> Storage Decisions

Marc Staimer President & CDS Dragon Slayer Consulting

Dragon Slayer Consulting Intro

- Marc Staimer President & CDS
 - 14 years consulting
 - Storage, SANS, SW, networks, server, data centers, MSPs
 - Consults vendors (> 200)
 - Consults end users (> 600)
 - Market and technology analysis
 - Publishes consistently with TechTarget
 - Periodically published for trade magazines
 - 32 years industry experience

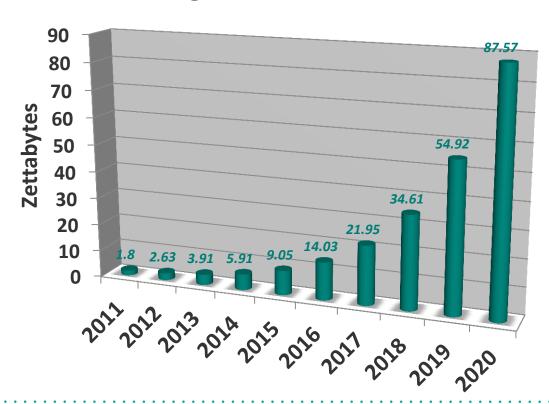
marcstaimer@comcast.net 503-579-3763

Think First

Storage Decisions 2012 | © TechTarget 3

Agenda

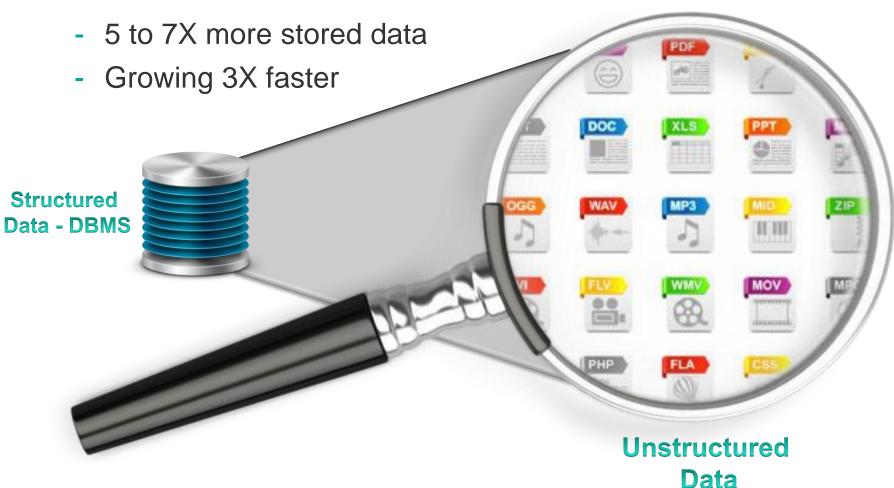
- Why cloud storage?
- What's a storage cloud?
- What's a hybrid storage cloud?
- How to cost-effectively build a hybrid storage cloud
- Conclusions & recommendations


Why Cloud Storage?

It Starts with the Problem that Cloud Storage Addresses

How to cost effectively manage the...

- Massive <u>EXPONENTIAL</u> digital data growth*
 - Unstructured data
 - Today = $\sim 60\%$
 - ~62% CAGR
 - Structured data
 - Today = $\sim 40\%$
 - ~21% CAGR
 - Overall CAGR
 - ~54%
 - 1.8 ZBs 2011


Stored Digital Data Growth Curve

*Source: IDC & DSC

Most of That Growth is Unstructured

Unstructured data

Where That Data Growth is Coming From

Human generated data, yes

But, machine generated data is orders of magnitude more

- More info generated outside traditional systems & sources
 - In volume, variety, velocity & data complexity
 - User-generated & machine generated content
 - Orders of magnitude more
 - Aggregation of highly-structured heterogeneous sources
 - Patient records, insurance claims, etc.
 - Raw data, social media, log files, & sensor data

What That Growth Means to Your Storage

- Just 2 PBs today @ 62% CAGR
 - 3 yrs = 8 PBs
 - 6 yrs = 32 PBs
 - 9 yrs = 128 PBs
 - 12 yrs = 512 PBs

• 250TBs becomes 8PBs in 6 yrs.

