
Chapter 8

Automation Using PowerShell

Virtual Machine Manager is one of the first Microsoft software products to fully adopt
Windows PowerShell and offer its users a complete management interface tailored for script-
ing. From the first release of VMM 2007, the Virtual Machine Manager Administrator Console
was written on top of Windows PowerShell, utilizing the many cmdlets that VMM offers. This
approach made VMM very extensible and partner friendly and allows customers to accomplish
anything that VMM offers in the Administrator Console via scripts and automation. Windows
PowerShell is also the only public application programming interface (API) that VMM offers,
giving both developers and administrators a single point of reference for managing VMM.
Writing scripts that interface with VMM, Hyper-V, or Virtual Server can be made very easy
using Windows PowerShell’s support for WMI, .NET, and COM.

In this chapter, you will learn to:

◆ Describe the main benefits that PowerShell offers for VMM

◆ Use the VMM PowerShell cmdlets

◆ Create scheduled PowerShell scripts

VMM and Windows PowerShell
System Center Virtual Machine Manager (VMM) 2007, the first release of VMM, was one of
the first products to develop its entire graphical user interface (the VMM Administrator Con-
sole) on top of Windows PowerShell (previously known as Monad). This approach proved very
advantageous for customers that wanted all of the VMM functionality to be available through
some form of an API. The VMM team made early bets on Windows PowerShell as its public
management interface, and they have not been disappointed with the results. With its consis-
tent grammar, the great integration with .NET, and the abundance of cmdlets, PowerShell is
quickly becoming the management interface of choice for enterprise applications.

Unlike other traditional public APIs that focus on developers, VMM’s PowerShell interface
is designed for the administrator. With the extensive help contents and the well-documented
System Center Virtual Machine Manager Scripting Guide that is available from the Microsoft
Download Center, the VMM team positioned its cmdlets to be the premier way of scripting
in your virtualization environment. In addition to the VMM cmdlets, your scripts can be
enhanced by the built-in support that Windows PowerShell has for a variety of data stores, like
the filesystem, the Registry, and WMI.

328 CHAPTER 8 AUTOMATION USING POWERSHELL

Installing the VMM PowerShell Cmdlets
Even though the VMM PowerShell interface does not have its own installer, it is always
installed as part of the VMM Administrator Console setup. VMM Setup will install the
32-bit version of the Administrator Console on 32-bit systems and the 64-bit version of the
Administrator Console on 64-bit systems. Due to the nature of the VMM cmdlets, some
utilize both native and .NET binaries in their implementation. This approach prohibits the
VMM PowerShell cmdlets from being architecture independent, which means that only 32-bit
PowerShell cmdlets will work on a 32-bit system. The 64-bit PowerShell cmdlets have the same
issue and will work on only a 64-bit system. Any process that attempts to load the PowerShell
runspace and invoke the VMM cmdlets needs to be aware of this restriction and factor this
limitation in the design.

VMM 2008 is certified to work with both Windows PowerShell version 1.0
and version 2.0. Windows PowerShell is already included as part of Windows Server
2008 and Windows Server 2008 R2, and it can be downloaded for free from the Microsoft
website at the following location:

http://www.microsoft.com/windowsserver2003/technologies/management/powershell/
download.mspx
Windows PowerShell 1.0 officially supports Windows XP Service Pack 2, Windows Server

2003, Windows Vista, and Windows Server 2008. Windows PowerShell 2.0 was released with
the Windows 7 and Windows Server 2008 R2 operating systems. PowerShell 2.0 will be eventu-
ally pack-ported to other operating systems as well.

When you first launch Windows PowerShell in your system and import the VMM Pow-
erShell snap-in, you will be prompted to add Microsoft Corporation to the list of trusted
publishers, as per Figure 8.1. Enter A in this case for Always Run.

Figure 8.1

Adding Microsoft
Corporation to the list
of trusted publishers for
Windows PowerShell
scripts

It is possible Windows PowerShell will still prevent you from running scripts in your
system, so you need to set the proper execution policy for scripts before any Windows
PowerShell scripts are allowed to run on your computer. This can be achieved using the
Set-ExecutionPolicy cmdlet. Figure 8.2 shows the help contents of this cmdlet. Type in
get-help Set-ExecutionPolicy -detailed | more for more information on the policy
options. To invoke the Set-ExecutionPolicy cmdlet, you need to run Windows PowerShell
as Administrator.

VMM AND WINDOWS POWERSHELL 329

Figure 8.2

Setting the execution
policy for Windows
PowerShell

Exposing the VMM Cmdlets
To get started with VMM and Windows PowerShell, open a console window that has the VMM
PowerShell snap-in loaded. There are a few ways to accomplish this, as shown here:

1. Click Start � All Programs �Microsoft System Center � Virtual Machine Manager 2008
R2 and launch Windows PowerShell - Virtual Machine Manager. This command will auto-
matically launch Windows PowerShell version 1.0 and pass as input the VMM PowerShell
Console file located at

%SystemDrive%\Program Files\Microsoft System Center Virtual
Machine Manager 2008 R2\bin\cli.psc1

2. Open a regular Windows PowerShell console window and add the VMM snap-in using the
following command. Once the VMM snap-in is added, you can use all the VMM cmdlets.

Add-PSSnapin "Microsoft.SystemCenter.VirtualMachineManager"

3. Windows PowerShell can also be launched from the Administrator Console by clicking the
PowerShell button in the toolbar of the main view.

330 CHAPTER 8 AUTOMATION USING POWERSHELL

Once the VMM PowerShell snap-in is added, you can get a list of all VMM cmdlets using
the get-command cmdlet.

This cmdlet will get all cmdlets that can be executed by the currently
loaded PowerShell snapins
Get-command

This cmdlet will list only the cmdlets exposed by the VMM Windows
PowerShell snapin
get-command -module "Microsoft.SystemCenter.VirtualMachineManager"

Getting Help on VMM Cmdlets
If you have the name of a VMM cmdlet, you can get more information on it, including a list of
examples. The following code shows how to get the definition of the Refresh-VM cmdlet:

PS D:\> get-command refresh-vm

CommandType Name Definition
----------- ---- ----------
Cmdlet Refresh-VM Refresh-VM [-VM] <VM> [-RunA...

The following code shows how to get the detailed view of the parameters that can be passed
to the Refresh-VM cmdlet:

PS D:\> get-command refresh-vm | format-list

Name : Refresh-VM
CommandType : Cmdlet
Definition : Refresh-VM [-VM] <VM> [-RunAsynchronously] [-JobVariable <St

ring>] [-PROTipID <Nullable`1>] [-Verbose] [-Debug] [-ErrorA
ction <ActionPreference>] [-WarningAction <ActionPreference>
] [-ErrorVariable <String>] [-WarningVariable <String>] [-Ou
tVariable <String>] [-OutBuffer <Int32>]

Path :
AssemblyInfo :
DLL : D:\Program Files\Microsoft System Center Virtual Machine Man

ager 2008 R2\bin\Microsoft.SystemCenter.VirtualMachineManager.d
ll

HelpFile : Microsoft.SystemCenter.VirtualMachineManager.dll-Help.xml
ParameterSets : {[-VM] <VM> [-RunAsynchronously] [-JobVariable <String>] [-P

ROTipID <Nullable`1>] [-Verbose] [-Debug] [-ErrorAction <Act
ionPreference>] [-WarningAction <ActionPreference>] [-ErrorV
ariable <String>] [-WarningVariable <String>] [-OutVariable
<String>] [-OutBuffer <Int32>]}

ImplementingType : Microsoft.SystemCenter.VirtualMachineManager.Cmdlets.Refresh
VmCmdlet

VMM AND WINDOWS POWERSHELL 331

Verb : Refresh
Noun : VM

The following code shows how to get the help for the Refresh-VM cmdlet:

PS D:\> get-help refresh-vm

NAME
Refresh-VM

SYNOPSIS
Refreshes the properties of a virtual machine so that the Virtual Machine M
anager Administrator Console displays updated information about the virtual
machine.

SYNTAX
Refresh-VM [-VM] [<String VM>] [-JobVariable <String>] [-PROTipID <Guid>] [
-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
Refreshes the properties of a virtual machine so that the Virtual Machine M
anager Administrator Console displays updated information about the virtual
machine. The updated properties include Name, Location, Status, OperatingS

ystem, and other properties.

RELATED LINKS
Get-VM
Refresh-LibraryShare
Refresh-VMHost

REMARKS
To see the examples, type: "get-help Refresh-VM -examples".
For more information, type: "get-help Refresh-VM -detailed".
For technical information, type: "get-help Refresh-VM -full".

The next code shows the different parameters that can be passed to the get-help cmdlet:

To show detailed information on the refresh-vm cmdlet, use the
-detailed parameter
PS D:\> get-help Refresh-VM -detailed

This command will show examples on using the cmdlet refresh-vm
PS D:\> get-help Refresh-VM -examples

This command will show the full information on using the refresh-vm cmdlet
PS D:\> get-help Refresh-VM -full

Some VMM cmdlets offer different parameters sets. In Figure 8.3 and Figure 8.4, you
can see the different parameter sets for the Get-VM cmdlet. For example, you can get a

332 CHAPTER 8 AUTOMATION USING POWERSHELL

list of virtual machines (VMs) by a matching name, by using the ID of the VM object, or
by executing the cmdlet against a specific host. Any parameter that is included in square
brackets is optional. If a required parameter is not specified, PowerShell will prompt for it as
Figure 8.5 shows.

