increasing IOPS & throughput
 - Decreases power, cooling, & total storage infrastructure
 - Lowers TCO
Auto Storage Tiering Weaknesses

- Few systems offer it
- Can be costly
- Moving up storage tiers
 - More complicated
FLASH SSD Caching/Storage

- 5 different types
 1. 100% Flash solid-state drive (SSD) based storage system
 2. Storage system w/Flash as cache
 3. Storage system w/Flash SSDs utilized as Tier 0 storage
 4. PCIe Flash SSD cards in app servers
 5. Caching appliance
100% Flash SSD Storage System Strengths

- Fast, high performance Flash SSDs w/much lower latency
 - High IOPS
 - Incredible throughput
 - Faster response times
 - Inline deduplication &/or compression
 - TCO <= storage systems w/high performance HDDs
100% Flash SSD Storage System Weaknesses

- Relatively new systems technology
 - Shifts bottleneck to storage controller
 - SSDs have 20X performance of HDDs
 - Storage controllers utilize only a fraction of SSD performance
 - Some new controllers coming out claim better
 - Not shareable by other storage systems
 - Unproven long-term effectiveness, reliability, etc.
Storage System w/Flash as Cache Strengths

- Reduces latency
 - Improves IOPS, throughput, & response time
 - Primarily on reads
 - Add-on to proven storage systems
 - Available as PCIe SSDs or HDD form factor SAS or SATA SSDs
Storage System w/Flash as Cache Weaknesses

- Latency reduction & capacities less than expected
 - Limited cache sizes reduces cache hits
 - More redirected HDD reads slows latency & response time
 - Shifts bottleneck to storage controller
 - SSDs spike storage controller utilization
 - Limits SSD performance gains
- Cache not shareable by other storage systems
- Higher than expected TCO
Storage System w/Flash SSDs Utilized as Tier 0 Strengths

- Provides a chunk of pure SSD system performance
 - TCO is reduced by shifting HDDs
 - To high capacity lower performance
 - With potentially higher total capacities
 - 90% of data is passive & rarely accessed
 - Available as HDD form fact SAS or SATA SSDs
 - Read, write, and read only
Storage System w/Flash SSDs Utilized as Tier 0 Weaknesses

- Substantially similar to storage flash caching
 - Similar issues as well, but capacities are greater
 - More redirected HDD reads slows latency & response time
 - Shifts bottleneck to storage controller
 - SSDs spike storage controller utilization
 - Limits SSD performance gains
 - Tier 0 not shareable by other storage systems
 - TCO ends up a bit higher than expected
PCle Flash SSD Cards in App Servers Strengths

- Puts SSD closest to app = lowest latency
 - Works as server DAS or cache
 - Greatest IOPS per App
 - Highest throughput
 - Fastest response times
PCle Flash SSD Cards in App Servers

Weaknesses

- Costlier than most other Flash performance solutions
 - Server cycle hog using as much as 20% of the cycles
 - Requires caching SW
 - To move data from SSD to external storage
 - Otherwise useless for server virtualization
 - Measurably increases NAS NFS metadata burden
 - Radically increasing NAS controller utilization
 - Affecting all other apps using NAS
 - Each server w/PCle card(s)
 - Must be implemented & managed separately
 - Huge management burden
 - Flash not shareable by multiple servers
Caching Appliance Strengths

- Logically sits between servers/clients & storage system
 - Speeds reads
 - Especially effective with NAS
 - Best w/NFS reducing NFS metadata latencies
 - Effective w/CIFS reducing chatty latencies
 - Shareable by multiple servers & storage
 - Transparent write-through
 - Highly cost effective
 - Low TCO
 - No rip-out and replace required
Caching Appliance Weaknesses

- Limited capacities
 - Increases missed cache hits redirected to HDDs
 - Not as effective with block as with file
 - Separately managed from storage & servers
 - Increases management burden
Cloud Storage Strengths (A Lot of Them)

- Massively scalable in capacity, performance, & objects/files
- Many distributed resources acting as one
- Durable data persistence
- Inherently fault tolerant
- Auto-data protection w/autonomic healing
- App & data non-disruptive tech refresh
- On-demand resource allocation
- Bullet-proof security
- Multi-protocol access

- Multi-tenant/self service/detailed billing or chargeback
- Geographically dispersed & aware
- Usable storage efficient
- Paradigm shift lower storage TCO
- Many leading BU software write natively to storage clouds
Cloud Storage Weaknesses

- **Performance**
 - Higher latencies because of
 - Object, mirroring, erasure codes, etc.