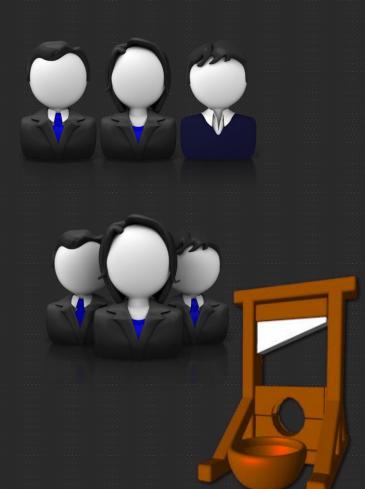
Problems of Explosive Data Growth

Issues that require new methodologies

- Scaling capacity, performance, and files/objects
 - PBs, GB/s, billions to trillions
- Storage infrastructure
 - Power/cooling, floor space, etc.
- Tech refresh/data migration
- Data resilience
- Data protection
- Data archiving
- Geographic dispersed sharing

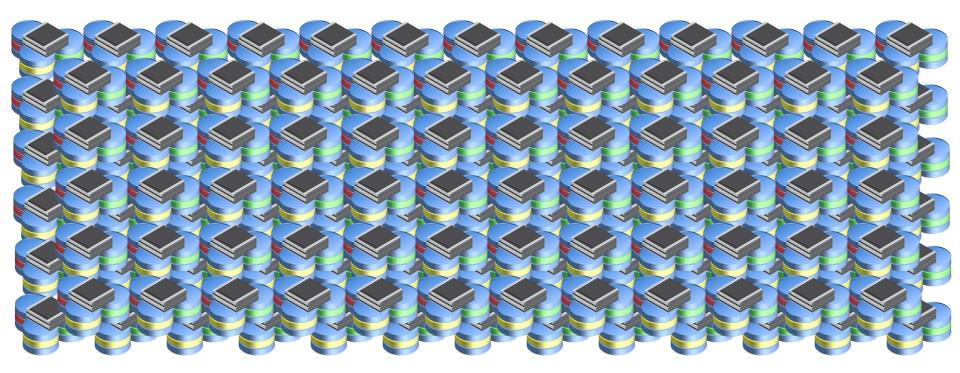
Traditional Primary Storage is Really Quite Good

- At serving up storage
 - Fast
 - To lots of apps & clients
 - To different tiers
 - Based on value
 - To different horizontal markets
 - SMB/Mid-tier/enterprise
 - To different vertical markets
 - @ Enterprise scale

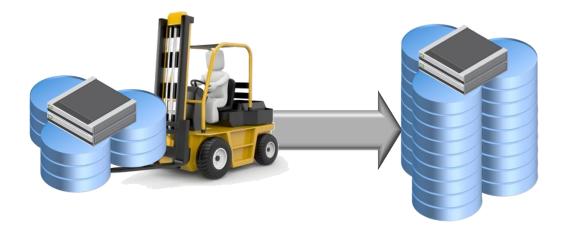

Traditional Storage is Not So Good At...

- Massive amounts of passive or archive data
- Tech refresh
- Radically reduced storage cost
- Pay-by-the-drink pricing paradigm
- Reducing storage infrastructure costs
- Data resilience / permanence
 - Required for long-term data archiving
- Geographically dispersed distribution
- Providing DR without multiple data centers

There Are Always Tradeoffs...



Storage Decisions 2012 | © TechTarget


Traditional Storage Systems Have Limited Scale

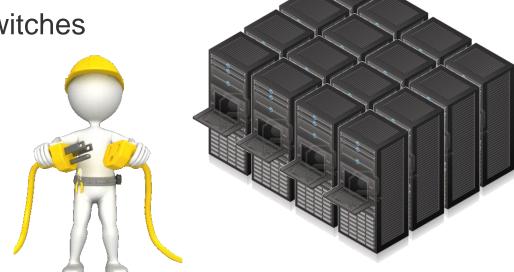
- Massive passive data amounts ends up as storage system sprawl
- It's human nature...
 - If 1 is good, 2 has to be better, right?
 - What about 10? 20? 100? 200? You get the idea?

Tech Refresh is the Real Killer Because of...