Figure 8.3

Get-VM’s different
parameter sets

Using the VMM Cmdlets
By now you know how to get a list of all VMM cmdlets and their descriptions. To get more
information about each cmdlet, including details on each parameter and examples on how
to invoke them, you can use the get-help cmdlet with the -full, -examples, or -detailed
parameter.

VMM AND WINDOWS POWERSHELL 333

Figure 8.4

Get-VM’s required
parameters

Figure 8.5

Windows PowerShell
will prompt for required
parameters.

334 CHAPTER 8 AUTOMATION USING POWERSHELL

The Virtual Machine Manager Scripting Guide is also a great reference for learning how to
use Windows PowerShell with VMM. VMM published a scripting guide with both VMM 2007
and VMM 2008. You can find the scripting guides at http://www.microsoft.com/downloads/
details.aspx?familyid=3DA5BA7E-AD72-4D2C-B573-1B74894D1DDF&displaylang=en and
at http://technet.microsoft.com/en-us/library/cc764259.aspx. A scripting guide
update for VMM 2008 R2 should be available on the System Center Virtual Machine Manager
TechCenter shortly.

Appendix B, ‘‘VMM Windows PowerShell Object Properties and VMM Cmdlet Descrip-
tions,’’ contains a reference list of Virtual Machine Manager cmdlets and a short description
of their functionality.

Noun Properties
Windows PowerShell uses a verb-noun format for the names of the cmdlets. The verb identifies
the action to be performed, such as get, add, set, remove, or new. The Windows PowerShell team
has a published list of common verbs for cmdlet developers to adhere to.

The noun identifies the type of object on which the cmdlet will operate. Example nouns
include VM (virtual machine), VMHost (virtualization host), VMHostCluster (Failover Cluster),
and VirtualNetwork (virtual network). In this section, we will look at three of the most fre-
quently used nouns in VMM and explain their property values.

VMM cmdlets will in most cases return back to the pipeline the noun of the cmdlet. This
allows you to use the pipeline and combine multiple VMM cmdlets for more complicated
scripts. For Get-* cmdlets, like Get-VM for example, it is possible for the value that is returned
to the pipeline to be a collection instead of a single object. You can check the type of the return
value using the code snippet in the next paragraph.

PowerShell Pipeline

The PowerShell pipeline is similar in concept to the ‘‘pipeline’’ seen in Unix shell script-
ing environments. The pipeline allows you to create a multitude of single-purpose and
easy-to-understand cmdlets and then combine them to achieve a bigger task (just like building
blocks).

The following code shows how to invoke the Get-VM cmdlet and check the result:

Execute Get-VM on a VM that does not exist. In this case $vm should be null
$vm = Get-VM "VMDoesNotExist"
$vm -eq $null

Execute Get-VM as a targeted get for a single VM. In this case
the result should not be an array
$vm = Get-VM "virtualmachine1"
$vm -is [Array]

Execute Get-VM to get all VMs in the system. In this case the
result may be an array
$vm = Get-VM
$vm -is [Array]

VMM AND WINDOWS POWERSHELL 335

VMMServer Object

VMMServer represents the object that contains the connection to the Virtual Machine
Manager. This object also contains some of the global settings of the VMM server installation
and environment. Once a connection to the VMM server is established, the connection is cached
and future cmdlets that need a connection object will automatically use the existing cached
connection.

To see the VMMServer noun and a list of its properties with an explanation for each property,
see Appendix B.

VM Object

VM represents the object that contains a virtual machine instance in Virtual Machine Manager.
To see the virtual machine noun and its properties, see Appendix B. Each property also con-

tains a definition for its value or values.

VMHost Object

VMHost represents the object that contains a physical computer that is a virtual machine host.
A virtual machine host could be a Virtual Server host, a Hyper-V host, or a VMware ESX host.
The following code shows you how to get a list of all the properties of a host and inspect their
values:

PS D:\> $vmhost = Get-VMHost "hostname"
PS D:\> $vmhost

Windows PowerShell will output all the properties and values for the
supplied host.

To see the VMHost noun and its properties, see Appendix B. Each property also
contains a definition for its value or values.

Leveraging the Public PowerShell API
Virtual Machine Manager uses the Windows PowerShell cmdlets for VMM as the single point
of entry for VMM. Developers can integrate with VMM programmatically by leveraging the
publicly available VMM PowerShell cmdlets. Calling cmdlets programmatically is not much
different than invoking them in a Windows PowerShell command window. In this section, we
will look at programmatically invoking the cmdlets and give you example code to achieve this
type of integration with VMM.

Programmatically Calling the VMM Cmdlets

The set of Windows PowerShell cmdlets for VMM is the only supported API for integrating
with VMM. To programmatically call the cmdlets and manage VMM, you would need to create
a PowerShell runspace and invoke the cmdlets in the same way you would if you were using
the Windows PowerShell command window.

To start, you need to know the path to the VMM assemblies that are needed to resolve the
VMM objects and cmdlets. You can find the installation path for the Virtual Machine Manager
Administrator Console under the Registry key HKLM\Software\Microsoft\Microsoft System
Center Virtual Machine Manager Administrator Console\Setup. The InstallPath value of

336 CHAPTER 8 AUTOMATION USING POWERSHELL

this Registry key contains the root of the installation path for VMM. The four assemblies that
are needed for the programmatic usage of VMM cmdlets are located in the bin folder of the
installation directory. These binaries are listed here:

◆ Microsoft.SystemCenter.VirtualMachineManager.dll

◆ Remoting.dll

◆ Utils.dll

◆ Errors.dll

Because none of these VMM assemblies are listed in the Global Assembly Cache (GAC), if
you want your application to be able to resolve them without copying the binaries, you need
to use an assembly resolve handler. The following code shows you how to add such a handler
and how to properly load the correct assembly. The InstallPath value from the Registry is
needed for this purpose:

// Add the code for the assembly resolver before any of the VMM binaries
are invoked.
Thread.GetDomain().AssemblyResolve += new
ResolveEventHandler(VMMResolveEventHandler);

// In this example, we automatically resolve everything to
the VirtualMachineManager DLL. A smart resolver would look
at the args.Name and match the assembly to be resolved with
its proper full path.
static Assembly VMMResolveEventHandler(object sender, ResolveEventArgs args)
{

return Assembly.LoadFrom("D:\Program Files\Microsoft System
Center Virtual Machine Manager 2008 R2\bin\
Microsoft.SystemCenter.VirtualMachineManager.dll");

}

In addition to the required binaries, the WCF port number of the VMM server is needed to
establish a successful connection. You can find the TCP port number for WCF under the VMM
server Registry key HKLM\Software\Microsoft\Microsoft System Center Virtual Machine
Manager Server\Settings. The IndigoTcpPort value contains the port number that all VMM
clients need to use to connect.

Now we have all the data we need to connect to VMM and execute some PowerShell
cmdlets. It is recommended to use a utility to create a wrapper on top of the VMM PowerShell
snap-in. Such a wrapper would produce a familiar .NET interface for developers and provide
type safety for all PowerShell cmdlets. There are a few publicly available tools to create such
wrappers. In the following example, I am using the native PowerShell implementation, directly
invoking cmdlets using their string names. You can see that any mistakes in this code will not
be caught by the compiler.

Listing 8.1 is a complete program that creates a PowerShell runspace, adds the VMM Power-
Shell snap-in to it, creates a connection to the VMM server on default port 8100, and gets a list
of all VMs that the current user is authorized to see. The list of VMs returned is written on the
console window as in Figure 8.6.

