
403403

11Chapter11The job of a system administrator is to keep one or more sys-
tems in a useful and convenient state for users. On a Linux
system, the administrator and user may both be you, with
you and the computer being separated by only a few feet. Or
the system administrator may be halfway around the world,
supporting a network of systems, with you being simply one
of thousands of users. A system administrator can be one
person who works part-time taking care of a system and per-
haps is also a user of the system. Or the administrator can be
several people, all working full-time to keep many systems
running.

In This Chapter

System Administrator and
Superuser. 405

Rescue Mode. 411

SELinux . 414

The Upstart Event-Based init
Daemon (FEDORA). 417

rpcinfo: Displays Information
About rpcbind 443

The xinetd Superserver. 445

TCP Wrappers: Client/Server
Security (hosts.allow
and hosts.deny). 447

Setting Up a chroot Jail 448

DHCP: Configures Hosts 451

nsswitch.conf: Which Service
to Look at First 455

PAM . 458

11

System

Administration:

Core Concepts

blank

Setting Up a Server 447

Securing a Server

You may secure a server either by using TCP wrappers or by setting up a chroot jail.

TCP Wrappers: Client/Server Security (hosts.allow

and hosts.deny)

When you open a local system to access from remote systems, you must ensure that
the following criteria are met:

• Open the local system only to systems you want to allow to access it.

• Allow each remote system to access only the data you want it to access.

• Allow each remote system to access data only in the appropriate manner
(readonly, read/write, write only).

As part of the client/server model, TCP wrappers, which can be used for any daemon
that is linked against libwrap.so, rely on the /etc/hosts.allow and /etc/hosts.deny
files as the basis of a simple access control language. This access control language
defines rules that selectively allow clients to access server daemons on a local system
based on the client’s address and the daemon the client tries to access.

Each line in the hosts.allow and hosts.deny files has the following format:

daemon_list : client_list [: command]

where daemon_list is a comma-separated list of one or more server daemons (such
as rpcbind, vsftpd, or sshd), client_list is a comma-separated list of one or more cli-
ents (see Table 11-3, “Specifying a client,” on page 442), and the optional command

448 Chapter 11 System Administration: Core Concepts

is the command that is executed when a client from client_list tries to access a server
daemon from daemon_list.

When a client requests a connection with a local server, the hosts.allow and hosts.deny
files are consulted in the following manner until a match is found:

1. If the daemon/client pair matches a line in hosts.allow, access is granted.

2. If the daemon/client pair matches a line in hosts.deny, access is denied.

3. If there is no match in either the hosts.allow or hosts.deny files, access is
granted.

The first match determines whether the client is allowed to access the server. When
either hosts.allow or hosts.deny does not exist, it is as though that file was empty.
Although it is not recommended, you can allow access to all daemons for all clients
by removing both files.

Examples For a more secure system, put the following line in hosts.deny to block all access:

$ cat /etc/hosts.deny
...
ALL : ALL : echo '%c tried to connect to %d and was blocked' >> /var/log/tcpwrappers.log

This line prevents any client from connecting to any service, unless specifically permit-
ted in hosts.allow. When this rule is matched, it adds a line to the file named
/var/log/tcpwrappers.log. The %c expands to client information and the %d expands
to the name of the daemon the client attempted to connect to.

With the preceding hosts.deny file in place, you can include lines in hosts.allow that
explicitly allow access to certain services and systems. For example, the following
hosts.allow file allows anyone to connect to the OpenSSH daemon (ssh, scp, sftp)
but allows telnet connections only from the same network as the local system and
users on the 192.168. subnet:

$ cat /etc/hosts.allow
sshd : ALL
in.telnet : LOCAL
in.telnet : 192.168.* 127.0.0.1
...

The first line allows connection from any system (ALL) to sshd. The second line
allows connection from any system in the same domain as the server (LOCAL). The
third line matches any system whose IP address starts with 192.168. as well as the
local system.

Setting Up a chroot Jail

On early UNIX systems, the root directory was a fixed point in the filesystem. On
modern UNIX variants, including Linux, you can define the root directory on a per-
process basis. The chroot utility allows you to run a process with a root directory
other than /.

Setting Up a Server 449

The root directory appears at the top of the directory hierarchy and has no parent:
A process cannot access any files above the root directory (because they do not
exist). If, for example, you run a program (process) and specify its root directory as
/home/sam/jail, the program would have no concept of any files in /home/sam or
above: jail is the program’s root directory and is labeled / (not jail).

By creating an artificial root directory, frequently called a (chroot) jail, you prevent
a program from accessing or modifying—possibly maliciously—files outside the
directory hierarchy starting at its root. You must set up a chroot jail properly to
increase security: If you do not set up the chroot jail correctly, you can actually
make it easier for a malicious user to gain access to a system than if there were no
chroot jail.

Using chroot
Creating a chroot jail is simple: Working as root, give the command /usr/sbin/chroot
directory. The directory becomes the root directory and the process attempts to
run the default shell. Working with root privileges from the /home/sam directory,
give the following command to set up a chroot jail in the (existing) /home/sam/jail
directory:

/usr/sbin/chroot /home/sam/jail
/usr/sbin/chroot: cannot run command '/bin/bash': No such file or directory

This example sets up a chroot jail, but when it attempts to run the bash shell, the
operation fails. Once the jail is set up, the directory that was named jail takes on the
name of the root directory, /, so chroot cannot find the file identified by the path-
name /bin/bash. In this situation the chroot jail is working but is not useful.

Getting a chroot jail to work the way you want is a bit more complicated. To have
the preceding example run bash in a chroot jail, you need to create a bin directory in
jail (/home/sam/jail/bin) and copy /bin/bash to this directory. Because the bash
binary is dynamically linked to shared libraries, you need to copy these libraries
into jail as well. The libraries go in lib.