- Excessive data migration, downtime, mgmt & cost
 - Required as storage systems approaches limitations
 - 60% of usable storage utilized
 - Currently averaging 9 to 12 months
 - Because of the manually intensive data migration
 - Data movement only a small part of data migration process

Traditional Storage TCO Way Too High

- Passive data does not have same value as active data
 - But traditional storage is not inexpensive
 - Architecturally aimed at primary data, not passive data
 - Doesn't match pricing to data value very well
 - TCO does not align cost effectively much too high


Traditional Storage Cost Paradigm: "Pay Me Now"

- Upfront payment
 - Based on forecasted capacity, performance, & file requirements
 - Risk on buyer, not seller of storage
 - Unused storage/performance/software licensing, etc. still paid for
 - Not designed for "pay-for-use" in arrears cost paradigm

Traditional Storage Infrastructure is a Huge Cost

- Typical 3-year OpEx ranges from 5 to 8 x Capex
 - Floor space
 - Rack space
 - Storage networking switches
 - Cables
 - Conduit
 - Transceivers
 - Power
 - Cooling

- OpEx costs too high
 - Must match value of archive data

Traditional Storage Has Limited Data Resilience

- Media corrupts digital data
 - Tape/disk/flash/optical
 - Bit rot, corrosion, oxidation, background radiation
 - HDDs: Silent data corruption
 - Torn, partial, misplaced writes
 - Flash has other corruptions
 - Electron leaks, write wear cycle

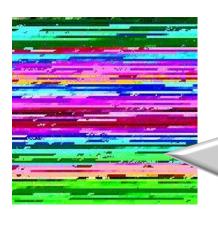
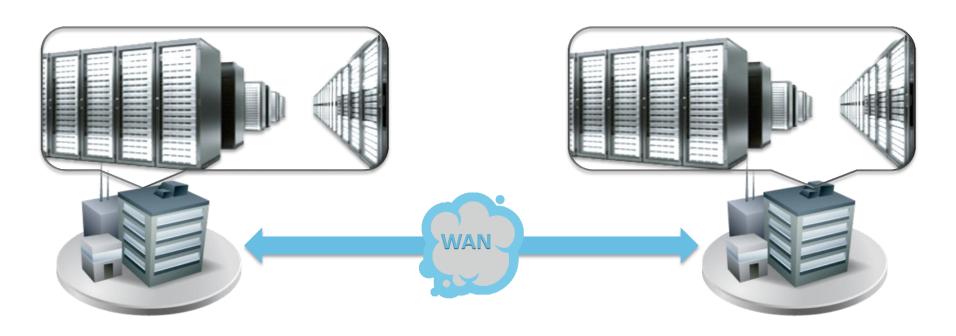



Photo of actual data corruption on disk; in this case, a result of a failed data recovery from a HDD

- Best practice rewrite data
 - Disk: ~ 2-3 yrs
 - Tape: ~ 2-3 yrs
 - Flash: ~ 2-3 yrs
 - Optical: ~ 5 yrs
 - Primary corruption defense
 - RAID
 - Snapshot
 - Replication
 - Backup
- Fails to meet data
 - Permanence requirements
 - And subsequently, compliance

Traditional Storage Requires Another DC for DR

- Plus, more storage to protect against data disasters
- Essentially DR requires duplicating storage ecosystems

Traditional Storage Has Difficulty with Geographic Dispersed Data Sharing

- Data sharing for:
 - Work flow
 - Content distribution
 - Business analytics
 - Development
 - Partners
 - Safety

- Traditional storage methods are costly & time consuming
 - Snapshot & replicate
 - Mirror

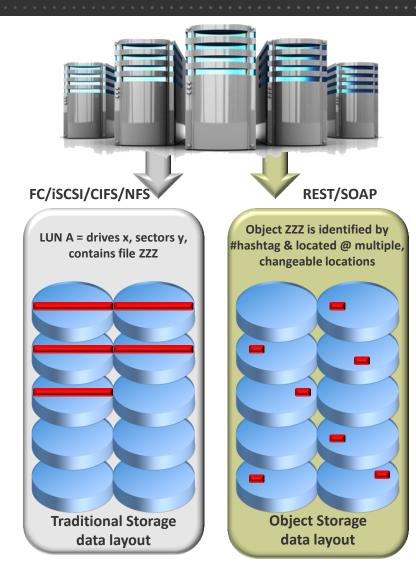
Traditional Storage (800LB Gorilla) Shortcomings Review

- Not so good at:
 - Massive amounts of passive or archive data
 - Tech refresh
 - Radically reduced storage cost
 - Pay-by-the-drink pricing paradigm
 - Reducing storage infrastructure costs
 - Data resilience / permanence
 - Required for long term data archiving
 - Geographically dispersed distribution
 - Providing DR without multiple data centers

Cloud Storage Architected to Solve Those Issues

- From the ground up for archive/passive data/collaboration
 - It's not so good at being primary storage*

*One Cloud Storage exception is Scality Organic Ring


What is Cloud Storage?