VMM AND WINDOWS POWERSHELL 337

Figure 8.6

Output from the
programmatic
invocation
of Get-VM

Listing 8.1: Invoking the VMM cmdlets programmatically

// Add the proper namespaces
using System;
using System.Management.Automation;
using Microsoft.VirtualManager.Utils;
using Microsoft.SystemCenter.VirtualMachineManager;
using Microsoft.SystemCenter.VirtualMachineManager.Cmdlets;
using Microsoft.SystemCenter.VirtualMachineManager.Remoting;
using Microsoft.VirtualManager.Remoting;
using System.Management.Automation.Runspaces;
using System.Collections.ObjectModel;

namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

// Create a default RunspaceConfiguration
RunspaceConfiguration config = RunspaceConfiguration.Create();

// Add the VMM PowerShell snapin
PSSnapInException warning = null;
config.AddPSSnapIn("Microsoft.SystemCenter.VirtualMachineManager",

out warning);
if (warning != null)
{

Console.WriteLine(warning.Message);
return;

}

338 CHAPTER 8 AUTOMATION USING POWERSHELL

// Create the Runspace using this configuration
Runspace runspace = RunspaceFactory.CreateRunspace(config);
try
{

runspace.Open();
Command psCommand = null;
ServerConnection serverConnection = null;
VM vmObject = null;

// Create a Pipeline
using (Pipeline pipeline = runspace.CreatePipeline())
{

// Call the get-vmmserver cmdlet to get a connection to VMM
// If you plan to use VMM as a platform and develop
// a separate GUI on top of VMM, you might also want to
// set the RetainDeletedObjects and RetainObjectCache
// properties of the Get-VMMServer cmdlet. For more
// information on these properties, look at the help
// for the cmdlet.
psCommand = new Command("Get-VMMServer");
psCommand.Parameters.Add("ComputerName", "localhost");
psCommand.Parameters.Add("TCPPort", "8100");
pipeline.Commands.Add(psCommand);

// Invoke the cmdlet
Collection<PSObject> psObjList = pipeline.Invoke();
serverConnection =

(ServerConnection)(psObjList[0].BaseObject);
}

// Create a Pipeline
using (Pipeline pipeline = runspace.CreatePipeline())
{

// Call the get-vm cmdlet to get all VMs in the system
psCommand = new Command("Get-VM");
pipeline.Commands.Add(psCommand);

// Invoke the cmdlet
Collection<PSObject> psObjList = pipeline.Invoke();

// Enumerate the results of the cmdlet
foreach (PSObject obj in psObjList)
{

vmObject = (VM)obj.BaseObject;
Console.WriteLine("VM Name: {0},

ID: {1}", vmObject.Name, vmObject.ID);

VMM AND WINDOWS POWERSHELL 339

}
}

}
finally
{

// Close the runspace if it is already open
if (runspace.RunspaceStateInfo.State == RunspaceState.Opened)
{

runspace.Close();
}

}
}

}
}

When trying to programmatically code against VMM, it is useful to understand
and know all the different values and properties for the various VMM classes and
enumerations. To get familiar with the nouns and their properties, you can load the
Microsoft.SystemCenter.VirtualMachineManager.dll into the Object Browser of Visual
Studio and start looking into the classes defined in this assembly.

The following code snippet shows the Status property of a virtual machine object as
defined by the VM class. Figure 8.7 shows the list of possible values for the VMComputerSys-
temState enumeration.

public class VM
{

public VMComputerSystemState Status { get; }
}

The Host class has multiple state objects. In the following code snippet, along with
Figure 8.8 and Figure 8.9, we show you how to get the CommunicationState and the
ComputerState of a host object and the possible values for the two enumerations.

public class Host
{

public CommunicationState CommunicationState { get; }
public ComputerState ComputerState { get; }

}

Creating PowerShell Scripts

PowerShell scripts are simple text files that you can author in Notepad and save with the file-
name extension .ps1. You can also choose to download a PowerShell interactive development
environment (IDE). Such an IDE will accelerate development through rich syntax coloring,
IntelliSense, tabbing, and rich debugging.

340 CHAPTER 8 AUTOMATION USING POWERSHELL

Figure 8.7

Getting the state enu-
meration for a VM

Figure 8.8

Getting the communica-
tion state enumeration
for a Host

VMM AND WINDOWS POWERSHELL 341

Figure 8.9

Getting the computer
state enumeration for a
Host

To create a PowerShell script file, follow these instructions:

1. Open Notepad.exe or your favorite editor.

2. Add the PowerShell cmdlets you want the script to execute. For example, Get-VM |
Refresh-VM.

3. Save the file as RefreshVirtualMachines.ps1.

Once you have created your PowerShell script file, you can invoke it by using the full path
to the file in PowerShell. If the following code snippet fails due to the PowerShell execution
policy, refer to Figure 8.2 for more information:

PS D:\> .\demo.ps1
This is a demo script

Passing parameters to a PowerShell script is similar to passing them in other scripting lan-
guages. Inside the script, you can use the $args variable to get the parameters passed to
the script:

PS D:\> .\demo.ps1 3 parameters passed
This is a demo script
Parameter # 1 : 3
Parameter # 2 : parameters
Parameter # 3 : passed

Even though creating PowerShell scripts is easy, debugging scripts is harder than
debugging individual cmdlets. It is recommended to try your sequence of cmdlets in the inter-
active Windows PowerShell window and make sure they work before putting everything in a
script file.

342 CHAPTER 8 AUTOMATION USING POWERSHELL

Windows PowerShell and the Administrator Console

In addition to the documentation on the VMM cmdlets, the Virtual Machine Manager Admin-
istrator Console provides a few other ways to get familiar with PowerShell and VMM. The
additional features for enhancing your PowerShell knowledge are in the following list:

Viewing the PowerShell script that VMM will execute All VMM wizards in the Adminis-
trator Console have a View Script button in the last wizard page. Clicking it opens up Notepad
and shows you the Windows PowerShell cmdlets that VMM will invoke to execute the actions
the user chose in the wizard. Figure 8.10 has an example script that was generated during
the migration of a VM from one host to another. This is a great way to start learning more
about PowerShell and automating some of the actions that VMM provides in the wizard
pages.

Figure 8.10

The View Script
button at the end of
the migration wizard
and an example script

Viewing the PowerShell cmdlet equivalent for a VMM job The Administrator Console’s
jobs view has a column that lists the VMM cmdlet used for each VMM job that changes data
(for example, the Get-* cmdlets will not have an entry in this view since a VMM job is not cre-
ated for such cmdlets). Each job has a friendly name that indicates the action performed, and
you can get more information on the specific cmdlet invoked through the Get-Help cmdlet.
Figure 8.11 shows you a list of VMM jobs and their associated cmdlet names. The result type
that is listed indicates the type of object on which this operation was performed. This is usually
the noun of the cmdlet.

VMM library support for Windows PowerShell scripts The VMM library has built-in sup-
port for PowerShell scripts. You can place all your files with the .ps1 filename extension in the
library shares and VMM will automatically import them into the library view. From the library,
you can view and edit the scripts (editing the PowerShell Scripts requires that the user of the
Administrator Console has write permissions on the library share and the associated Power-
Shell script file), or you can execute the scripts as per Figure 8.12. Through the Run PowerShell
Script action of the VMM library, VMM will launch a new Windows PowerShell process and
invoke this PowerShell script. Because VMM executes your script after it obtains a connection
to the VMM server, you don’t need to execute Get-VMMServer at the beginning of your script.
VMM will also keep the PowerShell window open for inspecting the results.

VMM AND WINDOWS POWERSHELL 343

Figure 8.11

The Command column
in the jobs view of the
Administrator Console

Figure 8.12

PowerShell scripts in
the VMM library

Interfacing with Hyper-V and Virtual Server
Hyper-V has a well-documented WMI API that can be accessed from the Microsoft Developer
Network’s website. It is listed under the Virtualization WMI Provider documentation, and
the namespace for the WMI is root\virtualization. The WMI provider is hosted by the
Hyper-V Virtual Machine Management Windows Service. The following code shows how to
get all virtual Machines from a Hyper-V server using Windows PowerShell and the WMI API
for Hyper-V:

Get list of Virtual Machine and host machine from Hyper-V WMI API
$computerlist = get-wmiobject Msvm_ComputerSystem -namespace root\virtualization

344 CHAPTER 8 AUTOMATION USING POWERSHELL

Show in tabular format the list of VMs and Host
(Host is identified in the caption as "Hosting Computer System")
The Name for Virtual Machines contains the unique GUID that identifies a VM
ElementName contains the user-friendly name of the VM
$computerlist | select Name, ElementName, Caption

A simple way to test WMI queries before executing them in Windows PowerShell is through
the wbemtest utility. This utility is installed in the %SystemDrive%\Windows\System32\wbem\
Windows folder. To execute a WMI query using this utility, follow these steps:

1. Launch wbemtest.exe.

2. Click Connect and type root\virtualization in the Namespace field.

3. Click Query and type a WMI query, such as

select Name, ElementName, Caption from Msvm_ComputerSystem

4. The results will include the same list as the preceding PowerShell example. Click on each
individual result to see the Name, ElementName, and Caption values.

Virtual Server’s COM interface is documented on the Microsoft Developer Network under
the title of Microsoft Virtual Server Reference. To be able to invoke this API using PowerShell,
you need to meet the security prerequisites.

By default, PowerShell does not have the necessary COM security level to invoke the Virtual
Server COM API. To accomplish that, follow these steps:

1. Create a new library DLL that allows you to set the COM security level to Imper-
sonate for any COM object. To accomplish this, add a new API to the library DLL
called SetVSSecurity. In this API, you need to invoke CoSetProxyBlanket with the
RPC_C_IMP_LEVEL_IMPERSONATE parameter for the COM object that is passed as a
parameter.

2. Once you create this DLL, you can use the System.Reflection.Assembly.LoadFrom()
.NET API and pass the DLL’s full path as a parameter.

3. Once you have a Virtual Server object in PowerShell, you need to invoke the API from
this DLL to set the COM security to Impersonate so that the object can be used. The API
SetVSSecurity should take a PowerShell object as a parameter.

