
Parallel SQL enables a SQL statement to be processed by multiple threads or
processes simultaneously.

Today’s widespread use of dual and quad core processors means that even
the humblest of modern computers running an Oracle database will contain more
than one CPU. Although desktop and laptop computers might have only a single
disk device, database server systems typically have database files spread—
striped—across multiple, independent disk devices. Without parallel technol-
ogy—when a SQL statement is processed in serial—a session can make use of
only one of these CPUs or disk devices at a time. Consequently, serial execution
of a SQL statement cannot make use of all the processing power of the computer.
Parallel execution enables a single session and SQL statement to harness the
power of multiple CPU and disk devices.

Parallel processing can improve the performance of suitable SQL statements
to a degree that is often not possible by any other method. Parallel processing is
available in Oracle Enterprise Edition only.

In this chapter we look at how Oracle can parallelize SQL statements and
how you can use this facility to improve the performance of individual SQLs or
the application as a whole.

395

Chapter 13

PARALLEL SQL

13_7332ch13.qxp 9/18/09 11:40 AM Page 395

UNDERSTANDING PARALLEL SQL

In a serial—nonparallel—execution environment, a single process or thread1 un-
dertakes the operations required to process your SQL statement, and each action
must complete before the succeeding action can commence. The single Oracle
process might only leverage the power of a single CPU and read from a single
disk at any given instant. Because most modern hardware platforms include
more than a single CPU and because Oracle data is often spread across multiple
disks, serial SQL execution cannot take advantage of all the available processing
power.

For instance, consider the following SQL statement:

SELECT *
FROM sh.customers

ORDER BY cust_first_name, cust_last_name, cust_year_of_birth

If executing without the parallel query option, a single process would be re-
sponsible for fetching all the rows in the CUSTOMERS table. The same process
would be responsible for sorting the rows to satisfy the ORDER BY clause. Figure
13-1 illustrates the workflow.

We can request that Oracle execute this statement in parallel by using the
PARALLEL hint:

SELECT /*+ parallel(c,2) */ *
FROM sh.customers c

ORDER BY cust_first_name, cust_last_name, cust_year_of_birth

If parallel processing is available, the CUSTOMERS table will be scanned by
two processes2 in parallel. A further two processes will be employed to sort the
resulting rows. A final process—the session that issued the SQL in the first
place—combines the rows and returns the result set. The process that requests
and coordinates the parallel processing stream is the Query coordinator. Figure
13-2 illustrates this sequence of events.

396 Chapter 13

1 A process is a unit of execution with its own private memory. A thread is also a unit of
execution but shares memory with other threads within a process. On UNIX and Linux
Oracle servers, tasks are implemented as processes and on Windows as threads.
2 Because the PARALLEL hint requested a Degree of Parallelism (DOP) of 2.

13_7332ch13.qxp 9/18/09 11:40 AM Page 396

Oracle supports parallel processing for a wide range of operations, includ-
ing queries, DDL, and DML:

❏ Queries that involve table or index range scans
❏ Bulk insert, update, or delete operations
❏ Table and index creation
❏ The collection of object statistics using DBMS_STATS (see Chapter 7, “Opti-

mizing the Optimizer”)
❏ Backup and recovery operations using Recovery Manager (RMAN)

PARALLEL PROCESSES AND THE DEGREE OF PARALLELISM

The Degree of Parallelism (DOP) defines the number of parallel streams of execu-
tion that will be created. In the simplest case, this translates to the number of par-
allel slave processes enlisted to support your SQL’s execution. However, the
number of parallel processes is more often twice the DOP. This is because each
step in a nontrivial execution plan needs to feed data into the subsequent step, so
two sets of processes are required to maintain the parallel stream of processing.

Parallel SQL 397

FIGURE 13-1 Serial execution of a SQL statement.

Process 1

Fetch Rows from
CUSTOMERS Table

Sort the Rows

Return the Rows

13_7332ch13.qxp 9/18/09 11:40 AM Page 397

For instance, if the statement includes a full table scan, an ORDER BY and a
GROUP BY, three sets of parallel processes are required: one to scan, one to sort,
and one go group. Because Oracle reuses the first set of parallel processes (those
that performed the scan) to perform the third operation (the GROUP BY), only
two sets of processes are required. As a result of this approach, the number of
parallel slaves allocated should never be more than twice the DOP.

Figure 13-3 shows how parallel slaves are allocated for a DOP of 2.

PARALLEL SLAVE POOL

The Oracle server maintains a pool of parallel slave processes available for parallel
operations. The database configuration parameters PARALLEL_MIN_ SERVERS

398 Chapter 13

FIGURE 13-2 Parallel Execution.

Process 1

Query Coordinator

Fetch Rows from
CUSTOMERS Table

Return the Rows

Process 2

Fetch Rows from
CUSTOMERS Table

Process 3

Sort the Rows (A-K)

Process 4

Sort the Rows (L-Z)

13_7332ch13.qxp 9/18/09 11:40 AM Page 398

and PARALLEL_MAX_SERVERS determine the initial and maximum size of the
pool. If insufficient slaves are currently active but the pool has not reached its
maximum value, Oracle will create more slaves. After a configurable period of
inactivity, slave processes will shut down until the pool is again at its minimum
size.

Parallel SQL 399

FIGURE 13-3 Parallel process allocation for a DOP of 2.

CUSTOMER
TABLE

Parallel
Process #2

Parallel
Process #1

Query
Coordinator

Scan

CUSTOMER
TABLE

Parallel
Process #2

Parallel
Process #1

Scan

Parallel
Process #3

Parallel
Process #4

Order By

Query
Coordinator

CUSTOMER
TABLE

Parallel
Process #2

Parallel
Process #1

Scan

Parallel
Process #3

Parallel
Process #4

Group By

Parallel
Process #2

Parallel
Process #1

Order By

Process Group Switches from Scan to Sort

SELECT /*+ parallel(c,2) */ *
FROM customers c

SELECT /*+ parallel(c,2) */ *
FROM customers c
ORDER BY cust_last_name,cust_first_name

SELECT /*+ parallel(c,2) */ cust_last_name,count(*)
FROM customers c

GROUP BY cust_last_name
ORDER BY 2 desc

Query
Coordinator

13_7332ch13.qxp 9/18/09 11:40 AM Page 399

If there are insufficient query processes to satisfy the DOP requested by
your statement, one of the following outcomes results:

❏ If there are some parallel query slaves available, but less than requested by
your SQL statement, your statement might run at a reduced DOP.

❏ If there are no parallel query slaves available, your statement might run se-
rially.

❏ Under specific circumstances, you might get an error. This will only occur if
the database parameter PARALLEL_MIN_PERCENT has been set to a
value that is higher than the percentage of required slaves that are available.

❏ In Oracle 11g Release 2 and forward, your SQL execution might be delayed
until sufficient parallel servers are available.

See the “Parallel Configuration Parameters” section later in this chapter for
more information on how to configure these outcomes.

PARALLEL QUERY IO

We discussed in Chapter 2, “Oracle Architecture and Concepts,” and elsewhere,
how the Oracle buffer cache helps reduce disk IO by buffering frequently ac-
cessed data blocks in shared memory. Oracle has an alternate IO mechanism, di-
rect path IO, which it can use if it determines that it would be faster to bypass the
buffer cache and perform the IO directly. For instance, Oracle uses direct IO
when reading and writing temporary segments for sorting and intermediate re-
sult sets. In Oracle 11g onward, Oracle sometimes uses direct path IO in prefer-
ence to the normal buffered IO for serial table access as well.

When performing Parallel query operations, Oracle normally uses direct
path IO. By using direct path IO, Oracle avoids creating contention for the buffer
cache and allows IO to be more optimally distributed between slaves. Further-
more, for parallel operations that perform full table scans the chance of finding
matching data in the buffer cache is fairly low, so the buffer cache adds little
value.

In Oracle 10g and earlier, parallel query always uses direct path IO, and se-
rial query will always use buffered IO.3 In 11g, Oracle can use buffered IO for
parallel query (from 11g release 2 forward), and serial queries might use direct
path IO. However, it remains true that parallel queries are less likely to use
buffered IO and might, therefore, have a higher IO cost than serial queries. The
higher IO cost will, of course, be shared amongst all the parallel processes so the
overall performance might still be superior.

400 Chapter 13

3 Unless the undocumented parameter serial_direct_read has been set to TRUE.

13_7332ch13.qxp 9/18/09 11:40 AM Page 400

Direct path and buffered IO are discussed in more detail within Chapter 21,
“Disk IO Tuning Fundamentals.”

PARALLEL PERFORMANCE GAINS

The performance improvements that you can expect to obtain from parallel SQL
depend on the suitability of your host computer, Oracle configuration, and the
SQL statement. If all the conditions for parallel processing are met, you can ex-
pect to get substantial performance improvements in proportion to the DOP em-
ployed.