- **No file or block interfaces**

- **Data has to be moved to storage clouds**
 - Movement between storage clouds
 - Not standard yet
 - Amazon S3 defacto standard
 - CDMI coming

1 Scality Organic Ring is an exception to the performance issues
Big Problem w/Most of These Great Storage Technologies

- Unless your current system already has them…
 - Usually you have to “rip-out & replace” to get them

- Often not pragmatic
 - May not be amortized yet or off lease
 - Budgets may not allow
 - You have to wait
Good News!

- Installed capacity & performance can be increased
 - Without “rip-out & replace”
 - By addition & addition by way of subtraction
Increasing Usable Capacity & Performance by Addition

- More HDDs
- Flash PCIe SSD cards
- Flash cache appliances
- Cloud storage
- File virtualization
- Block virtualization
Add More HDDs

- More HDDs = > capacity & performance
 - High density 60 drive (or more) 4U enclosures available from:
 - **DDN**
 - **EMC**
 - **NetApp E-based OEM & VAR partners**
 - EVS, IBM, NEI, Oracle, RAID Inc., SGI, Teradata, T-platforms, & more
 - **Nexsan**
 - **Xyratex**
 - 84 drives in 5U
 - Dual 42 drive enclosures in 5U sheet metal
Adding More HDDs

Pros

- Easy
- Adds capacity & performance
- Works within your systems
 - Nothing new to learn
- Server/app transparent
- Relatively low cost

Cons

- Storage system HDD limitations
 - Can only add so many
 - Max #s per system
 - Newer HDDs & enclosures
 - Often not supported
 - Leads to storage system sprawl
- Storage system sprawl
 - Nightmarish & not fun
HDD Short-Stroking

- Reduces latency
 - By restricting data placement to outer platters sectors
HDD Short-Stroking

Pros

- Reduces seek times
- Lowers latencies
 - Reduced head movement
- Industry tests show
 - 29 to 33% less latency
- No upfront cost
 - Leverages unused capacity
- Nothing to purchase

Cons

- Reduced usable capacity
 - Discards 67% to 90%
- Wasted capacity does not save
 - Power, cooling, rack space, floor space, cables, conduit, etc.
- Negligible benefit
 - If bottleneck NAS controller
- Requires some expertise
Flash PCIe SSD Cards

- As previously discussed
 - Add to app servers
 - Physical or virtual
 - Radically > performance
 - Allows shared storage
 - > capacities as well
 - Available from:
 - Over 100 suppliers
Flash PCIe SSD Cards

Pros

- Best performance gains
- Adds capacity & performance
- Server/app transparent

Cons

- Expensive
 - Need card(s) per physical server
 - Must open up installed servers
 - Or buy new servers w/cards
 - Requires server caching SW
 - Consumes server resources
 - That could be used on apps

- Not so good with NAS
 - Increases NAS utilization
Flash Cache Appliances

- As previously discussed
 - Logically sits between
 - Servers/clients
 - And storage system
 - Available from:
 - Alacritech (NFS/CIFS)
 - Astute (iSCSI)
 - TMS (FC, FCoE, iSCSI)
 - Violin (PCIe)
Flash Cache Appliances

Pros
- File or NAS best approach
 - Simplest
 - Implement, operate, manage
 - Most transparent
 - Lowest cost
 - And low TCO
- Shareable for multiple
 - Apps/servers/NAS systems

Cons
- Limited capacities
 - Typically less than 10TB
- SAN versions not so simple
 - Requires a lot of SAN knowledge
Cloud Storage

- As previously discussed
 - Additive technology
 - Public/private/hybrid
 - Public provides near infinite capacity
 - Easy to add
 - Direct REST or SOAP
 - HW or SW gateways
 - NFS, CIFS, iSCSI
 - Available from dozens of suppliers
 - See chart in hybrid cloud presentation
Cloud Storage

Pros

- Infinite capacities
- Very low cost
 - Pay-by-the-drink
 - No unutilized storage
 - No underutilized storage
 - No upfront costs
- Very high data resilience
 - Eliminates tech refresh issues
 - Excellent for BU and/or archive
- Ideal for geo-distributed
 - Collaboration

Cons

- Performance
 - Not a primary storage system
- Gateways add complexity
 - Data must be migrated to them 1st
 - Usually add cost as well
File Virtualization

- Global namespace
 - Combines multi-NAS into 1 namespace
 - Allows repurposing of older NAS
 - And filers
 - No rip-out-&-replace
 - Available from
 - Avere
 - F5
File Virtualization

Pros

● No NAS/Filer rip-out-&-replace

● Relatively low cost
 - Repurposes older NAS
 - Commoditizes NAS/filer systems

● Allows near linear scaling
 - Up to max systems supported

● Can add other capacity/perf.
 - Capabilities such as
 ● Thin provisioning
 ● Auto tiering
 ● Deduplication