4. You might need to set other objects’ COM security as well, as you start working with Vir-
tual Server and PowerShell. For example, the VM object will need to have its COM security
elevated to Impersonate before it can be used. The following code shows how to get the
Virtual Server root object using PowerShell.

Create a new Virtual Server COM instance
$VirtualServer = new-object –com VirtualServer.Application –Strict

Now set the COM security of the $VirtualServer object to "Impersonate"
and then you can use this object to manage Virtual Server
[Full namespace path for the DLL created in step 1 above]::SetVSSecurity
($VirtualServer)

AUTOMATING COMMON TASKS USING THE WINDOWS SCHEDULER 345

After setting the property of $VirtualServer to "Impersonate", you can
get a list of Virtual Machines and use the full COM API of
Virtual Server

Automating Common Tasks Using the Windows Scheduler
IT personnel today spend a lot of time on repetitive tasks to accomplish various jobs. Pow-
erShell provides a powerful language that can be used to write and execute scripts. These
scripts can eliminate repetitive tasks and add the necessary logic to complete complex jobs.
Since VMM is built entirely on top of PowerShell, anything an administrator can do in the
Administrator Console can also be accomplished via PowerShell cmdlets. If you combine that
with the ability to integrate with .NET and other data stores that are PowerShell ready, an
administrator should be able to translate a lot of manual work into PowerShell scripts. The
ability to schedule PowerShell scripts at specified intervals allows an administrator to do
passive management of their system and let PowerShell do some of the heavy lifting during
nonworking hours.

Once you have a PowerShell script ready, you may want to execute it at regular intervals
and capture its results in a log file. If the cmdlets change data in VMM, you can also view the
results in the Administrator Console’s jobs view. There are a couple of ways to create a sched-
uled task in Windows Server. In this section, we will show you how to do this from the Task
Scheduler user interface. Optionally, you can use the schtasks.exe utility to create a
scheduled task.

To schedule a task from the Task Scheduler, follow these steps:

1. Open the Task Scheduler MMC snap-in. Task Scheduler is located in either
Control Panel\System and Security\Administrative Tools\Task Scheduler or
Control Panel\Administrative Tools\Task Scheduler, depending on the version of
Windows installed.

2. Select Create Task.

3. Enter a Task Name like Windows PowerShell automated script.

4. Select Run Whether User Is Logged On Or Not and chose to store the password.

5. Select Change User Or Group to enter a user that has the proper VMM privileges to execute
this PowerShell script.

6. In the Triggers tab, enter the schedule you would like to create for this scheduled task.
For example, you can chose to run this script daily at 8 p.m.

7. In the Actions tab, as shown in Figure 8.13, add a new action and select Start A Program. In
the program path, enter D:\Windows\System32\WindowsPowerShell\v1.0\powershell
.exe.
This is the full path to Windows PowerShell 1.0.
For arguments, enter the following:

-PSConsoleFile "D:\Program Files\Microsoft System Center Virtual Machine
Manager 2008 R2\bin\cli.psc1" -Command " & ‘\\hypervhost1.vmmdomain.com\
MSSCVMMLibrary\Scripts\GetVMStatus.ps1’"
-NoProfile -Noninteractive

346 CHAPTER 8 AUTOMATION USING POWERSHELL

If you were to execute this command from a regular command window, it would look
like this:

D:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
-PSConsoleFile "D:\Program Files\Microsoft System Center Virtual
Machine Manager 2008 R2\bin\cli.psc1" -Command " &
‘\\hypervhost1.vmmdomain.com\MSSCVMMLibrary\Scripts\GetVMStatus.ps1’"
-NoProfile -Noninteractive

8. Click OK and enter the password for the account that will execute the scheduled task.

9. From the Task Scheduler MMC, you can view all your scheduled tasks, check for their last
run time, and see if there were any errors in execution based on the last run result.

Figure 8.13

Adding the scheduled
task action

Sometimes, it is easier to check if a scheduled task is executing by looking at a log file. The
following sample PowerShell script shows you how to log that information to a file:

Write-Output "Script executing at " (date)

Get a connection to the local VMM server
$c = get-vmmserver localhost

Make a sample query to get some data from VMM
$results = get-vm | select name, status, vmid, ID, hostname

WINDOWS POWERSHELL EXAMPLES 347

Create a log file in the temp directory
$filepath = "$env:temp\PSscriptOutput.log"

Append to the log file the current time and the data retrieved from VMM
Add-Content (date) -Path $filepath
Add-Content $results -Path $filepath
Add-Content "-------------" -Path $filepath

Because scheduled PowerShell scripts don’t offer the same degree of debugging, you need
to ensure that the proper execution policies are in place for PowerShell scripts. It is recom-
mended that all scripts you execute using the Task Scheduler are signed using a code signing
certificate issued by a certificate authority. This will enable you to set the PowerShell execu-
tion policy to a more secure level like the AllSigned option. After you sign a script using the
Set-AuthenticodeSignature cmdlet, you will need to add the publisher of the script to your
trusted publishers. PowerShell will prompt you to do that on the first execution of the script.

In Chapter 9, ‘‘Writing a PRO Pack,’’ we will cover the PRO feature of VMM. PRO allows
an administrator to execute a PowerShell script or perform a VMM action based on a set of
alerts detected by System Center Operations Manager (OpsMgr). OpsMgr is a comprehensive
datacenter monitoring tool. In this case, a PowerShell script is executed in response to a
dynamic event.

Windows PowerShell Examples
In the following sections, we will list a few different Windows PowerShell scripts that leverage
the VMM cmdlets to accomplish important tasks in VMM, make it easier for an administrator
to execute repetitive actions, and allow an administrator to get quick status on the health of
VMM objects.

Creating Virtual Machines
There are many ways to create a virtual machine in VMM. In this section, we will take a look
at an example of how to create a highly available (HA) VM and find the best suitable host on
which to place it. The best suitable host is found by the Intelligent Placement feature of VMM
based on the properties of the VM and the available hosts. Listing 8.2 contains the code for cre-
ating the HA virtual machine.

Listing 8.2: Creating a new highly available virtual machine

Get a connection to the VMM server
$c = Get-VMMServer "localhost"

Create the Job Group ID. This is the Guid that pairs all the cmdlets
necessary to ensure that the new Virtual Machine creation is
Successful. Every cmdlet that specifies the same Job Group ID will
be part of a set and will be executed in order after the final command
that includes the same Job Group ID runs. In this case, the final

348 CHAPTER 8 AUTOMATION USING POWERSHELL

command is the New-VM cmdlet.
$JobGroupID = [System.Guid]::NewGuid().ToString()

Enter the VM Name
$VMName = "virtualmachine1"

Create a virtual NIC
New-VirtualNetworkAdapter -JobGroup $JobGroupID -PhysicalAddressType
Dynamic -VLANEnabled $false

Create a virtual DVD
New-VirtualDVDDrive -JobGroup $JobGroupID -Bus 1 -LUN 0

Check if another HW profile has the same name and delete it if there is
$HardwareProfile = Get-HardwareProfile | where {$_.Name -eq "HWProfile"}
if ($HardwareProfile -ne $null)
{

Write-Warning "Deleting the existing hardware profile with the same name"
Remove-HardwareProfile $HardwareProfile

}

Create a new hardware profile with the user preferences
The -HighlyAvailable property of this cmdlet is the one indicating
that this Virtual Machine should be a Highly Available one
$HardwareProfile = New-HardwareProfile -Owner "vmmdomain\administrator"
-Name "HWProfile" -CPUCount 1 -MemoryMB 2048 -HighlyAvailable $true

-NumLock $false -BootOrder "CD", "IdeHardDrive", "PxeBoot",
"Floppy" -LimitCPUFunctionality $false -JobGroup $VMGuid

Create a new VHD for the VM
$DiskDrive = New-VirtualDiskDrive -IDE -Bus 0 -LUN 0 -JobGroup
$JobGroupID -Size 10240 -Dynamic -Filename "virtualmachine1.vhd"

Get all the hosts and their ratings for this VM’s HW profile
$AllHosts = Get-VMHost
$hostrating = Get-VMHostRating -VMHost $AllHosts
-HardwareProfile $HardwareProfile -DiskSpaceGB 10 -VMName $VMName

Order the host ratings and check if we have at least one
positive star rating for this VM
$orderedrating = $hostrating | sort-object rating -descending
Write-Output $orderedrating

If the rating is 0, exit and don’t call new-vm
if ($orderedrating -is [Array])
{

we have multiple results, so pick the top one
$targethost = $orderedrating[0].VMhost

WINDOWS POWERSHELL EXAMPLES 349

if ($orderedrating[0].Rating -eq 0)
{

Write-Warning "There is no suitable host for this VM’s profile"
Write-Warning $orderedrating[0].ZeroRatingReasonList[0]
break

}
}
else
{

$targethost = $orderedrating.VMhost
if ($orderedrating.Rating -eq 0)
{

Write-Warning "There is no suitable host for this VM’s profile"
Write-Warning $orderedrating.ZeroRatingReasonList[0]
break

}
}

Write-Output "We will be creating a new VM on host $targethost"