On many systems, the limit of effective parallelism will be determined by
segment spread, not by hardware configuration. For instance, if you have
32 CPUs and 64 independent disk devices, you might hope for effective paral-
lelism up to at least a DOP of 32 or maybe even 64. However, if the table you are
querying is spread over only 6 disks, you are likely to see performance improve-
ments reduce as you increase the DOP beyond 6 or so.

Figure 13-4 illustrates the improvements gained when increasing the
DOP for a SQL statement that performs a table scan and GROUP BY of a single
table.

Parallel SQL 401

FIGURE 13-4 Improvement gains for various DOPs on various host configurations.

R
el

at
iv

e
P

er
fo

rm
an

ce

Degree of Parallelism (DOP)

EC2 Xlarge
EC2 Medium
Dell 6800
Lattitude D830 Laptop

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20

13_7332ch13.qxp 9/18/09 11:40 AM Page 401

The host configurations shown are

❏ An Amazon CPU-intensive Extra Large EC2 image. This is a virtual server
running in Amazon’s AWS cloud that has the equivalent of 8 � 2.5-GHz
CPUs and has storage on a widely striped SAN.

❏ An Amazon CPU-intensive Medium EC2 image. This is similar to the extra
large image, but has only 2 CPUs.

❏ A Dell 6800 4 CPU server with disk storage on a widely striped SAN using
ASM.

❏ A Dell latitude D830 laptop (my laptop). It is dual core, but all data files are
on a single disk.

In each case, the parallel SQL was the only SQL running.
These examples show that for suitably configured systems, performance

gains were greater the more CPUs that were available. However, attempting to
use parallel on a host that is unsuitable (as in my laptop) is futile at best and
counter-productive at worst.

402 Chapter 13

The performance gains achieved through parallal processing are most dependent on
the hardware configuration of the host. To get benefits from parallel processing, the
host should possess multiple CPUs and data should be spread across multiple disk
devices.

DECIDING WHEN TO USE PARALLEL PROCESSING

A developer once saw me use the parallel hint to get a rapid response to an
ad-hoc query. Shortly thereafter, every SQL that developer wrote included the
parallel hint, and system performance suffered as the database server became
overloaded by excessive parallel processing.

The lesson is obvious: If every concurrent SQL in the system tries to use all
the resources of the system, parallel makes performance worse, not better. Conse-
quently, we should use parallel only when doing so improves performance with-
out degrading the performance of other concurrent database requests.

The following sections discuss some of the circumstances in which you can
effectively use parallel SQL.

YOUR SERVER COMPUTER HAS MULTIPLE CPUS

Parallel processing will usually be most effective if the computer that hosts your
Oracle database has multiple CPUs. This is because most operations performed
by the Oracle server (accessing the Oracle shared memory, performing sorts, disk

13_7332ch13.qxp 9/18/09 11:40 AM Page 402

accesses) require CPU. If the host computer has only one CPU, the parallel
processes might contend for this CPU, and performance might actually decrease.

Almost every modern computer has more than one CPU; dual-core (2 CPUs
in a single processor slot) configurations are the minimum found in systems
likely to be running an Oracle server including the desktops and laptops running
development databases. However, databases running within Virtual machines
might be configured with only a single (virtual) CPU.

THE DATA TO BE ACCESSED IS ON MULTIPLE DISK DRIVES

Many SQL statements can be resolved with few or no disk accesses when the nec-
essary data can be found in the Oracle buffer cache. However, full table scans of
larger tables—a typical operation to be parallelized—tends to require significant
physical disk reads. If the data to be accessed resides on a single disk, the parallel
processes line up for this disk, and the advantages of parallel processing might
not be realized.

Parallelism will be maximized if the data is spread evenly across the multi-
ple disk devices using some form of striping; we discuss principles of striping in
Chapter 21.

THE SQL TO BE PARALLELIZED IS LONG RUNNING
OR RESOURCE-INTENSIVE

Parallel SQL suits long running or resource-intensive statements. There is an
overhead in activating and coordinating multiple parallel query processes and in
co-coordinating the flow of information between these processes. For short-lived
SQL statements, this overhead might be greater than the total SQL response time.

Parallel processing is typically used for

❏ Long-running reports
❏ Bulk updates of large tables
❏ Building or rebuilding indexes on large tables
❏ Creating temporary tables for analytical processing
❏ Rebuilding a table to improve performance or to purge unwanted rows

Parallel processing is not usually suitable for transaction processing environ-
ments. In these environments, multiple sessions process transactions concurrently.
Full use of available CPUs is already achieved because each concurrent transaction
can use a different CPU. Implementing parallel processing might actually degrade
overall performance by allowing a single user to monopolize multiple CPUs.

Parallel SQL 403

Parallel processing is suitable for long-running operations in low-concurrency environ-
ments. Parallel processing is less suitable for OLTP style databases.

13_7332ch13.qxp 9/18/09 11:40 AM Page 403

THE SQL PERFORMS AT LEAST ONE FULL TABLE, INDEX,
OR PARTITION SCAN

Parallel processing is generally restricted to operations that include a scan of a
table, index, or partition. However, the SQL might include a mix of operations,
only some of which involve scans. For instance, a nested loops join that uses an
index to join two tables can be fully parallelized providing that the driving table
is accessed by a table scan.

Although queries that are driven from an index lookup are not normally par-
allelizable, if a query against a partitioned table is based on a local partitioned
index, each index scan can be performed in parallel against the table partition cor-
responding to the index partition. We see an example of this later in the chapter.

THERE IS SPARE CAPACITY ON YOUR HOST

You are unlikely to realize the full gains of parallel processing if your server is at
full capacity. Parallel processing works well for a single job on an underutilized,
multi-CPU machine. If all CPUs on the machine are busy, your parallel processes
will bottleneck on the CPU and performance will be degraded.

Remember that when a session uses parallel query, it requests a greater
share of machine resources. If many processes simultaneously attempt to run in
parallel, the result will usually be that some fail to run at the requested degree of
parallelism whereas others acquire more than their fair share of resources.

THE SQL IS WELL TUNED

Parallelizing a poorly tuned SQL might well reduce its execution time. However,
you’ll also be magnifying the impact of that SQL on the database server and in-
creasing its impact on other sessions. You should make sure that the SQL is
efficient before attempting to grant it access to more of the database server’s re-
sources. Parallelizing the SQL is not an alternative to tuning the SQL.

CONFIGURING PARALLEL PROCESSING

Oracle tries to automate the configuration of the system to maximize the perform-
ance of parallel operations. However, there’s still a lot of scope for manually
tweaking the database and SQL for optimal parallel performance.

DETERMINING THE DEGREE OF PARALLELISM

An optimal DOP is critical for good parallel performance. Oracle determines the
DOP as follows:

❏ If parallel execution is indicated or requested, but no DOP is specified, the
default DOP is set to twice the number of CPU cores on the system. For a

404 Chapter 13

13_7332ch13.qxp 9/18/09 11:40 AM Page 404

RAC system, the DOP will be twice the number of cores in the entire cluster.
This default is controlled by the configuration parameter PARALLEL_
THREADS_PER_CPU.

❏ From Oracle 11g release 2 forward, If PARALLEL_DEGREE_POLICY is set
to AUTO, Oracle will adjust the DOP depending on the nature of the opera-
tions to be performed and the sizes of the objects involved.

❏ If PARALLEL_ADAPTIVE_MULTI_USER is set to TRUE, Oracle will adjust
the DOP based on the overall load on the system. When the system is more
heavily loaded, the DOP will be reduced.

❏ If PARALLEL_IO_CAP is set to TRUE in Oracle 11g or higher, Oracle will
limit the DOP to that which the IO subsystem can support. These IO subsys-
tem limits can be calculated by using the procedure DBMS_RESOURCE_
MANAGER.CALIBRATE_IO.

❏ A DOP can be specified at the table or index level by using the PARALLEL
clause of CREATE TABLE, CREATE INDEX, ALTER TABLE, or ALTER
INDEX.

❏ The PARALLEL hint can be used to specify the DOP for a specific table
within a query.

❏ Regardless of any other setting, the DOP cannot exceed that which can be
supported by PARALLEL_MAX_SERVERS. For most SQL statements, the
number of servers required will be twice the requested DOP.

As we saw in Figure 13-4, increasing the DOP beyond an optimal point fails
to result in further performance increases. However, increasing the DOP beyond
optimal can have a significant negative effect on overall system performance. Al-
though the SQL being parallelized might not degrade significantly as the DOP
increases, load on the system continues to increase and can cause other SQLs run-
ning concurrently to suffer reduced response time.

Figure 13-5 shows how increasing the DOP influences CPU utilization. As
we hit the optimal DOP—approximately 8 for this system—the reduction in
query-elapsed time flattens out. However, the time other sessions spend waiting
for CPU to become available continues to increase. Other sessions wanting to ac-
cess the CPU will need to wait, resulting in degraded response time.