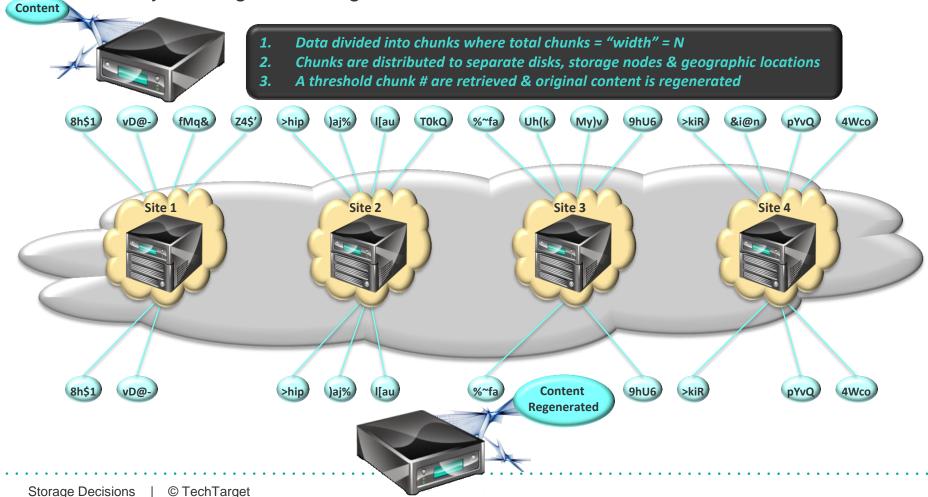
- Cloud storage is
 - Massively scalable in capacity, performance, & objects/files
 - Constructed of many distributed resources acting as one
 - Extremely durable data persistent
 - Inherently fault tolerant
 - Automated data protection w/autonomic healing
 - Application & data non-disruptive tech refresh
 - On-demand resource allocation
 - Bullet-proof security
 - Multi-tenant/self service/detailed billing or chargeback
 - Geographically dispersed & aware
 - Usable storage efficient
 - Multi-protocol access
 - Paradigm shift lower storage TCO

Cloud Storage is Based on Object Storage

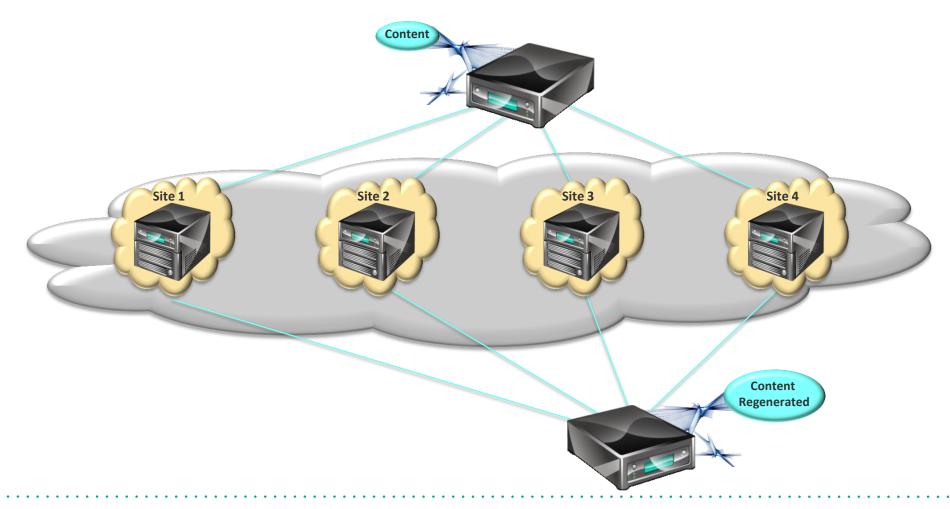
- Object storage stores data differently
 - Loosely federated data
 - Vs. consistent storage system
 - Across all resident data
 - E.g. No requirements for
 - Cache consistency
 - Nodal awareness of objects owned by other nodes
 - Single aggregated namespace
 - Data scales based on rules
 - Rules about the data itself
 - Rather than about the system
 - Can scale nearly indefinitely