Get the operating system from a list of predefined OS Names in VMM
$OperatingSystem = Get-OperatingSystem | where {$_.Name -eq
"64-bit edition of Windows Server 2008 Enterprise"}

Find the path for the LUN/Disk to host the files for the new HA VM
Make sure this volume is not in use, is a cluster volume
(with cluster resources already created), and is available
for placement

$targetpath = get-vmhostvolume -VMHost $targethost
| where-object -filterscript {$_.IsClustered -eq $true}
| where-object -filterscript {$_.InUse -eq $false}
| where-object -filterscript {$_.IsAvailableForPlacement
-eq $true}

if ($targetpath -eq $null)
{

Write-Warning "There is no suitable cluster disk to place this VM on"
Break

}

if ($targetpath -is [Array])
{

Pick the first available disk to place this VM on
$targetpath = $targetpath[0].Name

}
else
{

$targetpath = $targetpath.Name
}

350 CHAPTER 8 AUTOMATION USING POWERSHELL

Create the new-vm in an asynchronous way
New-VM -VMMServer $c -Name $VMName -Description
"new HA VM to learn more about PowerShell"
-Owner "vmmdomain\administrator" -VMHost
$targethost -Path $targetpath -HardwareProfile $HardwareProfile
-JobGroup $JobGroupID -RunAsynchronously -OperatingSystem
$OperatingSystem -RunAsSystem -StartAction NeverAutoTurnOnVM
-StopAction SaveVM

P2V Conversion
VMM makes consolidating old servers a breeze with a simple wizard for converting physical
servers (also known as Physical to Virtual (P2V) conversion). In this section, we will show you
a couple of examples of creating a virtual machine from a given computer system. Listing 8.3
has the PowerShell code for an online P2V.

Listing 8.3: Converting a physical server to a virtual machine without any downtime

Get the connection to the VMM server
Get-VMMServer -ComputerName "localhost"

Get the administrative credentials for accessing the source
machine (this has to be domain credentials)
$PSCredential = Get-Credential

Get the target host for this Virtual Machine
$VMHost = Get-VMHost -ComputerName "localhost"

Initiate the asynchronous P2V operation
New-P2V -SourceComputerName "localhost" -VMHost $VMHost -Name
"resultVMName" -Path $VMHost.VMPaths[0] -MemoryMB 1024 -Credential

$PSCredential -RunAsynchronously

To initiate an offline conversion of a Windows Server 2000 computer, or to force the offline
conversion of a Windows Server 2008 computer, you need to use the -Offline flag of the
New-P2V cmdlet. Listing 8.4 has the PowerShell code for an offline P2V.

Listing 8.4: Offline conversion of a physical server to a virtual machine

Get the connection to the VMM server
Get-VMMServer -ComputerName "localhost"

Get the administrative credentials for accessing the
source machine (this has to be domain credentials)
$PSCredential = Get-Credential

WINDOWS POWERSHELL EXAMPLES 351

Get the target host for this Virtual Machine
$VMHost = Get-VMHost -ComputerName "localhost"

Create a new machine configuration for the physical source
computer. This triggers the hardware scout to retrieve the data
from the source computer.
New-MachineConfig -SourceComputerName "sourcemachine.vmmdomain.com"
-Credential $PSCredential
$MachineConfig = Get-MachineConfig | where {$_.Name
-eq "sourcemachine.vmmdomain.com"}

Initiate the asynchronous offline P2V operation, using a static
IP Address for the conversion
If a patch file or driver is missing, download the required
patches or driver files to the Patch Import directory on the
VMM server (the default path is <SystemDrive>:\Program Files
\Microsoft System Center Virtual Machine Manager 2008\
Patch Import), and extract the files by using the
Add-Patch cmdlet.

New-P2V -Credential $PSCredential -VMHost $VMHost -Path
$VMHost.VMPaths[0] -Owner "vmmdomain\administrator" -Trigger
-Name "resultVMName"

-MachineConfig $MachineConfig -Offline -Shutdown
-OfflineIPAddress "192.168.100.23" -OfflineNICMacAddress
"00:11:22:33:44:55" -OfflineDefaultGateway "192.168.100.1"
-OfflineSubnetMask "255.255.255.0" -CPUCount 1 -MemoryMB 1024
-RunAsSystem -StartAction NeverAutoTurnOnVM
-UseHardwareAssistedVirtualization $false -StopAction SaveVM

-StartVM -RunAsynchronously

Virtual Machine Migrations
When you’re migrating a virtual machine through Virtual Machine Manager, the transfer type
(or speed) for the migration is determined during Intelligent Placement and it is based upon the
properties and capabilities of the source virtual machine and the destination host along with
the connectivity between them. In Listing 8.5, we attempt to migrate a virtual machine while
enforcing a requirement that only SAN or cluster migrations are eligible. This puts a require-
ment on the script to not only check for good host ratings but also to ensure that the transfer
can be accomplished quickly using a SAN or a failover cluster.

Listing 8.5: Migrating a virtual machine using cluster or SAN and tracking the migration progress

Get a connection to the VMM server
$c = Get-VMMServer "localhost"

352 CHAPTER 8 AUTOMATION USING POWERSHELL

Get the VM to migrate
$VM = Get-VM "virtualmachine1"

Get all the hosts
$AllHosts = Get-VMHost

The IsMigration flag allows the current host of the VM
to be considered as the migration target
$hostrating = Get-VMHostRating -VMHost $AllHosts -VM $VM -IsMigration

Order the host ratings
$orderedrating = $hostrating | sort-object rating -descending
Write-Output $orderedrating

Now search for the top rated host that can do a Cluster or a SAN migration
All other migration options are not considered here
$targethost = $null
foreach ($rating in $orderedrating)
{

if ($rating.Rating -gt 0)
{
switch ($rating.TransferType)
{

These options are listed in order of decreasing transfer speed
"Live"

{
Write-Output "$rating.Name has a transfer type of Live"
$targethost = $rating.Name
break

}
"Cluster"

{
Write-Output "$rating.Name has a transfer type of Cluster"
$targethost = $rating.Name
break

}
"San"

{
Write-Output "$rating.Name has a transfer type of SAN"
$targethost = $rating.Name
break

}
"Network"

{
Write-Output "$rating.Name has a transfer type of Network"

}
default

WINDOWS POWERSHELL EXAMPLES 353

{
Write-Output "$rating.Name has an invalid TransferType"

}
}

}

}

if ($targethost -eq $null)
{

Write-Warning "We were not able to find a suitable destination
host for this VM with a fast transfer (SAN or Cluster)"

break
}

Migrate the VM to the target host
$VMHost = Get-VMHost -ComputerName $targethost
$resultvm = Move-VM -VM $VM -vmhost $VMHost -Path $VMHost.VMPaths[0]
-RunAsynchronously

Get the VMM Job that was launched for this migration
$job = $resultvm.MostRecentTask

Iterate the loop until the Job is finished while reporting progress
while ($job.Status -eq "Running")
{

$progress = $job.Progress
Write-Progress $VM Progress -PercentComplete $job.ProgressValue -ID 1
Start-Sleep 3

}

The VMM job is now finished (either with a failed or a completed status)
$status = $job.Status
Write-Warning "Migration of $VM to host $VMHost finished
with a status of: $status"
$error = $job.ErrorInfo | select DisplayableErrorCode,
Problem, RecommendedActionCLI
Write-Warning $error

In some cases, it is beneficial to force a LAN migration even when a faster migration option
is available. The only change from the code in Listing 8.5 would be a small change in the
Move-VM cmdlet to add the UseLAN option as indicated here.

Use the -UseLAN option to force a Network transfer of the Virtual Machine
$resultvm = Move-VM -VM $VM -vmhost $VMHost -Path $VMHost.VMPaths[0]
-RunAsynchronously -UseLAN

354 CHAPTER 8 AUTOMATION USING POWERSHELL

Provisioning Multiple Virtual Machines
Virtual machines are usually provisioned on demand based on customer requirements. How-
ever, there are cases where having many virtual machines available for immediate use is a
requirement. Such scenarios might include hosted desktops allocating virtual machines from
a pool of VMs or allocating VMs to an enterprise application based on load. In the PowerShell
script in Listing 8.6, we read the input from a text file and create virtual machines in blocks of
five at a time (the throttling rate is customizable). This allows us to customize and repeat the
automated provisioning process by updating a text file rather than having to adjust a Power-
Shell script.