Parallel SQL 405

Increasing the DOP beyond the optimal level might overload the host, degrading the
performance of other SQLs.

PARALLEL HINTS

The PARALLEL hint can invoke parallel processing. In its simplest form, the hint
takes no argument as in the following example:

13_7332ch13.qxp 9/18/09 11:40 AM Page 405

SELECT /*+ parallel */ * FROM sh.sales s

It’s legal, but not always necessary to specify a table name or alias in the hint:

SELECT /*+ parallel(s) */ * FROM sh.sales s

The hint can request a specific DOP:

SELECT /*+ parallel(s,8) */ * FROM sh.sales s;

The NOPARALLEL hint can be used to suppress parallel processing:

SELECT /*+ noparallel */ COUNT (*) FROM sales;

In 11g release 2, the AUTO option allows you to request that the AUTO set-
ting for PARALLEL_DEGREE_POLICY be used to calculate the DOP:

SELECT /*+ parallel(auto) */ COUNT (*) FROM sales;

For ad-hoc query execution, you might want to set an explicit DOP. How-
ever, for SQL embedded within an application, this might not be a good idea be-
cause the SQL will be less able to adapt to changes in machine configuration
(more CPUs for instance), workload (more concurrent sessions), or configuration

406 Chapter 13

FIGURE 13-5 Increasing the DOP causes increases in system CPU wait times.

0

500

1500

2500

2000

1000

3000

3500

4000
M

ic
ro

se
co

n
d

s

Degree of Parallelism

Elapsed Time
System CPU Time
System Wait CPU Time

0 2 4 6 8 10 12 14 16 18 20

13_7332ch13.qxp 9/18/09 11:40 AM Page 406

(changes to the number of parallel slaves or the default DOP). For embedded
SQL, it’s probably better to omit an explicit DOP or to use the AUTO keyword (in
Oracle 11g Release 2 and higher).

PARALLEL CONFIGURATION PARAMETERS

Determining the optimal DOP, especially when taking concurrent system activity
into account, is a daunting task. Luckily, Oracle has invested significant effort
into automating the process. Each release of Oracle has increased the level of in-
telligent automation of parallel configuration. In general, you should try Oracle’s
automation before attempting to manually configure automatic processing.

Nevertheless, significant tweaking is possible; the following lists the signifi-
cant configuration parameters that you can adjust to optimize parallel SQL:

parallel_adaptive_multi_user When set to TRUE, Oracle will adjust the DOP to ac-
count for the load on the system. On a heavily loaded
system, Oracle will reduce the DOP from the re-
quested or default degree.

parallel_degree_limit In Oracle11g Release 2 and higher, places an absolute
limit on the DOP that can be achieved. A value of CPU
prevents the DOP from exceeding that specified by
parallel_threads_per_cpu. A value of IO sets the maxi-
mum to the IO limit determined by running DBMS_
RESOURCE_MANAGER.CALIBRATE_IO. AUTO al-
lows Oracle to select a value. An integer value corre-
sponding to a specific DOP might also be specified.

parallel_degree_policy In 11G release 2 and forward, this parameter controls
the means by which the DOP will be calculated.
MANUAL equates to the behavior in 11.1 and earlier.
If AUTO, the DOP will be calculated based on the
types of operations in the SQL statement and the
sizes of the tables. AUTO also enables parallel
queries to fetch data from the buffer cache rather
than using direct path IO and will queue parallel
processes if the requested DOP execution is not im-
mediately available.

parallel_execution_message_size Sets the size of buffers for communication between
the processes involved in parallel processing.

parallel_force_local From Oracle 11g Release 2 forward, this parameter,
if set to TRUE, suppresses multi-instance parallelism
on RAC clusters.

parallel_io_cap_enabled This 11g parameter if set to TRUE will limit the DOP
to that which Oracle thinks the IO subsystem can
support. To use the parameter, you should first use
DBMS_RESOURCE_MANAGER.CALIBRATE_IO to
determine these IO limits.

parallel_max_servers The maximum number of parallel servers that can
be started. This provides an absolute limit on the
amount of concurrent parallel operations that can
execute.

Parallel SQL 407

13_7332ch13.qxp 9/18/09 11:40 AM Page 407

parallel_min_percent If set to nonzero, this parameter determines the
minimum acceptable DOP for a query. If the DOP
requested or determined cannot be provided due
to system load or other parallel processes that are
using the parallel server pool, the DOP will be
reduced only to the value of PARALLEL_MIN_
PERCENT. For instance, if your query requested a
DOP of 8 and only 5 were available (5 / 8 = 62%),
your query would execute in parallel if PARALLEL_
MIN_PERCENT was below 62. If PARALLEL_MIN_
PERCENT were above 62, your statement will either
terminate with an error or, if PARALLEL_DEGREE_
POLICY is set to AUTO, will be queued for later
execution.

parallel_min_servers The minimum number of parallel servers—the number
that will be initialized when the database is first started.

parallel_min_time_threshold Specifies the amount of elapsed time (in seconds)
required for a SQL statement to be automatically
parallelized. If the estimated elapsed time of a SQL
statement exceeds the threshold, Oracle automati-
cally parallelizes the SQL. The default of AUTO re-
sults in Oracle automatically calculating a value.

parallel_threads_per_cpu Sets the number of parallel threads that can be ap-
plied per CPU. Oracle generally restricts the DOP so
that this limit is not exceeded.

MONITORING PARALLEL SQL

Because multiple processes are involved in parallel execution, explaining, tracing,
and monitoring parallel execution can be more complex than for serial SQL.

PARALLEL EXPLAIN PLANS

EXPLAIN PLAN reflects additional steps for a parallelized SQL statement that
reflect the additional parallel operations involved in the parallel execution.

For instance, consider this simple SQL statement and explain plan:

SQL> EXPLAIN PLAN FOR
2 SELECT * FROM customers
3 ORDER BY cust_last_name;

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT ORDER BY	
2	TABLE ACCESS FULL	CUSTOMERS
--

408 Chapter 13

13_7332ch13.qxp 9/18/09 11:40 AM Page 408

The CUSTOMERS table is scanned, and the rows scanned are sorted.
When the statement is parallelized, additional operations are added to the

execution plan:

SQL> EXPLAIN PLAN FOR

2 SELECT /*+ parallel */ *

3 FROM customers

4 ORDER BY cust_last_name;

SQL> SELECT * FROM table (DBMS_XPLAN.display

2 (null,null,'BASIC +PARALLEL'));

--

|Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

--

| 0 | SELECT STATEMENT | | | | |

| 1 | PX COORDINATOR | | | | |

| 2 | PX SEND QC (ORDER) | :TQ10001 | Q1,01| P->S | QC (ORDER) |

| 3 | SORT ORDER BY | | Q1,01| PCWP | |

| 4 | PX RECEIVE | | Q1,01| PCWP | |

| 5 | PX SEND RANGE | :TQ10000 | Q1,00| P->P | RANGE |

| 6 | PX BLOCK ITERATOR | | Q1,00| PCWC | |

| 7 | TABLE ACCESS FULL| CUSTOMERS| Q1,00| PCWP | |

--

The new plan contains a variety of PX steps that describe the parallel opera-
tions involved. Let’s look at each of these steps:

PX BLOCK ITERATOR This operation is typically the first step in a parallel pipeline.
The BLOCK ITERATOR breaks up the table into chunks that
are processed by each of the parallel servers involved.

PX SEND PX SEND operations simply indicate that data is being sent
from one parallel process to another.

PX RECEIVE PX RECEIVE operations indicate the data being received by
one parallel process from another.

PX SEND QC This is a send operation to the parallel query co-coordinator
process.

PX COORDINATOR This step simply indicates that the parallel query co-coordinator
is receiving the data from the parallel streams and returning it
to the SQL statement.

Figure 13-6 illustrates how these steps relate to parallel processing with a
DOP of 2.

PX SEND and PX RECEIVE operations are associated with distribution op-
tions—shown in the “PQ Distrib” column of DBMS_XPLAN—which describe
how data is sent from one slave to another. In sort operations it’s typical to see

Parallel SQL 409

13_7332ch13.qxp 9/18/09 11:40 AM Page 409

the RANGE option because rows to be sorted are distributed based on the value
of the sort columns. For instance when sorting by CUST_FIRST_NAME as in the
preceding query, Oracle might send names from A–K to one slave and names
from L–Z to the other. Here are the commonly encountered distribution options:

RANGE Rows are distributed based on ranges of values. This is typical when
sort operations are parallelized.

HASH Rows are distributed to parallel query slaves based on a hash of the
value concerned. This is suitable for joins and HASH GROUP BY oper-
ations and generally ensures a more even distribution of rows than for
RANGE operations.

RANDOM Rows are randomly assigned to parallel query slaves.
ROUND ROBIN Rows are distributed one at a time in a circular fashion, just as you

would deal cards in a game of poker.