Storage Decisions | © TechTarget

Cloud (Object) Storage Has a Lot More Metadata


- More customized <u>control</u> over the data
 - Vs. file system w/fixed amount of metadata
 - File type, creation date, & last-accessed date

- Vs. SAN storage which typically has virtually none
- Object storage increases # of possible metadata fields
 - Customizable for specific business and system functions
 - Allows system to manipulate data based on policy triggers
 - Data scales based on rules
- Rules that also <u>automate</u> many traditional manual tasks
 - Tiering, security, migration, redundancy, and deletion


How Erasure Codes Work

- Erasure coding is new kid on the block (pun intended)
 - Breaks objects up into smaller chunks storing them in different locations
 - Key is being able to regenerate data from much fewer chunks

How Multi-Copy Mirroring Works

Multiple copies generated when written based on policy

Types of Cloud Storage

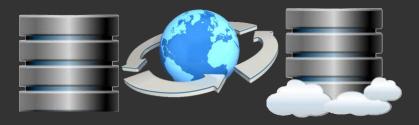
- Public
- Private
- Hybrid

Public Cloud Storage

- Storage as a service (STaaS)
 - Over the Internet or VPNs
 - Pay-by-the-drink & only for what's actually being used
 - Accessed via REST and/or SOAP
 - As well as hardware & software gateways
 - Typically has multiple data centers
 - Geographically separated by regions
 - 3 classes
 - Consumer, industrial, enterprise

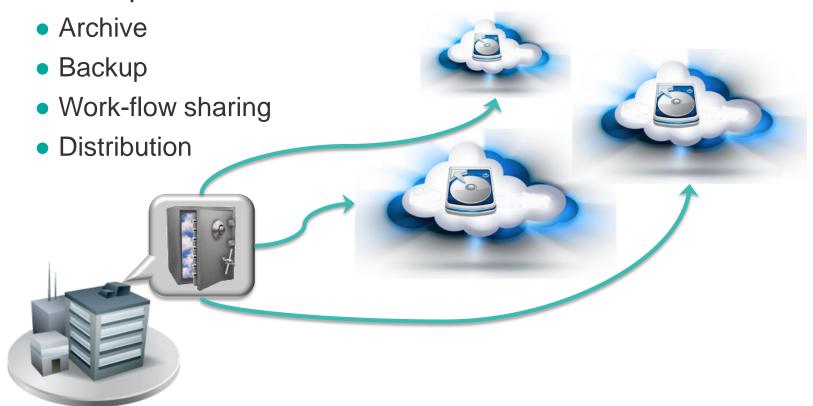
Private Cloud Storage

- IT owns/operates/manages their cloud storage
 - On customer's premises or co-lo
 - Leveraging cloud storage technology
 - On VLAN and/or VPN
 - Can charge-back to departments if desired
 - Still accessed primarily via REST and/or SOAP
 - As well as hardware & software gateways
 - Provides many public cloud advantages
 - Just requires own or co-lo data centers

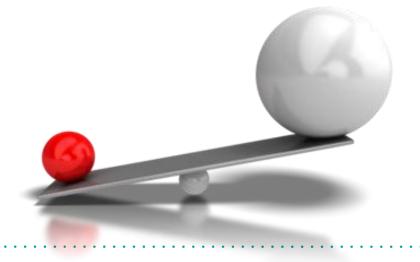

Hybrid Cloud Storage

- Solves variety of public cloud problems
 - Long latency
 - Bandwidth
 - Control
 - Local data copies of some data
 - Uploading time to public cloud

How to Build a **Cost Effective Hybrid Storage** Cloud


3 Ways to Cost Effectively Build a Hybrid Cloud

- Local private cloud to public cloud or clouds
- Private storage integrated with public cloud or clouds
- Public cloud extended to private data centers


Local Private Cloud to Public Cloud or Clouds

- Local private cloud that is federated with a public cloud
 - Local control
 - Utilizes public cloud as