Listing 8.6: PowerShell script for creating multiple VMs based on an input file

get the command line arguments passed to this script
$length = $args.length
$expectedArgsLength = 2

The script takes as input the customization filepath and the VMM server name
$usage = "Usage: ScriptName.ps1 <customizationfile.txt> <vmm-server-name>"
if ($length -ne $expectedArgsLength)
{

write-warning $usage;
break

}

The ArrayList to use for tracking new-vm creations
$arraylist = New-Object System.Collections.ArrayList
$arraylist.Clear()

The max number of concurrent VM creations (throttling rate)
$MaxCreations = 5

Get a connection to the VMM server
$servername = $args[1]
get-vmmserver -ComputerName $servername

now open the customization file to read its input
$customFile = $args[0]
$content = get-content $customFile
foreach ($values in $content)
{

$values contains one line of input. Each line represents a VM
now split the CSV input line
$newvalues = $values |% {$_.split(",")}

Perform a test to ensure the proper number of parameters exist
if ($newvalues.length -ne 14)

WINDOWS POWERSHELL EXAMPLES 355

{
write-warning "The proper number of parameters does not exist for $values";
break

}

get the input variables from the file and into the specific variables
$vmname = $newvalues[0] # The virtual machine name
$computername = $newvalues[1] # The guest OS computer name
$memory = $newvalues[2] # The amount of RAM to allocate to the VM
$OSSKU = $newvalues[3] # The OS name (VMM has these

already defined)
$ProductID = $newvalues[4] # The Windows Product ID
$description = $newvalues[5] # A description for the VM
$vmpath = $newvalues[6] # The path where to create this VM
$vnetworkname = $newvalues[7] # The Virtual Network Name
$hostname = $newvalues[8] # The name of the host to place this VM on
$cpuvalue = $newvalues[9] # The CPU Name (VMM has these

already defined)
$cpucount = $newvalues[10] # The number of CPUs
$owner = $newvalues[11] # The owner of the VM
$adminpwd = $newvalues[12] # The guest OS administrator password
$templatename = $newvalues[13] # The template name from

which to create this VM

Create the Job Group ID and the hardware profile name
$jobguid = [guid]::NewGuid().ToString()
$profilename = "Profile" + $jobguid

create the VM based on the settings in the file - this will
happen asynchronously

Set-VirtualFloppyDrive -RunAsynchronously -VMMServer $servername
-NoMedia -JobGroup $jobguid

New-VirtualNetworkAdapter -VMMServer $servername -JobGroup
$jobguid -PhysicalAddressType Dynamic -VirtualNetwork $vnetworkname

-VLanEnabled $false
New-VirtualDVDDrive -VMMServer $servername -JobGroup $jobguid -Bus 1 -LUN 0
$CPUType = Get-CPUType -VMMServer $servername | where {$_.Name -eq $cpuvalue}
New-HardwareProfile -VMMServer $servername -Owner $owner

-CPUType $CPUType -Name $profilename -Description "Profile used to
create a VM/Template" -CPUCount $cpucount -MemoryMB
$memory -ExpectedCPUUtilization 20 -DiskIO 0 -NetworkUtilization
10 -RelativeWeight 100 -HighlyAvailable $false -NumLock $false
-BootOrder "CD", "IdeHardDrive", "PxeBoot", "Floppy"
-LimitCPUFunctionality $false -JobGroup $jobguid

$Template = Get-Template -VMMServer $servername | where
{$_.Name -eq $templatename}

$VMHost = Get-VMHost -VMMServer $servername | where {$_.Name -eq $hostname}
$HardwareProfile = Get-HardwareProfile -VMMServer localhost |

356 CHAPTER 8 AUTOMATION USING POWERSHELL

where {$_.Name -eq $profilename}
$OperatingSystem = Get-OperatingSystem -VMMServer localhost |

where {$_.Name -eq $OSSKU}

Before we start the new-vm creation we need to check
if we reached the maximum number of concurrent creations
while ($arraylist.Count -eq $MaxCreations)
{

$toremove = $null
foreach ($jobid in $arraylist)
{

get the current status of the job
$tempjobid = [string]::join("", $jobid.Keys)
$tempjob = Get-Job -ID $tempjobid;
if ($tempjob.Status -ne "Running")
{

This job completed, so remove it from the tracking list
so that new VMs can be created

Write-Output "Job $tempjobid finished running"
$toremove = $jobid
break

}
}

if ($toremove -ne $null)
{

$arraylist.Remove($jobid)
}

Start-Sleep 2
}

if we reached here, it is safe to create the new VM
$resultvm = New-VM -Template $Template -Name $vmname

-Description $description -VMHost $VMHost -Path $vmpath -JobGroup
$jobguid -Owner $owner -HardwareProfile $HardwareProfile
-ComputerName $computername -FullName "" -OrgName "" -ProductKey
$ProductID -TimeZone 4 -JoinWorkgroup "WORKGROUP" -OperatingSystem
$OperatingSystem -RunAsSystem -StartAction
NeverAutoTurnOnVM -UseHardwareAssistedVirtualization $false
-StopAction SaveVM -RunAsynchronously

Now start tracking this new-vm instance
if ($resultvm -ne $null)
{

Get the VMM Job that was launched for this migration

WINDOWS POWERSHELL EXAMPLES 357

$job = $resultvm.MostRecentTask
$arraylist.Add(@{$job.ID = $job})

}
}

write-output "Done creating All VMs!"

The following code contains a sample line from an input text file that can be used in the
script in Listing 8.6. This line contains the values for the different virtual machine properties
that are needed by the PowerShell script. These values need to be specified in order, and their
descriptions are as follows:

1. The virtual machine name

2. The guest OS computer name

3. The amount of RAM or memory to allocate to the VM

4. The OS name (VMM has these already defined)

5. The Windows product ID

6. A description for the VM

7. The path describing where to create this VM

8. The virtual network name

9. The name of the host on which to place this VM

10. The CPU name (VMM has these already defined.)

11. The number of CPUs

12. The owner of the VM

13. The guest OS administrator password

14. The name of the template from which to create this VM

vmname1,vmname1ComputerName,1024,64-bit edition of Windows Server 2008
Enterprise,55555-55555-55555-55555-55555,scripted VM,D:\ProgramData\Microsoft

\Windows\Hyper-V,Broadcom NetXtreme 57xx Gigabit Controller - Virtual
Network,hypervhost1.vmmdomain.com,2.40 GHz Xeon,1,vmmdomain\administrator,

password,MyTemplate

Automating the Addition of Managed Hosts
Adding a virtual machine host to VMM requires administrative credentials for the physical
computer. The requirement of credentials makes it hard to automate any tasks that need to
run unattended without sacrificing the security of your credentials. Since the credentials are
required parameters to the VMM cmdlets in the script and storing them in clear text might

358 CHAPTER 8 AUTOMATION USING POWERSHELL

compromise security, you can save your credentials to a file for later use. See the following
PowerShell cmdlets for an example:

First, call Get-Credential to store your credentials to a PowerShell variable
$PSCredential = Get-Credential

Now construct the file path of the file that will store the credentials
$SecureFilePath = $PSCredential.UserName + ".cred"
$SecureFilePath = $SecureFilePath.Replace("\", "_")

Store the credentials to this file
$PSCredential.Password | ConvertFrom-SecureString | Set-Content $SecureFilePath

When it is time to execute the automated task, you can retrieve this file from the same loca-
tion and add a host to VMM. In the following code snippet, we are looking to add all Hyper-V
hosts in the environment:

Get the password from the file that we used earlier to store it in
$Password = Get-Content $SecureFilePath | ConvertTo-SecureString

Create a new PsCredential object for our administrator
using the stored password
$PSCredential_Out = New-Object
System.Management.Automation.PsCredential("vmmdomain\administrator",
$Password)

Now discover all the Hyper-V hosts in the domain whose name starts with HyperV
$Computers = Discover-Computer -ComputerNameFilter "HyperV" -Domain
"vmmdomain.com" -FindHyperVHosts -ExcludeVMMHost | select Name

The output of the discover-computer cmdlet can now be used to
add these hosts to VMM
foreach ($computer in $Computers)
{

Instead of prompting for credentials, $PSCredential_Out contains the values
required by VMM to add a new host
Add-VMHost -Credential $PSCredential_Out -ComputerName $computer

}

Working with MAC Addresses
Virtual Machine Manager manages a static range of MAC addresses that can be used when
attaching a virtual network device to a Virtual Machine. MAC addresses that are consumed
from this static range can never be reused, in the same way the MAC addresses on physical
machines are all unique. To configure the MAC address range, click on the administration view
of the VMM Administrator Console and select the Networking option. Figure 8.14 shows a
sample MAC address range for a VMM deployment.

WINDOWS POWERSHELL EXAMPLES 359

Figure 8.14

Global Static MAC
Address Range
dialog box

Listing 8.7 shows how to get the next available MAC address from this range and how to
commit the selection. Once the MAC address is committed, it will never be used again
by VMM.