The IN-OUT column of the DBMS_XPLAN output describes how data
flows between and within the parallel processes. The column corresponds to the
OTHER_TAG column in the PLAN_TABLE table. These columns can contain
one of the values shown in Table 13-1.

410 Chapter 13

FIGURE 13-6 EXPLAIN PLAN parallel execution steps.

CUSTOMER
TABLE

Parallel
Process #1

Parallel
Process #1

Scan

Parallel
Process #3

Parallel
Process #4

Order By

Query
Coordinator

PX BLOCK
ITERATOR

PX
SEND

PX
RECEIVE

PX SEND
QC PX

COORDINATOR

SELECT * FROM customers ORDER BY cust_last_name;

The presence of a PARALLEL_FROM_SERIAL or S->P tag in the PLAN_TABLE or
DBMS_XPLAN output might represent a serial bottleneck in an otherwise parallel exe-
cution stream.

TRACING PARALLEL EXECUTION

Using SQL trace to tune our queries becomes somewhat more difficult when the
SQL is parallelized. This is because each process involved in the parallel execu-
tion has its own trace file. Furthermore, because these processes are shared
among all parallelized SQLs and sessions, the trace files contain trace data for
other SQLs and sessions in addition to the ones we are interested in.

13_7332ch13.qxp 9/18/09 11:40 AM Page 410

However, it is possible, through a somewhat convoluted process, to trace
parallel execution. Here are the steps:

1. Set a unique client identifier in your session using DBMS_SESSION.SET_
IDENTIFIER.

2. Enable tracing for that client identifier using DBMS_MONITOR.CLIENT_
ID_TRACE_ENABLE.

3. Run your parallel SQL.
4. Use the trcsess utility to create a new trace file that contains only trace en-

tries for your client identifier.
5. Analyze the new trace file as usual.

Here we invoke steps 1, 2, and 3:

BEGIN
DBMS_SESSION.set_identifier ('gh pqo test 27');
DBMS_MONITOR.client_id_trace_enable
(client_id => 'gh pqo test 27',
waits => TRUE);

END;
/

Parallel SQL 411

Table 13-1 Parallel Data Flow Tags

IN-OUT
VALUE OTHER_TAG VALUE DESCRIPTION

P->P PARALLEL_TO_PARALLEL This tag denotes parallel processing that passes results
to a second set of parallel processes. For instance, a
parallel table scan might have passed results to a paral-
lel sort.

P->S PARALLEL_TO_SERIAL This is usually the top level of a parallel query. The re-
sults are fed in parallel to the query coordinator.

PCWP PARALLEL_COMBINED_ The step was executed in parallel. Either the parent
PCWC WITH_PARENT step or the child step was also executed in parallel by

PARALLEL_COMBINED_ the same process. For instance, in a parallel nested
WITH_CHILD loops join, the parallel query process scanned the driv-

ing table and also issued index lookups on the joined
table.

S->P PARALLEL_FROM_SERIAL A serial operation that passed results to a set of parallel
processes. The presence of this tag can indicate a se-
rial bottleneck within a parallel statement because it
suggests that parallel processing might wait on serial
processing.

13_7332ch13.qxp 9/18/09 11:40 AM Page 411

SELECT /*+ parallel */ prod_name, SUM (amount_sold)
FROM products JOIN sales
USING (prod_id)

GROUP BY prod_name
ORDER BY 2 DESC;

Here we perform steps 4 and 5:

$ trcsess clientid='gh pqo test 27' output=pqo_test_27.trc *
$ tkprof pqo_test_27.trc pqo_test_27.prf sort='(prsela,fchela,exeela)'

TKPROF: Release 11.1.0.6.0 - Production on Mon Dec 29 19:40:38 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.

The merged trace file now accurately reflects not only the activity from our
invoking session, but also from all the parallel server processes that were in-
volved in executing the query.

412 Chapter 13

To trace a parallel execution, set a Client Identifier and use the trcsess utility to extract
trace records for that client identifier into a single file.

Advanced tracing of parallel server activity can also be achieved by using
the “_px_trace” facility.4 For instance

ALTER SESSION SET "_px_trace"="compilation","execution","messaging";

The 10391 event can also be used to dump information about parallel server
allocation:

ALTER SESSION SET EVENTS '10391 trace name context forever, level 128';

Both of these events generate rather cryptic and sometimes voluminous out-
put and should probably be used only if all other techniques fail to shed light on
parallel execution.

THE V$PQ_TQSTAT VIEW

Even with EXPLAIN PLAN and SQL trace output, it’s hard to work out exactly
how a parallel query executed. For instance, what was the actual DOP? How
much work did each parallel server process do?

4 See Oracle support note 444164.1

13_7332ch13.qxp 9/18/09 11:40 AM Page 412

The V$PQ_TQSTAT view contains information about the data transferred
between each set of parallel query servers, including the number of rows trans-
mitted and received. Unfortunately, the view is visible only from within the ses-
sion that issued the parallel query and only for the most recent query executed.
This limits its usefulness in a production environment, but it is still invaluable
when tuning parallel queries.

For instance, consider this parallel query:

SQL> SELECT /*+ parallel */
2 prod_id, SUM (amount_sold)
3 FROM sales
4 GROUP BY prod_id
5 ORDER BY 2 DESC;

| Id | Operation | Name | TQ |IN-OUT|
--
0	SELECT STATEMENT			
1	PX COORDINATOR			
2	PX SEND QC (ORDER)	:TQ10002	Q1,02	P->S
3	SORT ORDER BY		Q1,02	PCWP
4	PX RECEIVE		Q1,02	PCWP
5	PX SEND RANGE	:TQ10001	Q1,01	P->P
6	HASH GROUP BY		Q1,01	PCWP
7	PX RECEIVE		Q1,01	PCWP
8	PX SEND HASH	:TQ10000	Q1,00	P->P
9	HASH GROUP BY		Q1,00	PCWP
10	PX BLOCK ITERATOR		Q1,00	PCWC
11	TABLE ACCESS FULL	SALES	Q1,00	PCWP

If we query V$PQ_TQSTAT directly after the query executes5 we can see the
number of rows passed between each of the parallel server sets. Each of the
unique TQ_IDs corresponds to one of the interactions between server sets denoted
in the execution plan by ‘P->P’ or ‘P->S’ values for the IN-OUT column. You can
correlate the value of TQ_ID with the TQ column in the EXPLAIN PLAN output.

SQL> SELECT dfo_number, tq_id, server_Type, MIN (num_rows),

MAX (num_rows),count(*) dop

2 FROM v$pq_tqstat

Parallel SQL 413

5 You might need to wait a few seconds to allow parallel server processes to flush their
statistics.

13_7332ch13.qxp 9/18/09 11:40 AM Page 413

3 GROUP BY dfo_number, tq_id, server_Type

4 ORDER BY dfo_number, tq_id, server_type DESC;

DFO_NUMBER TQ_ID SERVER_TYP MIN(NUM_ROWS) MAX(NUM_ROWS) DOP

---------- ---------- ---------- ------------- ------------- ----------

1 0 Producer 72 72 2

1 0 Consumer 62 82 2

1 1 Ranger 72 72 1

1 1 Producer 31 41 2

1 1 Consumer 35 37 2

1 2 Producer 35 37 2

1 2 Consumer 72 72 1

For complex parallel SQLs, there might be multiple parallel pipelines that
are indicated by different values for the DFO_NUMBER column.

414 Chapter 13

Use the V$PQ_TQSTAT view to measure the actual DOP and amount of data trans-
ferred between parallel servers.