Cons

● Performance
 - GNS adds latency
 - As well as mgmt complexity

● Will cause vendor finger pointing

● May invalidate system warranty
 - Irritates NAS vendors

● Tends be a stopgap measure
Block Storage Virtualization

- A.K.A. SAN storage virtualization
 - Combines multi-arrays into 1 storage pool
 - Allows repurposing of older SAN storage
 - No rip-out-&-replace
 - Available from:
 - DataCore Software
 - Dot Hill
 - HDS
 - NetApp
 - Nexenta
 - TwinStrata
Block Storage Virtualization

Pros
- Repurposes SAN storage
 - Pools storage
 - Limits rip-out & replace
- Allows near linear scaling
 - Up to max systems supported
- Can add other capacity/perf.
 - Capabilities such as
 - Thin provisioning
 - Auto tiering
 - Deduplication

Cons
- Performance
 - Adds latency
 - As well as mgmt complexity
- Will cause vendor finger pointing
- May invalidate system warranty
 - Irritates storage vendors
- Tends be a stopgap measure
Increasing Usable Capacity & Performance with Addition by Way of Subtraction

- Automated file optimization
- Lossy data reduction
- Real-time data compression Appliance
Automated File Optimization

- Policy driven file mgmt w/o rip-out & replace
 - Finds all in-use, stale, & duplicate files + owners
 ● Cleans up NAS & filers
 ● Allows admin or user driven deletion or movement
 - Auto moves data
 ● From expensive storage to inexpensive storage
 ● From old to new simplifying data migration
 - Enables prevention of unwanted files (MPEGs, JPEGs, etc.)
 - Provides history, trending, & control
 - Some can handle billions of files w/o scanning
- Available from:
 ● Northern
 ● NTP
 ● Symantec
Automated File Optimization Examples

![Bar Chart]

- Current State
- Excluding Files Not Changed in Past Six Months
Automated File Optimization Examples

- **Local System Name:** CLTESTBOX
- **Local OS:** Microsoft Windows 2003 Enterprise Server
- **File System:** NTFS

General Information
- **Drive Capacity:** 19.99 GB
- **Free Space:** 2.47 GB
- **Percent Space Used:** 87.66%

Current Path Statistics
- **Sub-Folders:** 6,015
- **Files:** 38,250
- **Logical Space Used:** 17.78 GB
- **Percent Space Used:** 88.94%

Current Report Statistics
- **Duplicate Files:** 25
- **Logical Space Used:** 393.56 MB
- **Percent Space Used:** 1.92%
Automated File Optimization Examples

96% of files have not been ACCESSED in over 6 months
Automated File Optimization Examples
Automated File Optimization

Pros
- SW reclaims lots of NAS storage
- Pays for itself < 1 yr
- Easy to use
- Works with all file storage
- Insight
- Control
- Growth predictability
- Better data protection
- Easier file storage mgmt
- Much lower cost

Cons
- Add-on management product
 - Separate console
- Some vendors don’t scale well
 - Must scan the file systems
 - Can be onerous with large file #s
Lossy Data Reduction

- As previously discussed: Reads & decompresses
 - MS Office, JPEGs, PNGs, PDFs
 - Removes superfluous unnecessary baggage
 - E.G. junk data, or excessive resolution without
 - Reducing visual content integrity
 - Breaking files
 - Removing content
 - Re-compresses them in their native format
 - Works with dedupe & compression
 - Available from: Balesio & Neuxpower
Lossy Data Reduction

Pros
- Dramatically reduces file bloat
 - Especially MS files
- Low licensing costs
- No reader SW required
 - Readable in native format
- Doesn’t preclude use of:
 - Dedupe or compression

Cons
- Post processing only
 - After hours
- Limited file format support
- Can occasionally corrupt a file
- Only 2 vendors
Realtime Data Compression Appliance

- Works only with NAS or file storage
 - Sits in front
 - Reduces file storage up to 80%
 - No noticeable latency
 - Works with dedupe
 - Available only from
 - IBM – Realtime compression for NAS
Realtime Compression Appliance

Pros
- Great for NAS/file storage
 - Operates at line speed
 - Nominal hit to response time
 - Reads or writes
 - Works with all NAS/file storage
 - Greatly expands usable capacity
 - Cost justifiable

Cons
- Only offered by IBM
 - And their channel partners
- A bit pricey
 - May need more than one
 - Depending on system #s
Conclusions – Recommendations

- Many great new technologies now available
 - Aimed at increasing usable capacity
 - And/or increasing performance
 - Most require you “rip-out & replace”
 - You don’t necessarily have to do that
 - To get some or most of the benefits
 - There are choices
 - Use the ones that fit best in your ecosystem
 - Remember, you can use more than one!
Now You Know Where the Rocks Are…
Questions? Thank You!

- Marc Staimer, President & CDS
- Dragon Slayer Consulting
- marcstaimer@comcast.net
- 503-579-3763