Listing 8.7: PowerShell script to retrieve the next available MAC address

First, invoke the New-PhysicalAddress cmdlet to view the next
available MAC address in the range
Output will be something like this: 00:1D:D8:B7:1C:00
New-PhysicalAddress

if you execute the New-PhysicalAddress multiple times, the
output will not change from 00:1D:D8:B7:1C:00
New-PhysicalAddress

Now, let’s save this MAC address and commit the change in VMM
$MacAddress = New-PhysicalAddress -Commit

Print the MAC address we just committed (should be 00:1D:D8:B7:1C:00)
$MacAddress

Show that the next invocation of New-PhysicalAddress will
return a new MAC Address from the range. (00:1D:D8:B7:1C:01)
New-PhysicalAddress

Once you have a MAC address, you can invoke the Set-VirtualNetworkAdapter
cmdlet to set the MAC Address
First, let’s get the virtual network adapter for our Virtual Machine1
$vnic = get-virtualnetworkadapter -vm "<insert Virtual Machine name>"

360 CHAPTER 8 AUTOMATION USING POWERSHELL

Now set the properties of the adapter to include this static MAC Address
$vnic | Set-virtualnetworkadapter -Physicaladdresstype Static
-PhysicalAddress $MacAddress

Evacuating a Host for Maintenance
It is sometimes necessary to service the physical computer running the virtualization software,
resulting in several hours of downtime. We will show you a script that you can use to evac-
uate a host from all of its virtual machines instead of the virtual machines being inactive as
well. Make sure you monitor the progress of the VMM jobs to ensure that all virtual machines
have successfully migrated to a different host. Listing 8.8 contains the code for asynchronously
moving all the VMs from a host.

VMM 2008 R2 also introduced a new feature called maintenance mode. A host managed
by VMM can be placed into maintenance mode if you want to perform maintenance tasks on
the physical host (e.g., replace hardware or install security updates that might require a server
reboot). Once a host is in maintenance mode, VMM will no longer allow that host to be the tar-
get host for a new virtual machine. In addition, a host that is in maintenance mode is excluded
from host ratings calculations during virtual machine placement.

When maintenance mode is initiated on a host, all running virtual machines are put into a
saved state. If the host is part of a cluster, then the user is presented with the option to either
live migrate all its virtual machines to another host or to save the state of all virtual machines
on that host. Live migration is an option only if the host cluster is capable of live migration.
This behavior is a little bit different for VMware hosts. Once a VMware ESX host is put into
maintenance mode in VMM, VMM will send an ‘‘Enter maintenance mode’’ request to VMware
Virtual Center. The behavior of the VMs on that host is determined based on the configuration
of the maintenance mode feature in Virtual Center.

When maintenance mode is stopped on a host, VMM will allow that host to be the target
host of migrations and that host will start receiving a star rating in placement calculations.
However, no VMs are restarted on that host, and the VMs that were migrated away from that
host are not placed back automatically.

When you’re using the maintenance mode feature of VMM 2008 R2, the Disable-VMHost
cmdlet places a virtual machine host into maintenance mode while Enable-VMHost removes a
host from maintenance mode.

Listing 8.8: PowerShell script to asynchronously move all the VMs from a given host

get the command line arguments passed to this script
$argslength = $args.length
$expectedArgsLength = 2

The script takes as input the VMM server name and
the FQDN of the host to evacuate
$usage = "Usage: ScriptName.ps1 <vmm-server-name> <Host FQDN>"
if ($argslength -ne $expectedArgsLength)
{

write-warning $usage; break
}

WINDOWS POWERSHELL EXAMPLES 361

helper function to move a VM to the host with the highest star rating
This function could be easily modified to only move VMs within a
SAN or a cluster
function MoveVM($vmobj, $hostobj)
{

$hostrating = get-vmhostrating -vmhost $hostobj -vm $vmobj
$orderedrating = $hostrating | sort-object rating -descending
Write-Output $orderedrating

$targethost = $null
if ($orderedrating -is [Array])
{

if ($orderedrating[0].Rating -ne 0)
{

$targethost = $orderedrating[0].VMhost
}

}
else
{

if ($orderedrating.Rating -ne 0)
{

$targethost = $orderedrating.VMHost
}

}

if ($targethost -ne $null)
{

write-warning "Moving VM $vmobj to host $targethost"
$resultvm = move-vm -VM $vmobj -vmhost $targethost

-Path $targethost.VMPaths[0] -RunAsynchronously
}
else
{

Write-Warning "There is no suitable host for this VM $vmobj
and it will not be migrated!"

}
}

get a connection to the VMM server
$vmmserver = $args[0]
$c = get-vmmserver -ComputerName $vmmserver

Now call Get-VM to cache all the VMs in Powershell
$vms = Get-VM

Get the host computer and all hosts
$hostname = $args[1]
$VMHost = Get-VMHost -ComputerName $hostname
$AllHosts = Get-VMHost

362 CHAPTER 8 AUTOMATION USING POWERSHELL

Now set this host to maintenance mode to prevent VMs from
being deployed here
$VMHost | Set-VMHost -MaintenanceHost $true

Enumerate all VMs on this host and move them asynchronously
foreach ($VM in $VMHost.VMs)
{

MoveVM $VM $AllHosts
}

Utilizing Rapid Provisioning
VMM 2008 R2 introduced a new feature called Rapid Provisioning. This feature was imple-
mented in response to customer demand to improve the time required to create virtual
machines. In VMM 2008, the only way to create and deploy a new virtual machine was by
utilizing a template, another virtual machine, or a VHD from the VMM library. During the new
virtual machine creation process, VMM copied all the required VHDs over the network using
the BITS protocol. Depending on the size of VHD and the available bandwidth, this operation
could take several minutes to complete.

Several customers have sophisticated SAN technologies that enable them to clone a LUN
that contains the VHD and present it to the host. However, customers still want to leverage
the VMM template capabilities with operating system (OS) customization. Rapid Provisioning
allows you to take advantage of your fast SAN infrastructure to move (or copy) the actual VHD
files to the host but tie that back to VMM’s rich template customization process. With Rapid
Provisioning, you can now create a template that includes the OS configuration and references
a ‘‘dummy’’ blank VHD. The blank VHD will not be used and will be replaced through the
Move-VirtualHardDisk cmdlet. This cmdlet will let VMM know that it should not be using the
VHD that is referenced in the template. Instead, VMM should use a VHD that resides locally on
the host computer. To indicate to VMM that Rapid Provisioning needs to be used, the New-VM
cmdlet takes a new switch called UseLocalVirtualHardDisk. Rapid Provisioning is only avail-
able through Windows PowerShell cmdlets.

Listing 8.9 shows an example creation of a virtual machine by utilizing Rapid Provisioning.
In this example, C:\Win2k8_Base_OS_Sysprep.vhd has to locally exist on the host computer
before the New-VM cmdlet is invoked.

Listing 8.9: Creating a new virtual machine using Rapid Provisioning

Start by specifying the file location for the VHD that will
be used by the Virtual Machine
$VHDName = "c:\Win2k8_Base_OS_Sysprep.vhd"

Specify other variables for new-vm cmdlet
$vmname = "vm1"
$hostname = "host.contoso.com"

WINDOWS POWERSHELL EXAMPLES 363

Get an instance of the host that will be the target
for the Virtual Machine
$vmhost = get-vmhost $hostname

Create the jobgroup ID for new-vm from template
$JobGuid = [System.Guid]::NewGuid().ToString()

Specify the local location for the VHD
That will replace the "dummy" VHD that exists in the template
VMM expects that $VHDName already exists on the host computer
when the new-vm cmdlet is called.
Move-VirtualHardDisk -Bus 0 -LUN 0 -IDE -Path $VHDName -JobGroup $JobGuid

Get the instance of the template that will be used for OS Configuration
$template = Get-Template | where {$_.Name -eq "VMMTemplate"}

Get the current username to be passed as the Virtual Machine owner
$callerUsername = whoami

Create the new-vm from template and specify the Rapid
Provisioning flag (-uselocalvirtualharddisks)
New-VM -Template $template -Name $vmname -Description
"a Virtual Machine created with RP" -Owner $callerUsername
-VMHost $vmhost -UseLocalVirtualHardDisks -Path $vmhost.VMPaths[0]
-RunAsynchronously -JobGroup $JobGuid | Out-Null

Even though Virtual Machine Manager does not provide UI support for creating a
virtual machine using differencing VHD disks, this can be accomplished using Rapid
Provisioning. Using the public Hyper-V WMI interface, you can create a differencing disk
for the c:\Win2k8_Base_OS_Sysprep.vhd VHD file used in Listing 8.9. Then, when the
Move-VirtualHardDisk cmdlet is executed, you can pass the full path to the child VHD. The
differencing disk will then be used as the target VHD for the new virtual machine creation.
Such a process would make it easy for customers to copy a single base disk with the operating
system on a host and then use the Rapid Provisioning feature to create multiple virtual
machines using differencing disks off that same parent VHD. The following code snippet
shows you a partial script that creates a differencing disk from the base VHD. Then it supplies
the new VHD file path to VMM for Rapid Provisioning. The following code can be used within
Listing 8.9 to create a new virtual machine using differencing disks and Rapid Provisioning:

Get the Image Management Service WMI instance for the host computer
$VHDService = get-wmiobject -class "Msvm_ImageManagementService"
-namespace "root\virtualization" -computername $hostname

Create a differencing disk from the base disk
$DiffVHDName = "c:\Win2k8_Base_OS_Sysprep_child.vhd"
$Result = $VHDService.CreateDifferencingVirtualHardDisk($DiffVHDName, $VHDName)