Storage Cloud to Storage Cloud Communication

- Private storage cloud to public storage cloud
 - Convenience of local storage w/storage cloud functionality
 - Lower latency faster response times
 - Local control
 - Takes advantage of public storage cloud
 - For archive, DR, backup, workflow collaboration, etc.
 - Less onsite storage to manage
 - Less local storage infrastructure

Private/Public Integration Pros & Cons

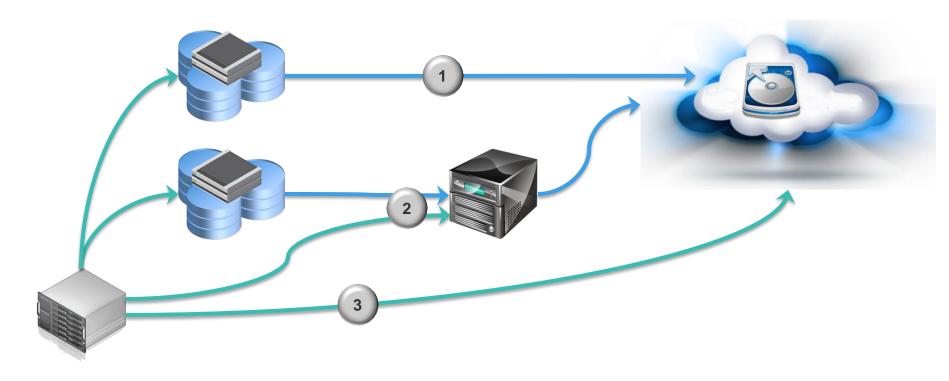
Pros

- Lower local storage costs
- Better response times
- Enhanced DR
- Heightened collaboration
 - Geographically distributed

- Compatibility issues
 - Same software on both sides
 - Some cases even same versions
 - Will change with CDMI
- Limited choices
 - EMC Atmos MSPs
 - Atmos versions must be same
 - Nirvanix & their OEMs

Technical Requirements

- Private cloud software
- x86 server hardware
 - Purchased separately
 - Or bundled w/software from vendor
 - Embedded HDDs &/or SSDs
 - Some front end SAN storage
 - 1/10/40 Gb/s TCP/IP Ethernet std. NICs
- 1/10/40 Gb/s Ethernet switch/routers
- Internet access
- Interoperability w/public storage cloud



Private Storage Integrated with Public Cloud or Clouds

- 3 variants: Converts NFS, CIFS, or iSCSI to REST &/or SOAP
 - Primary storage w/cloud integration
 - Secondary storage w/cloud gateways
 - Software gateway to public storage cloud

Each Works Differently

- Primary storage w/cloud integration (NAS or iSCSI storage)
 - Provides an unlimited backend to primary storage for
 - Passive data, archive, data protection, collaboration, etc.
- Secondary storage w/cloud GWs (NAS or iSCSI)
 - Requires data be transferred to/from primary storage or apps
 - A data mover of some type must move the data to it
 - Still provides an unlimited backend to primary storage
- App integration to public storage cloud
 - Apps/servers directly place data in public cloud
 - App/server controlled & centric
 - Managed like any other storage target

Primary Storage/Public Cloud Integration Pros & Cons

Pros

- App transparency
 - Unlimited cloud tier
- Lower TCO
 - Lower public cloud costs
 - Deduped & compressed
- Simpler work-flow collaboration
 - Specifically with file
- Automatic DP (snaps) offsite
 - Public cloud for DR
 - No duplicate DC

Catalog control

- Requires same vendor storage

- At all locations w/data access
- For workflow collaboration
- To read or write the data
- Not designed for mobile data
- Funnel point
- Doesn't avoid tech refresh
 - Although simpler & less of it

Secondary Storage/Public Cloud Integration Pros & Cons

Pros

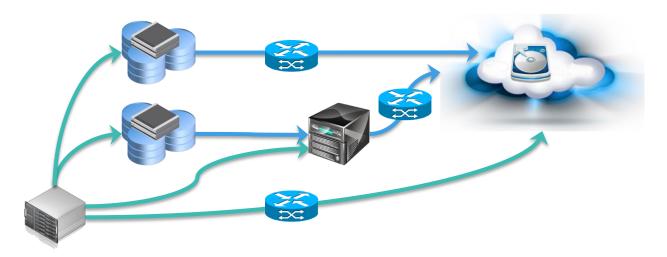
- Lower TCO on secondary data
 - Lower public cloud costs
 - Deduped & compressed
- Good for archiving or DP target
 - Once data on system
 - Moves data to public cloud (DR)
 - Caches recent data locally
 - Requires other software
 - To move the data