OTHER STATISTICS

We can get a view of parallel execution occurring on the system in real time by
examining the V$PX_SESSION view, which shows which parallel slave processes
are currently executing SQL. Joining V$PX_SESSION to V$SESSION and V$SQL
enables us to identify the sessions and SQLs currently employing parallel pro-
cessing to see the desired and actual DOP:

SQL> WITH px_session AS (SELECT qcsid, qcserial#, MAX (degree) degree,
2 MAX (req_degree) req_degree,
3 COUNT (*) no_of_processes
4 FROM v$px_session p
5 GROUP BY qcsid, qcserial#)
6 SELECT s.sid, s.username, degree, req_degree, no_of_processes,
7 sql_text
8 FROM v$session s JOIN px_session p
9 ON (s.sid = p.qcsid AND s.serial# = p.qcserial#)
10 JOIN v$sql sql
11 ON (sql.sql_id = s.sql_id
12 AND sql.child_number = s.sql_child_number)
13 /

13_7332ch13.qxp 9/18/09 11:40 AM Page 414

SID USERNAME DEGREE REQ_DEGREE NO_OF_PROCESSES
---------- -------- ---------- ---------- ---------------
SQL_TEXT

144 OPSG 18 18 36
select /*+ parallel(sa,18) */ prod_id,sum(quantity_sold)

, sum(amount_sold) from sales_archive sa group by prod
_id order by 3 desc

V$SYSSTAT contains some statistics relating to parallel query downgrades
that can help us determine how often parallel queries are being downgraded
from the requested DOP:

SQL> SELECT name,value, round(value*100/sum(value) over(),2) pct
2 FROM v$sysstat
3 WHERE name LIKE ‘Parallel operations%downgraded%’;

NAME VALUE PCT
--- ---------- ----------
Parallel operations not downgraded 109 93.97
Parallel operations downgraded to serial 0 0
Parallel operations downgraded 75 to 99 pct 0 0
Parallel operations downgraded 50 to 75 pct 3 2.59
Parallel operations downgraded 25 to 50 pct 2 1.72
Parallel operations downgraded 1 to 25 pct 2 1.72

OPTIMIZING PARALLEL PERFORMANCE

Now that we have a solid grounding in the theory of parallel execution, and un-
derstand how to influence and measure parallel execution, we are in a good posi-
tion to formulate some guidelines for optimizing parallel execution. Here are the
guidelines for getting the most out of parallel execution:

❏ Start with a SQL that is optimized for serial execution.
❏ Ensure that the SQL is a suitable SQL for parallel execution.
❏ Ensure that the database server host is suitably configured for parallel exe-

cution.
❏ Make sure that all parts of the execution plan are parallelized.
❏ Ensure that the requested DOP is realistic.
❏ Monitor the actual versus requested DOP.
❏ Check for skew in data and skew in workload between processes.

Let’s now look at each of these guidelines in detail.

Parallel SQL 415

13_7332ch13.qxp 9/18/09 11:40 AM Page 415

START WITH A SQL THAT IS OPTIMIZED FOR SERIAL EXECUTION

An optimal parallel plan might be different from an optimized serial plan. For in-
stance, parallel processing usually starts with a table or index scan, whereas the
optimal serial plan might be based on an index lookup. However, you should en-
sure that your query is optimized for serial execution before parallelizing for
these reasons:

❏ The structures and methods of serial tuning—indexing, statistics collections,
and such—are often essential for good parallel tuning as well.

❏ If the resources required for parallel execution are not available, your query
might be serialized (depending on the settings of PARALLEL_DEGREE_
POLICY and PARALLEL_MIN_PERCENT). In that case, you want to en-
sure than your parallel query’s serial plan is as good as possible.

❏ A SQL that is poorly tuned might become an even worse SQL—at least in
terms of its impact on other users—when it is permitted to consume more of
the database server’s CPU and IO resources.

416 Chapter 13

When optimizing a SQL statement for parallel execution, start by optimizing the SQL
for serial execution.

ENSURE THAT THE SQL IS A SUITABLE SQL FOR PARALLEL EXECUTION

Not every SQL can benefit from parallel execution. Here are a few examples of
SQLs that probably should not be parallelized:

❏ SQL statements that have a short execution time when executed serially.
❏ SQL statements likely to be run at high rates of concurrency in multiple

sessions.
❏ SQL statements based on index lookups. Nonpartitioned index lookups or

range scans cannot be parallelized. Index full scans can be parallelized,
however. Index lookups on partitioned indexes can also be parallelized.

Make sure that the SQL to be parallelized is suitable for parallel execution; OLTP type
queries are generally not suitable for parallelization.

ENSURE THAT THE SYSTEM IS SUITABLY CONFIGURED
FOR PARALLEL EXECUTION

Not all SQLs are suitable for parallel execution, and not all database server hosts
are suitable either. In today’s world, most physical server hosts will meet the
minimum requirements: multiple CPUs and data striped across multiple physical

13_7332ch13.qxp 9/18/09 11:40 AM Page 416

drives. However, some virtual machine hosts might fail to meet those minimum
requirements and desktop machines, which typically have only a single disk de-
vice, are usually not optimized for parallel execution.

Parallel SQL 417

Don’t try to use parallel execution on systems that do not meet the minimum require-
ments (multiple CPUs and data striped across multiple drives).

MAKE SURE THAT ALL PARTS OF THE EXECUTION PLAN
ARE PARALLELIZED

In a complex parallel SQL statement, it’s important to ensure that all significant
steps in the query execution are implemented in parallel. If one of the steps in a
complex query is performed in serial, the other parallel steps might have to wait
for the serial step to complete, and the advantages of parallelism will be lost. The
OTHER_TAG column of the PLAN_TABLE indicates such a step with the
PARALLEL_FROM_SERIAL tag and DBMS_XPLAN record S->P in the IN-OUT
column.

For instance, in the following example the CUSTOMERS table is paral-
lelized, but the SALES table is not. The join and GROUP BY of the two tables
includes many parallelized operations, but the full table scan of SALES is not par-
allelized and the tell-tale S->P tag shows that SALES rows are fed in serial into
subsequent parallel operations:

SQL> ALTER TABLE customers PARALLEL(DEGREE 4);

SQL> ALTER TABLE sales NOPARALLEL ;

SQL> EXPLAIN PLAN FOR

2 SELECT /*+ ordered use_hash(c) */

3 cust_last_name, SUM (amount_sold)

4 FROM sales s JOIN customers c

5 USING (cust_id)

6 GROUP BY cust_last_name;

SQL> SELECT * FROM table (DBMS_XPLAN.display

(NULL, NULL, ‘BASIC +PARALLEL’));

--

|Id| Operation |Name | TQ |IN-OUT|PQ Distrib|

--

| 0| SELECT STATEMENT | | | | |

| 1| PX COORDINATOR | | | | |

13_7332ch13.qxp 9/18/09 11:40 AM Page 417

| 2| PX SEND QC (RANDOM) |:TQ10002 | Q1,02| P->S |QC (RAND) |

| 3| HASH GROUP BY | | Q1,02| PCWP | |

| 4| PX RECEIVE | | Q1,02| PCWP | |

| 5| PX SEND HASH |:TQ10001 | Q1,01| P->P |HASH |

| 6| HASH GROUP BY | | Q1,01| PCWP | |

| 7| HASH JOIN | | Q1,01| PCWP | |

| 8| BUFFER SORT | | Q1,01| PCWC | |

| 9| PX RECEIVE | | Q1,01| PCWP | |

|10| PX SEND BROADCAST |:TQ10000 | | S->P |BROADCAST |

|11| VIEW |VW_GBC_5 | | | |

|12| HASH GROUP BY | | | | |

|13| TABLE ACCESS FULL| SALES | | | |

|14| PX BLOCK ITERATOR | | Q1,01| PCWC | |

|15| TABLE ACCESS FULL |CUSTOMERS| Q1,01| PCWP | |

--

A partially parallelized execution plan, such as the preceding one, can de-
liver the worst of both worlds: Elapsed time is not improved because the serial
operation forms a bottleneck on overall execution. Nevertheless, the SQL ties up
parallel server processes and might impact the performance of other concurrently
executing SQL.

If we set a default degree of parallelism for the SALES table, the serial
bottleneck disappears. The full scan of SALES is now performed in parallel, and
the S->P bottleneck is replaced by the fully parallelized P->P operation:

--

| Id | Operation | Name | TQ |IN-OUT|

--

| 0 | SELECT STATEMENT | | | |

| 1 | PX COORDINATOR | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10003 | Q1,03 | P->S |

| 3 | HASH GROUP BY | | Q1,03 | PCWP |

| 4 | PX RECEIVE | | Q1,03 | PCWP |

| 5 | PX SEND HASH | :TQ10002 | Q1,02 | P->P |

| 6 | HASH GROUP BY | | Q1,02 | PCWP |

| 7 | HASH JOIN | | Q1,02 | PCWP |

| 8 | PX RECEIVE | | Q1,02 | PCWP |

| 9 | PX SEND BROADCAST | :TQ10001 | Q1,01 | P->P |

| 10 | VIEW | VW_GBC_5 | Q1,01 | PCWP |

| 11 | HASH GROUP BY | | Q1,01 | PCWP |

| 12 | PX RECEIVE | | Q1,01 | PCWP |

| 13 | PX SEND HASH | :TQ10000 | Q1,00 | P->P |

| 14 | HASH GROUP BY | | Q1,00 | PCWP |

| 15 | PX BLOCK ITERATOR | | Q1,00 | PCWC |

418 Chapter 13

13_7332ch13.qxp 9/18/09 11:40 AM Page 418

| 16 | TABLE ACCESS FULL| SALES | Q1,00 | PCWP |

| 17 | PX BLOCK ITERATOR | | Q1,02 | PCWC |

| 18 | TABLE ACCESS FULL | CUSTOMERS | Q1,02 | PCWP |

--

Parallel SQL 419

When optimizing a parallelized execution plan, ensure that all relevant steps are exe-
cuted in parallel: The S->P tag in DBMS_XPLAN or PARALLEL_FROM_SERIAL in
the PLAN_TABLE often indicates a serial bottleneck in an otherwise parallel plan.