364 CHAPTER 8 AUTOMATION USING POWERSHELL

Wait until the Hyper-V differencing disk creation is complete
and then pass DiffVHDName to the Move-VirtualHardDisk cmdlet
This will notify VMM to use the differencing disk for New-VM
instead of the base disk $VHDName
Move-VirtualHardDisk -Bus 0 -LUN 0 -IDE -Path $DiffVHDName
-JobGroup $JobGuid

In addition to the new UseLocalVirtualHardDisks, VMM 2008 R2 has added one more
new switch for New-VM called SkipInstallVirtualizationGuestServices. This switch notifies
VMM to skip the installation of the Integration Components (ICs) (also known as Virtual Guest
Services) as part of the New-VM cmdlets, decreasing the amount of time required for New-VM
to complete. This switch should be used only if you are already certain that your template
either contains the ICs or contains an operating system that has built-in integration compo-
nents. It is important that you ensure that all your VMs have the integration components cor-
rectly installed to take full advantage of virtualization and virtualization management. The
SkipInstallVirtualizationGuestServices will take effect only in the following three New-VM
scenarios:

◆ New virtual machine from VHD

◆ New virtual machine utilizing an existing virtual machine

◆ New virtual machine from a template that does not have an OS configuration specified

The following code shows an example invocation of the New-VM cmdlet that utilizes this new
switch. This new switch can also be used along with the UseLocalVirtualHardDisks switch to
further speed up the New-VM process. Here’s the code:

Specify variables needed for the new-vm cmdlet
$vmname = "vm2"
$hostname = "host.contoso.com"

Get an instance of the host that will be the target
for the Virtual Machine
$vmhost = get-vmhost $hostname

Create the jobgroup ID for new-vm from template
$JobGuid = [System.Guid]::NewGuid().ToString()

Get the instance of the template that will be used for OS Configuration
$template = Get-Template | where {$_.Name -eq "VMMTemplate"}

Get the current username to be passed as the Virtual Machine owner
$callerUsername = whoami

Create the new-vm from template and specify the
SkipInstallVirtualizationGuestServices switch to skip
the Install VM components step of the New-VM cmdlet
New-VM -Template $template -Name $vmname -Description
"a Virtual Machine created with RP" -Owner $callerUsername

WINDOWS POWERSHELL EXAMPLES 365

-VMHost $vmhost -SkipInstallVirtualizationGuestServices
-Path $vmhost.VMPaths[0] -RunAsynchronously
-JobGroup $JobGuid | Out-Null

Specifying CPU Settings
The Virtual Machine Manager Administrator Console only exposes the Virtual Machine Priority
setting as part of the virtual machine properties. The priority of a VM, which decides how to
allocate CPU resources on the host for this VM, can be specified in the Hardware Configuration
tab, as shown in Figure 8.15. VMM exposes two more CPU properties for a virtual machine
through Windows PowerShell only and the Set-VM cmdlet:

CPUMax Specifies the highest percentage of the total resources of a single CPU on the host that
can be used by a specific virtual machine at any given time.

CPUReserve Specifies the minimum percentage of the resources of a single CPU on the host
to allocate to a virtual machine. The percentage of CPU capacity that is available to the virtual
machine is never less than this percentage.

A third PowerShell property, called RelativeWeight, is the same as the VM Priority prop-
erty seen in Figure 8.15. Use this command to create a new hardware profile with the three
CPU properties set at different levels.

Figure 8.15

CPU priority for a virtual
machine

366 CHAPTER 8 AUTOMATION USING POWERSHELL

The following code shows an example creation of a virtual machine with the CPU
properties:

Get the instance of a host
$vmhost = get-vmhost "host.contoso.com"

Get the instance of a VHD that will be used during New-VM
$vhd = (Get-VirtualHardDisk)[0]

Create a new hardware profile with the CPU settings set
$hwProfile = New-HardwareProfile -Name "cpuHWProfile" -description ""
-CPUMax 70 -CPUReserve 50 -RelativeWeight 80

Create the new Virtual Machine with the hardware profile specified
New-VM -Name "cpuVM" -VirtualHardDisk $vhd -VMHost $vmhost -HardwareProfile
$hwProfile -Path $vmhost.VMPaths[0]

Show that the new Virtual Machine created has the specified CPU settings
Get-VM -Name "cpuVM" | Select Name, Hostname, CPUMax, CPUReserve,
RelativeWeight

Clustering Cmdlet Switches
VMM 2008 R2 provides support for the new Windows Server 2008 R2 Hyper-V features, includ-
ing Live Migration in a failover cluster environment. From the VMM Administrator Console,
if Live Migration is available for a virtual machine, then that is the only option offered to an
administrator for migrating the virtual machine to another node in the cluster. If you want to
force the transfer type of the virtual machine to be Quick Migration (Quick Migration saves the
state of a virtual machine prior to changing its ownership to another node in the cluster) even
if Hyper-V Live Migration is available, use the UseCluster switch with this command:

Move-VM -VM $myVM -vmhost $VMHost -Path $VMHost.VMPaths[0] -UseCluster

Hyper-V Live Migration allows only one cluster node to participate in a live migration at
any point in time. VMM implemented a queue to track active live migrations and ensure that
all user-executed live migrations complete in order. If you would like the Move-VM cmdlet to
fail if a Hyper-V live migration is in progress and your live migration cannot start immediately,
use the BlockLMIfHostBusy switch with this command (this switch will not utilize the VMM
Live Migration queue):

Move-VM -VM $myVM -vmhost $VMHost -Path $VMHost.VMPaths[0] -BlockLMIfHostBusy

Monitoring and Reporting
Creating automated tasks that checks the health of your system and emails the administrator
on critical errors can be accomplished very easily with a few cmdlets. In this section, we will
show you a few cmdlets that can prove useful in assessing the overall health of your system.
If you would like to bundle these scripts into an automated task and enable email notification,
you can look into the SMTP emailing properties of the class System.Net.Mail.MailMessage.

WINDOWS POWERSHELL EXAMPLES 367

Use this command to get the overall status of the virtual machines’ health:

Get-VM | Select Name, ID, Status | sort-object Status

Use this command to get a list of all virtual machines and their host names:

VMID is the unique identifier of the VM on the virtualization platform
(i.e. Hyper-V)
ID is the unique identifier of the VM in Virtual Machine Manager
Get-VM | Select Name, ID, HostName, VMID

Use this command to get a list of the last job run on each virtual machine:

Get-VM | Select Name, ID, MostRecentTask

Use this command to get the health information of the hosts:

Get-VMHost | select Name, OverallState, CommunicationState,
VirtualServerState, VirtualServerVersionState

Use this command to get the health information of the managed physical computers:

Get-VMMManagedComputer | select Name, State, VersionState, UpdatedDate

Use this command to create a report of two custom properties of a virtual machine:

You can use the Customer Properties of a VM to add any data you would like to
associate with a VM. In this example, we chose CostCenter and
LastUpdated for the first two custom properties
Get-VM |select Name, Status,
@{Name=’CostCenter’;Expression={$_.CustomProperties[0]}},
@{Name=’LastUpdated’;Expression={$_.CustomProperties[1]}}

Use this command to get the list of virtualization platforms in VMM:

Get-VMHost | select Name, VirtualizationPlatformDetail | sort-object
VirtualizationPlatformDetail -descending

Use this command to get the last 10 jobs that were run in VMM, their owners, and the
affected objects:

$jobs = get-job | sort-object StartTime -Descending | select Name,
ResultName, ResultObjectType, Status, Owner
$jobs[0..10]

When invoking Windows PowerShell cmdlets, it is useful to be able to identify if an error
occurred. Use the following command to clear any existing errors in the error pipeline and then
use the same object to check for errors:

Clear any existing errors from the error pipeline
$Error.Clear()

368 CHAPTER 8 AUTOMATION USING POWERSHELL

Invoke a cmdlet. As an example, I used get-vmmserver
$c = get-vmmserver -ComputerName "localhost"

Check if any errors occurred
if ($Error.Count -ne 0)
{

An error occurred here. Do something about it and terminate
the script

}

The Bottom Line

Describe the main benefits that PowerShell offers for VMM. Windows PowerShell is a
relatively new technology that was developed by Microsoft Corporation. Virtual Machine
Manager utilized this technology as the scripting public API for VMM and as the backbone of
the Administrator Console.

Master It What version of Windows PowerShell does VMM support?
Which are the VMM assemblies needed for programmatically integrating with
VMM’s cmdlets?
List the benefits that Windows PowerShell cmdlets offer as a public API.

Create scheduled PowerShell scripts. Scheduling PowerShell scripts allows an administrator
to perform operations during nonwork hours and get reports on the progress and the results of
those operations.

Master It How can you create a scheduled task in Windows?
List an example PowerShell script that checks if any host is in an unhealthy state and needs
an administrator to take a look at it.

Use the VMM PowerShell cmdlets. Understanding the usage, scope, and association of the
different VMM cmdlets and PowerShell objects allows an administrator to effectively manage
VMM through Windows PowerShell.

Master It How can you identify the proper parameters and syntax for the Add-VMHost
cmdlet?
How can you add the VMM PowerShell snap-in programmatically to a PowerShell script?
How does the Windows PowerShell pipeline work?

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