- In reality a gateway
 - Caches secondary data to cloud
 - Transitory market
- Requires data mover to system
 - Data must be migrated
- Catalog control issue
 - Same as primary storage solution
- Doesn't avoid tech refresh
 - Although simpler & less of it

App or Server/Public Cloud Integration Pros & Cons

Cons

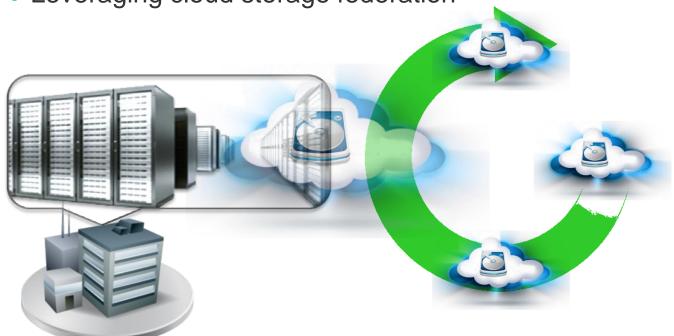
- App transparency
 - Unlimited cloud tier


Pros

- Lower TCO
 - No intermediary storage system
- App/server admin direct control
 - Much simpler work-flow sharing
 - Mobile usable
 - No catalog control issue
- Most DP SW natively supports
 - Public cloud storage

- Apps must work w/cloud store API
 - REST or SOAP
 - CDMI later
 - Or software gateways
 - NAS or iSCSI
- Higher public cloud costs
 - No auto data reduction tech
 - On primary data put in cloud
 - Unless the app provides it

Technical Requirements


- Storage system or Gateway system (SAN or NAS)
 - With a REST or SOAP backend
 - Compatible w/storage cloud of choice
- Applications writing directly to storage cloud
 - REST or SOAP API compatible w/storage cloud of choice
- Both require Internet access

Public Cloud Extended to Private Data Centers

- Instead of moving data to the public cloud
 - With all of the bandwidth issues & latency that involves
 - Move the public cloud to the data

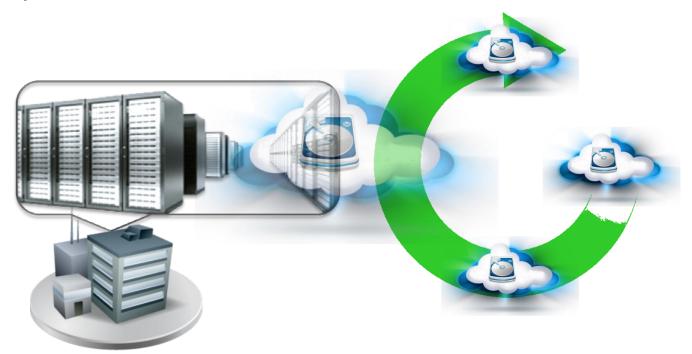
Leveraging cloud storage federation

Public Cloud Extension into Private Data Center

- Managed service
 - Handled entirely by MSP in your data center
 - No employed admins required
 - In some cases, repurposes onsite traditional storage for local cloud
 - Convenience of local storage with storage cloud functionality
 - Lower latency faster response times
 - Local control
 - Takes advantage of public storage cloud
 - For archive, DR, backup, workflow collaboration, etc.
 - Less onsite storage to manage
 - Less local storage infrastructure

App or Server/Public Cloud Integration Pros & Cons

Pros


- Excellent cloud performance
 - Same unlimited cloud tier
- Lower TCO
 - No intermediary storage systems
 - Lower mgmt costs
- Everything appears local
 - Provides all storage cloud benefits
 - GWs provided by MSP
 - Managed by MSP as well

 Apps must work w/cloud store API

- REST or SOAP
 - CDMI later
 - Or SW or HW gateways
 - NAS or iSCSI
- Higher public cloud costs
 - No auto data reduction tech