ENSURE THAT THE REQUESTED DOP IS REALISTIC

We saw previously (in Figure 13-5, for instance), how increasing the DOP beyond
the optimal level can place excessive load on the system without improving per-
formance. In worst case scenarios, increasing the DOP beyond optimal can result
in a reduction in query elapsed time as well. Therefore, setting an appropriate
DOP is important both for the health of the database as a whole, and for the opti-
mal performance of the query being parallelized.

Ensure that your requested or expected DOP is realistic; an overly-high DOP can result
in excessive load on the database server without improving the SQL’s performance.

MONITOR THE ACTUAL DOP

Your requested DOP might be optimal but not always achievable. When multiple
parallelized queries contend for finite parallel execution resources, the DOP
might be reduced, or the SQL statement might be run in serial mode.

We previously discussed how Oracle decides on the actual DOP; most im-
portantly the parameters PARALLEL_MIN_PERCENT, PARALLEL_DEGREE_
POLICY, and PARALLEL_ADAPTIVE_MULTI_USER control how Oracle changes
the DOP and whether a statement runs at reduced parallelism, terminates with
error, or is deferred for later processing when insufficient resources exist to run
the statement at the requested DOP.

Reductions in the DOP can result in disappointing performance for your
parallel SQL. You should monitor query execution to see if such reductions in the
DOP are actually occurring. We previously saw how we can use V$PQ_TQSTAT
to measure the actual DOP and how we can use statistics in V$SYSTAT to meas-
ure parallel downgrades overall.

If you determine that downgraded parallelism is leading to disappointing
performance, you might want to revisit your system resources (memory, IO

13_7332ch13.qxp 9/18/09 11:40 AM Page 419

bandwidth), scheduling of parallel SQLs, or revisit your server configuration.
Possible options include

❏ Rescheduling parallel SQLs so that they do not attempt to run concurrently.
Oracle 11g Release 2 can automatically reschedule SQLs if the PARALLEL_
DEGREE_POLICY is set to AUTO.

❏ Adjusting parallel configuration parameters to allow greater concurrent
parallelism. You can do this by increasing PARALLEL_THREADS_PER_
CPU or PARALLEL_MAX_SERVERS. The risk here is that the amount of
parallel execution will be greater than your system can support, leading to
degraded SQL performance.

❏ Increasing the power of your database server. You can increase the number
of CPUs, the number of instances in a RAC cluster, and the number of disks
in your disk array.

❏ Adjust PARALLEL_MIN_PERCENT to enable SQLs to run at reduced par-
allelism rather than signalling an error.

420 Chapter 13

Disappointing parallel performance might be the result of Oracle downgrading the
requested DOP due to concurrent load or limits on parallel execution resources.

CHECK FOR SKEW IN DATA AND SKEW IN WORKLOAD
BETWEEN PROCESSES

Parallel processing works best when every parallel process in a step has the same
amount of work to do. If one slave process has more work than a peer process,
the “lazy” slave will wait for the “busy” slave, and we won’t get performance im-
provements in line with the number of processes working on the SQL.

Most of the algorithms that Oracle employs are designed to achieve an even
distribution of data; these algorithms include the HASH, ROUND ROBIN, and
RANDOM distribution mechanisms. However, when a sort operation is per-
formed, Oracle cannot use these random or pseudo-random mechanisms. In-
stead, Oracle must distribute data to the slaves based on the sort key columns.
We saw an example of this in Figure 13-2 where a parallel process fed rows from
A–K to one slave for sorting and rows from L–Z to the other.

If the distribution of data in the sort column is very skewed, this allocation
might be uneven. For instance, consider this simple query:

SQL> EXPLAIN PLAN

2 FOR

3 SELECT /*+ parallel */

4 cust_last_name, cust_first_name, cust_year_of_birth

5 FROM customers

6 ORDER BY CUST_LAST_NAME;

13_7332ch13.qxp 9/18/09 11:40 AM Page 420

--

|Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

--

| 0 | SELECT STATEMENT | | | | |

| 1 | PX COORDINATOR | | | | |

| 2 | PX SEND QC (ORDER) | :TQ10001 | Q1,01 | P->S | QC (ORDER) |

| 3 | SORT ORDER BY | | Q1,01 | PCWP | |

| 4 | PX RECEIVE | | Q1,01 | PCWP | |

| 5 | PX SEND RANGE | :TQ10000 | Q1,00 | P->P | RANGE |

| 6 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 7 | TABLE ACCESS FULL| CUSTOMERS | Q1,00 | PCWP | |

--

In the preceding step 5, Oracle distributes data from one set of slaves to an-
other based on the range of values contained in the sort column. If the data is well
distributed, all should be well. However, should the data be heavily skewed (per-
haps we have an extra large number of Smiths and Zhangs), the distribution of
data to slaves might become uneven. For example, the following V$PQ_TQSTAT
output shows such an uneven distribution with twice as many rows directed to
one slave than the other (I deliberately skewed customer surnames to achieve this):

SQL> SELECT dfo_number, tq_id, server_Type, MIN (num_rows),
2 MAX (num_rows), COUNT (*) dop
3 FROM v$pq_tqstat
4 GROUP BY dfo_number, tq_id, server_Type
5 ORDER BY dfo_number, tq_id, server_type DESC;

DFO_NUM TQ_ID SERVER_TYP MIN(NUM_ROWS) MAX(NUM_ROWS) DOP
------- ---------- ---------- ------------- ------------- ----------

1 0 Ranger 182 182 1
1 0 Producer 158968 174512 2
1 0 Consumer 103262 230218 2
1 1 Producer 103262 230218 2
1 1 Consumer 333480 333480 1

Unfortunately, there might be little that can be done about such a data
skew. Oracle does not appear to take histogram data into account when distribut-
ing rows between parallel slaves. If the distribution of rows seems particularly
uneven, you can consider changing the DOP or reviewing whether the SQL is
truly suitable for parallelizing.

Parallel SQL 421

Effective parallelism depends on the even distribution of processing across the parallel
slave processes. V$PQ_TQSTAT enables you to evaluate the efficiency of the load
balancing across the parallel slaves.

13_7332ch13.qxp 9/18/09 11:40 AM Page 421

OTHER PARALLEL TOPICS

Most of what we covered so far applies to all parallel execution but focused
mainly on single-instance parallel queries involving table scans. Now let’s turn
our attention to other parallel scenarios.

PARALLEL EXECUTION IN RAC

In a Real Application Clusters (RAC) database, SQL can be parallelized across the
multiple instances that make up the cluster. Indeed, Oracle transparently paral-
lelizes across the entire cluster unless you take specific steps to prevent it.

Using all the instances in the cluster enables Oracle to take advantage of all
the CPUs of the host computers that support the cluster database and, therefore,
will usually lead to better performance than could be achieved by running the
SQL on a single instance. Oracle multiples the default DOP by the number of in-
stances in the cluster to take full advantage of the processing power of the cluster.

To see exactly how the query distributes across the instances within the
cluster, we can observe the INSTANCE column in V$PQ_TQSTAT. The following
gives a good summary of overall parallelism:

SQL> SELECT dfo_number, tq_id, server_Type, MIN (num_rows) min_rows,

2 MAX (num_rows) max_rows, COUNT (*) dop,

3 COUNT (DISTINCT instance) no_of_instances

4 FROM v$pq_tqstat

5 GROUP BY dfo_number, tq_id, server_Type

6 ORDER BY dfo_number, tq_id, server_type DESC;

DFO_NUMBER TQ_ID SERVER_TYP MIN_ROWS MAX_ROWS DOP INSTANCES

---------- ---------- ---------- ---------- ---------- ----- ---------

1 0 Producer 842 1617 48 3

1 0 Consumer 1056 1239 48 3

1 1 Producer 8779 38187 48 3

1 1 Consumer 15331 24572 48 3

1 2 Producer 107 159 48 3

1 2 Consumer 64 244 48 3

1 3 Ranger 479 479 1 1

1 3 Producer 9 10 48 3

1 3 Consumer 9 55 48 3

1 4 Producer 9 10 48 3

1 4 Consumer 9 9 1 1

The above output was generated on a 3 instance RAC cluster in which each
instance had 8 CPUs available. Oracle applied the default formula of 2 threads
per CPU to achieve a DOP of 48 for the 24 CPUs available across the 3 hosts.

422 Chapter 13

13_7332ch13.qxp 9/18/09 11:40 AM Page 422

Although parallelism in RAC scales well with additional instances, there is
an additional overhead in communication when the parallel slave processes re-
side on different hosts. The RAC cluster’s high-speed interconnect might become
taxed if the amount of data transferred is high, and the performance of a RAC-
parallelized query might not be quite as good as for a locally parallelized query
with an equivalent DOP.

From Oracle 11g Release 2 forward, the parameter PARALLEL_FORCE_
LOCAL can be set to restrict parallel processing to the current instance only.