Technical Requirements

- Storage cloud vendor must extend their cloud
 - To your premise
 - They provide SW & HW to do so
 - Some can repurpose your SAN, DAS, or NAS storage
- You provide Internet connection

Public Cloud Storage Service Providers

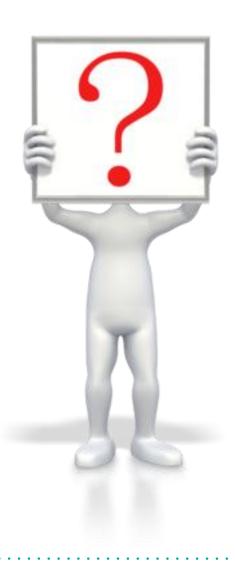
Public Cloud Storage Service Providers					
Vendor	Teadquarters ■	Software T	Service T		
Amazon	Seattle, BWA	Amazon Dbject Storage	S3		
ATT	Dallas,҈™X	EMCAtmos& OpenStack	Synaptic S torage		
Cerner	Kansas City, MO	Nirvanix 10 bject 15 torage	SkyboxICloudIStorage		
DELL	Austin,⊡X	Nirvanix 10 bject 13 torage	DELLICIoudIStorageIService		
DreamHost	Brea, IC A	DreamHost Dbject Storrage	Dream Dbjects		
DRFortress	Honolulu, HI	Nirvanix 10 bject 15 torage	Cloud Storage ?		
Google	Santa©lara,©CA	Google Dbject Storage	Google Cloud Storage		
HP	Palo@Alto,@CA	OpenStack®wift	HpICloudIDbjectIStorage		
Hosted Solutions	Raleigh, INC	EMC ® Atmos	Cloud storage		
IBMIGlobalIServices	Armonk, INY	Nirvanix 10 bject 15 torage	Smart Business Storage Cloud		
Microsoft	Redmond, 3 WA	Microsoft BLOB	Azure		
Nirvanix	San Diego, CA	Nirvanix 10 bject 13 torage	Cloud Storage Network		
PEER 1 Hosting	Vancouver, ™C ICanada	EMC ® Atmos	CloudOne		
Rackspace	San ∄ Antonio, T X	OpenStaack wift	CloudFiles		
Swisscom	Worblaufen, Switzerland	Nirvanix Dbject Storage	Swisscom Cloud Services		
USC	LA,ICA	Nirvanix 10 bject 13 torage	Digital Repository		
Unisys	BlueBell, PA	OpenStack®wift	Unisys Secure Cloud		

Private Cloud Storage Vendors

Private©Cloud®torage®Vendors				
Vendor 💌	HQ 💌	Product T	Appliance@nd/or\s\\	
Amplidata	Antwerpe, Belgium	Amplistor	Both	
Caringo	KC, MO	CAStor	Software	
Citrix	Santa©lara,©CA	CloudStack	Software	
Cleversafe	Chicago, IL	SliceStor	Both	
Compuverde	Karlskrona, 3 weden	Object store	Software	
DELL	Austin, TX	DXIObjectIStore	Appliance	
DDN	San@Diego,@CA	Web ® bject ® caler	Applliance	
EMC	Hopington, MA	Atmos	Appliance	
HDS	Santa©lara,©CA	HDS I Object I Storage	Both	
HP	Palo@Alto,@CA	Open stck	Appliance	
InkTank	LA, TCA	СЕРН	Software	
NetApp	San@ose,@CA	StorageGRID	Appliance	
Nirvanix	San Diego, CA	Cloud Storage Network	Software	
Quantum	San@ose,@CA	StorNext Dbject Storage	Both	
Red⊞at	Raleigh, INC	GlusterFS	Software	

Conclusions & Recommendations

- Building a hybrid storage cloud makes enormous sense
 - One of the best ways to leverage public storage clouds
- How to build it depends on your specific requirements
 - One size does not fit all
 - There are multiple choices
 - Best fit will depend
 - Building cost effectively is quite doable
 - And you have a lot of different choices



Always Remember...

- Whenever there are 2 or more vendors...
 - Each will tell you the others have it completely wrong

Questions? Thank You!

- Marc Staimer, President & CDS
- Dragon Slayer Consulting
- marcstaimer@comcast.net
- 503-579-3763