We discuss some further aspects of RAC optimization in Chapter 23, “Opti-
mizing RAC.”

PARALLEL INDEX LOOKUPS

Index-based queries are not usually parallelizable; however, if the index involved
is a locally partitioned index on a partitioned table, a lookup using that index can
be parallelized. Each partition lookup can be performed by a separate process,
and a DOP as high as the number of partitions can be achieved.

For example, if the SALES table had a local partitioned index on the
CUST_ID column like this:

CREATE INDEX sales_i1 ON sales(cust_id) LOCAL;

We could use the PARALLEL_INDEX hint to parallelize lookups on specific
CUST_ID values:

SELECT /*+ parallel_index(s) */ *

FROM sales s

WHERE cust_id = 247;

| Id | Operation | Name | TQ |IN-OUT|

| 0 | SELECT STATEMENT | | | |

| 1 | PX COORDINATOR | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10000 | Q1,00 | P->S |

| 3 | PX PARTITION HASH ALL | | Q1,00 | PCWC |

| 4 | TABLE ACCESS BY LOCAL INDEX ROWID| SALES | Q1,00 | PCWP |

| 5 | INDEX RANGE SCAN | SALES_I1 | Q1,00 | PCWP |

PARALLEL DML

Any DML statement that performs a scan operation can be parallelized, at least
for that part of the statement that performs the table reads.

For instance, parts of the following UPDATE statement executes in parallel:

Parallel SQL 423

13_7332ch13.qxp 9/18/09 11:40 AM Page 423

SQL> EXPLAIN PLAN

2 FOR

3 UPDATE /*+ parallel(s) */

4 sales s

5 SET unit_price = amount_sold / quantity_sold;

|Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

| 0 | UPDATE STATEMENT | | | | |

| 1 | UPDATE | SALES | | | |

| 2 | PX COORDINATOR | | | | |

| 3 | PX SEND QC (RANDOM)| :TQ10000 | Q1,00 | P->S | QC (RAND) |

| 4 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 5 | TABLE ACCESS FULL| SALES | Q1,00 | PCWP | |

The full scan of SALES is parallelized, but note that the UPDATE statement
(step 1) is executed outside the parallel processing stream; although the rows to
be updated are identified by the parallel processes, the actual updates are per-
formed in serial by the query coordinator.

To perform true parallel DML, you should first enable parallel DML with
the following statement:

ALTER SESSION ENABLE PARALLEL DML.

After we do this, we get a fully parallelized execution plan:

SQL> EXPLAIN PLAN

2 FOR

3 UPDATE /*+ parallel(s) */

4 sales_p s

5 SET unit_price = amount_sold / quantity_sold;

|Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

--

| 0 | UPDATE STATEMENT | | | | |

| 1 | PX COORDINATOR | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10000 | Q1,00 | P->S | QC (RAND) |

| 3 | UPDATE | SALES_P | Q1,00 | PCWP | |

| 4 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 5 | TABLE ACCESS FULL| SALES_P | Q1,00 | PCWP | |

424 Chapter 13

13_7332ch13.qxp 9/18/09 11:40 AM Page 424

The UPDATE step is now executed by the same parallel server processes
that perform the scan of the SALES table. The UPDATE is now fully parallelized.

Parallel SQL 425

To fully parallelize a DML statement, issue an ALTER SESSION ENABLE PARALLEL
DML statement; otherwise the statement will be only partially parallelized (at best).

Parallel INSERT Inserting rows in parallel is a particularly good use of
parallel DML, especially for bulk operations in which the input data is in another
table (such as a staging or transaction table). In this scenario, it’s important to
parallelize both the SELECT and INSERT operations. For instance, here we paral-
lelize the INSERT but not the SELECT that performs the table scan on the
SALES_UPDATE table:

SQL> EXPLAIN PLAN FOR

2 INSERT /*+ parallel(s) */

3 INTO sales s

4 SELECT * FROM sales_updates;

|Id| Operation | Name | TQ |IN-OUT|PQ Distrib|

--

| 0| INSERT STATEMENT | | | | |

| 1| PX COORDINATOR | | | | |

| 2| PX SEND QC (RANDOM) |:TQ10001 |Q1,01 | P->S |QC (RAND) |

| 3| LOAD AS SELECT |SALES |Q1,01 | PCWP | |

| 4| BUFFER SORT | |Q1,01 | PCWC | |

| 5| PX RECEIVE | |Q1,01 | PCWP | |

| 6| PX SEND ROUND-ROBIN|:TQ10000 | | S->P |RND-ROBIN |

| 7| TABLE ACCESS FULL |SALES_UPDATES| | | |

--

The full table scan of SALES_UPDATE is processed serially, and the S->P
tag should raise a red flag, indicating parallel processing waiting on serial pro-
cessing.

This plan is more perfectly parallelized:

SQL> EXPLAIN PLAN FOR
2 INSERT /*+ parallel(s) */
3 INTO sales s
4 SELECT /*+ parallel(u) */ *
5 FROM sales_updates u;

13_7332ch13.qxp 9/18/09 11:40 AM Page 425

--

|Id| Operation | Name | TQ |IN-OUT| PQ Distrib |
--

0	INSERT STATEMENT				
1	PX COORDINATOR				
2	PX SEND QC (RANDOM)	:TQ10000	Q1,00	P->S	QC (RAND)
3	LOAD AS SELECT	SALES	Q1,00	PCWP	
4	PX BLOCK ITERATOR		Q1,00	PCWC	
5	TABLE ACCESS FULL	SALES_UPDATES	Q1,00	PCWP	
--

426 Chapter 13

When parallelizing an INSERT from a SELECT, remember to parallelize both the
INSERT and SELECT steps, using two hints if necessary.

By default, parallel insert uses the direct load APPEND method, creating
new data blocks and appending them directly to the segment, bypassing the
buffer cache. We talk about the pros and cons of direct load inserts in Chapter 14,
“DML Tuning.” However, for now it’s enough to note that direct path insert is
usually the best choice for parallel insert because otherwise the parallel slaves
might contend for latches, free lists, and data buffers. However, if you want to
use the conventional insert method—inserting rows into existing data blocks
where appropriate and utilizing the buffer cache—you can use the NOAPPEND
hint:

SQL> EXPLAIN PLAN FOR

2 INSERT /*+ parallel(s) noappend */

3 INTO sales s

4 SELECT /*+ parallel(u) */ *

5 FROM sales_updates u;

|Id| Operation | Name | TQ |IN-OUT|PQ Distrib|

| 0| INSERT STATEMENT | | | | |

| 1| PX COORDINATOR | | | | |

| 2| PX SEND QC (RANDOM) |:TQ10000 |Q1,00 | P->S |QC (RAND) |

| 3| LOAD TABLE CONVENTIONAL |SALES |Q1,00 | PCWP | |

| 4| PX BLOCK ITERATOR | |Q1,00 | PCWC | |

| 5| TABLE ACCESS FULL |SALES_UPDAT|Q1,00 | PCWP | |

13_7332ch13.qxp 9/18/09 11:40 AM Page 426

Parallel MERGE The MERGE statement combines the functionality of
INSERT and UPDATE into a single statement. A MERGE execution plan usually
involves an outer join between the target table and the source tables. To optimize
the merge, we most truly need to optimize that outer join.

We look more at MERGE optimization in Chapter 14.
Merge statements can be fully parallelized, although you normally want to

ensure that both target and source tables are parallelized. For instance, in the fol-
lowing example we supply PARALLEL hints for both the source and target tables:

SQL> EXPLAIN PLAN FOR

2 MERGE /*+ parallel(s) parallel(u) */ INTO sales s

USING sales_updates u

3 ON (s.prod_id=u.prod_id AND s.cust_id=u.cust_id

AND s.time_id=u.time_id

4 AND s.channel_id=u.channel_id

AND s.promo_id = u.promo_id)

5 WHEN MATCHED THEN

6 UPDATE SET s.amount_sold =u.amount_sold,

7 s.quantity_sold=u.quantity_sold

8 WHEN NOT MATCHED THEN

9 INSERT VALUES (u.prod_id, u.cust_id, u.time_id ,

10 u.channel_id, u.promo_id,

11 u.quantity_sold, u.amount_sold);

|Id| Operation | Name | TQ |IN-OUT|

| 0| MERGE STATEMENT | | | |

| 1| PX COORDINATOR | | | |

| 2| PX SEND QC (RANDOM) | :TQ10003 | Q1,03 | P->S |

| 3| MERGE | SALES | Q1,03 | PCWP |

| 4| PX RECEIVE | | Q1,03 | PCWP |

| 5| PX SEND HYBRID (ROWID PKEY)| :TQ10002 | Q1,02 | P->P |

| 6| VIEW | | Q1,02 | PCWP |

| 7| HASH JOIN OUTER BUFFERED | | Q1,02 | PCWP |

| 8| PX RECEIVE | | Q1,02 | PCWP |

| 9| PX SEND HASH | :TQ10000 | Q1,00 | P->P |

|10| PX BLOCK ITERATOR | | Q1,00 | PCWC |

|11| TABLE ACCESS FULL | SALES_UPDATES | Q1,00 | PCWP |

|12| PX RECEIVE | | Q1,02 | PCWP |

|13| PX SEND HASH | :TQ10001 | Q1,01 | P->P |

|14| PX BLOCK ITERATOR | | Q1,01 | PCWC |

|15| TABLE ACCESS FULL | SALES | Q1,01 | PCWP |

Parallel SQL 427

13_7332ch13.qxp 9/18/09 11:40 AM Page 427

DBMS_PARALLEL_EXECUTE Parallel DML is an incredibly powerful
way to speed up bulk DML. However, it has the disadvantage of applying all
changes in a single transaction. This results in the generation of long-standing
locks, requires large undo segments, and runs the risk of expensive rollback oper-
ations should the operation fail.

The DBMS_PARALLEL_EXECUTE package, introduced in Oracle 11g Re-
lease 2, helps to resolve this dilemma by enabling you to execute parallel DML in
smaller “chunks,” each of which is committed individually. The package enables
you to restart the job should any of the individual chunked operations fail.

The following code shows an example of DBMS_PARALLEL_EXECUTE in
action:

1 DECLARE

2 v_dml_sql VARCHAR2(1000);

3 v_task_name VARCHAR2(1000)

4 := 'dbms_parallel_execute demo';

5 v_status NUMBER;

6 BEGIN

7 DBMS_PARALLEL_EXECUTE.CREATE_TASK(

8 task_name => v_task_name);

9

10 DBMS_PARALLEL_EXECUTE.CREATE_CHUNKS_BY_ROWID(

11 TASK_NAME => v_task_name,

12 TABLE_OWNER => USER, TABLE_NAME => 'SALES',

13 BY_ROW => TRUE, CHUNK_SIZE => 1000);

14

15 v_dml_sql :=

16 'UPDATE sales SET unit_price = '

17 || ' amount_sold / quantity_sold '

18 || ' WHERE rowid BETWEEN :start_id AND :end_id ';

19

20 DBMS_PARALLEL_EXECUTE.RUN_TASK(TASK_NAME => v_task_name,

21 SQL_STMT => v_dml_sql, LANGUAGE_FLAG => DBMS_SQL.NATIVE,

22 PARALLEL_LEVEL => 2);

23

24 v_status := DBMS_PARALLEL_EXECUTE.TASK_STATUS(

25 task_name => v_task_name);

26

27 IF v_status = DBMS_PARALLEL_EXECUTE.FINISHED THEN

28 DBMS_PARALLEL_EXECUTE.DROP_TASK(task_name => v_task_name);

29 ELSE

30 -- could use dbms_parallel_execute.resume_task here to retry

31 -- if required

32 raise_application_error(-2001,

428 Chapter 13

13_7332ch13.qxp 9/18/09 11:40 AM Page 428

33 'Task ' || v_task_name || ' abnormal termination: status='

34 || v_status);

35 END IF;

36 END;

DBMS_PARALLEL_EXECUTE works in two phases. The first phase,
shown on line 10 above, uses one of the CREATE_CHUNK procedures to de-
fine the table chunks that are to be processed. There are a number of ways of
chunking, including defining chunks using custom SQL. In this example, we
use the CREATE_CHUNKS_BY_ROWID procedure that simply creates chunks
that have a sequential set of ROWIDS. These rows tend to be in contiguous
blocks, and this method will result in a fairly even distribution of rows. The
approximate size of each chunk is defined by the CHUNK_SIZE argument
(line 13).

The second phase executes a SQL statement to work on the chunks. The
SQL statement, shown on lines 15-18 in our example, must define bind variables
:START_ID and :END_ID that are used to feed in the ROWID ranges or—if you
use a different chunking strategy—column values that define the chunks. The
SQL statement is fed into the RUN_TASK procedure that also specifies the DOP
to be used in the operation (line 22).

DBMS_PARALLEL_EXECUTE runs the SQL statement against each chunk
using the DOP specified. A COMMIT will be executed after each chunk has
been processed. This means that if there is an error, only some of the rows in
the table will have been processed. If this occurs, you can use the RESUME_
TASK procedure to restart the operation on the chunks that have not been
processed.

Parallel SQL 429

Consider the 11g Release 2 DBMS_PARALLEL_EXECUTE package when you want
to issue parallel DML without the drawbacks of performing all the DML in a single
transaction.

PARALLEL DDL

The DDL statements CREATE INDEX and CREATE TABLE AS SELECT
statements can both be parallelized. The CREATE TABLE AS SELECT state-
ment parallelizes in much the same way as a parallel INSERT. Parallel
CREATE INDEX parallelizes the table or index scan necessary to create the
index blocks, sorts the rows in parallel, and builds the index leaf and branch
blocks in parallel.

In both cases, the DOP is controlled by the PARALLEL clause of the
CREATE INDEX or CREATE TABLE statement. That DOP is then set for subse-
quent query operations that use the index or table.

13_7332ch13.qxp 9/18/09 11:40 AM Page 429

Here is an example of CREATE INDEX:

SQL> EXPLAIN PLAN FOR
2 CREATE INDEX sales_i ON sales(prod_id,time_id)

PARALLEL(DEGREE DEFAULT);

|Id| Operation | Name | TQ |IN-OUT|PQ Distrib |

0	CREATE INDEX STATEMENT				
1	PX COORDINATOR				
2	PX SEND QC (ORDER)	:TQ10001	Q1,01	P->S	QC (ORDER)
3	INDEX BUILD NON UNIQUE	SALES_I	Q1,01	PCWP	
4	SORT CREATE INDEX		Q1,01	PCWP	
5	PX RECEIVE		Q1,01	PCWP	
6	PX SEND RANGE	:TQ10000	Q1,00	P->P	RANGE
7	PX BLOCK ITERATOR		Q1,00	PCWC	
8	TABLE ACCESS FULL	SALES	Q1,00	PCWP	

Here is a parallel CREATE TABLE AS SELECT:

SQL> EXPLAIN PLAN FOR
2 CREATE TABLE sales_copy PARALLEL(DEGREE DEFAULT)

AS SELECT * FROM sales;
--
|Id| Operation | Name | TQ |IN-OUT|PQ Distrib|
--
0	CREATE TABLE STATEMENT				
1	PX COORDINATOR				
2	PX SEND QC (RANDOM)	:TQ10000	Q1,00	P->S	QC (RAND)
3	LOAD AS SELECT	SALES_COPY	Q1,00	PCWP	
4	PX BLOCK ITERATOR		Q1,00	PCWC	
5	TABLE ACCESS FULL	SALES	Q1,00	PCWP	
--

SUMMARY

In this chapter we looked at the parallel execution facilities provided by the Ora-
cle RDBMS, how to use these to improve SQL performance, and how to optimize
the performance of SQL running in parallel.

Parallel processing uses multiple processes or threads to execute a single
SQL statement. Providing that the system is suitably configured, parallel process-

430 Chapter 13

13_7332ch13.qxp 9/18/09 11:40 AM Page 430

ing can result in big improvements in SQL throughput, though at the cost of an
increased load on the system.

The Degree of Parallelism (DOP) defines the amount of parallelism that is
applied to your SQLs. For simple SQLs the DOP equates to the number of parallel
processes, but in most nontrivial statements, twice as many processes will be re-
quired to achieve a pipeline of parallel processing.

Parallel processing might be indicated if

❏ The database server has multiple CPUs.
❏ The data is distributed across multiple disk devices.
❏ The SQL is long running or resource-intensive.
❏ Free resources are available on the system to support the additional over-

head associated with parallel processing.
❏ The SQL involves a full table or index scan, or locally partitioned index

lookups.

You can use EXPLAIN PLAN and DBMS_XPLAN to determine the parallel
execution plan and V$PQ_TQSTAT to determine the actual DOP achieved.

The key principles for optimizing parallel SQL are

❏ Starting with an SQL that is optimized for serial execution
❏ Ensuring that the SQL is suitable for parallel execution
❏ Determining that that the database server host is suitably configured for

parallel execution
❏ Ensuring that all the steps in the SQL are parallelized
❏ Configuring a realistic DOP
❏ Monitoring the actual DOP and determining the approach when that DOP

cannot be achieved (downgrade, defer, or fail)
❏ Checking for skew in data and in workload between processes

You can apply parallel processing across instances in a RAC cluster, making
full use of all the resources of the entire cluster database. You can also apply par-
allel processing to DML or DDL statements.

Parallel SQL 431

13_7332ch13.qxp 9/18/09 11:40 AM Page 431

13_7332ch13.qxp 9/18/09 11:40 AM Page 432

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