The next example creates the necessary directories, copies bash, uses ldd to display
the shared library dependencies of bash, and copies the necessary libraries into lib.
The linux-gate.so.1 file is a dynamically shared object (DSO) provided by the kernel
to speed system calls; you do not need to copy it to the lib directory.

$ pwd
/home/sam/jail
$ mkdir bin lib
$ cp /bin/bash bin
$ ldd bin/bash
 linux-gate.so.1 => (0x0089c000)
 libtinfo.so.5 => /lib/libtinfo.so.5 (0x00cdb000)
 libdl.so.2 => /lib/libdl.so.2 (0x00b1b000)
 libc.so.6 => /lib/libc.so.6 (0x009cb000)
 /lib/ld-linux.so.2 (0x009ae000)
$ cp /lib/{libtinfo.so.5,libdl.so.2,libc.so.6,ld-linux.so.2} lib

450 Chapter 11 System Administration: Core Concepts

Now that everything is set up, you can start the chroot jail again. Although all of the
setup can be done by an ordinary user, you have to run chroot as Superuser:

$ su
Password:
/usr/sbin/chroot .
bash-3.2# pwd
/
bash-3.2# ls
bash: ls: command not found
bash-3.2#

This time the chroot finds and starts bash, which displays its default prompt (bash-
3.2#). The pwd command works because it is a shell builtin (page 247). However,
bash cannot find the ls utility (it is not in the chroot jail). You can copy /bin/ls and
its libraries into the jail if you want users in the jail to be able to use ls.

To set up a useful chroot jail, first determine which utilities the users of the chroot jail
will need. Then copy the appropriate binaries and their libraries into the jail. Alter-
natively, you can build static copies of the binaries and put them in the jail without
installing separate libraries. (The statically linked binaries are considerably larger
than their dynamic counterparts. The base system with bash and the core utilities
exceeds 50 megabytes.) You can find the source code for most of the common utili-
ties in the bash and coreutils SRPMS (source rpm) packages.

Whichever technique you choose, you must put a copy of su in the jail. The su com-
mand is required to run programs while working as a user other than root. Because
root can break out of a chroot jail, it is imperative that you run a program in the
chroot jail as a user other than root.

The dynamic version of su distributed by Fedora/RHEL requires PAM and will not
work within a jail. You need to build a copy of su from the source to use in a jail. By
default, any copy of su you build does not require PAM. Refer to “GNU Configure
and Build System” on page 513 for instructions on how to build packages such as
coreutils (which includes su).

To use su, you must copy the relevant lines from the /etc/passwd and /etc/shadow
files into files with the same names in the etc directory inside the jail.

Running a Service in a chroot Jail

Running a shell inside a jail has limited usefulness. In reality, you are more likely to
need to run a specific service inside the jail. To run a service inside a jail, you must
make sure all files needed by that service are inside the jail. The format of a com-
mand to start a service in a chroot jail is

/usr/sbin/chroot jailpath /bin/su user daemonname &

Keeping multiple chroot jails
tip If you plan to deploy multiple chroot jails, it is a good idea to keep a clean copy of the bin and lib

files somewhere other than in one of the active jails.

Setting Up a Server 451

where jailpath is the pathname of the jail directory, user is the username that runs
the daemon, and daemonname is the path (inside the jail) of the daemon that provides
the service.

Some servers are already set up to take advantage of chroot jails. For example, you
can set up DNS so that named runs in a jail (page 804), and the vsftpd FTP server
can automatically start chroot jails for clients (page 658).

Security Considerations

Some services need to be run as root, but they release their root privileges once
started (Procmail and vsftpd are examples). If you are running such a service, you
do not need to put su inside the jail.

A process run as root could potentially escape from a chroot jail. For this reason,
you should always su to another user before starting a program running inside the
jail. Also, be careful about which setuid (page 205) binaries you allow inside a
jail—a security hole in one of them could compromise the security of the jail. In
addition, make sure the user cannot access executable files that he uploads.

DHCP: Configures Hosts

Instead of storing network configuration information in local files on each system,
DHCP (Dynamic Host Configuration Protocol) enables client systems to retrieve
network configuration information each time they connect to the network. A
DHCP server assigns IP addresses from a pool of addresses to clients as needed.
Assigned addresses are typically temporary, but need not be.

This technique has several advantages over storing network configuration information
in local files:

• A new user can set up an Internet connection without having to deal with
IP addresses, netmasks, DNS addresses, and other technical details. An
experienced user can set up a connection more quickly.

• DHCP facilitates assignment and management of IP addresses and related
network information by centralizing the process on a server. A system
administrator can configure new systems, including laptops that connect
to the network from different locations, to use DHCP; DHCP then assigns
IP addresses only when each system connects to the network. The pool of
IP addresses is managed as a group on the DHCP server.

• IP addresses can be used by more than one system, reducing the total num-
ber of IP addresses needed. This conservation of addresses is important
because the Internet is quickly running out of IPv4 addresses. Although a
particular IP address can be used by only one system at a time, many end-
user systems require addresses only occasionally, when they connect to the
Internet. By reusing IP addresses, DHCP lengthens the life of the IPv4 pro-
tocol. DHCP applies to IPv4 only, as IPv6 forces systems to configure their
IP addresses automatically (called autoconfiguration) when they connect
to a network (page 373).

452 Chapter 11 System Administration: Core Concepts

DHCP is particularly useful for administrators who are responsible for maintaining
a large number of systems because individual systems no longer need to store
unique configuration information. With DHCP, the administrator can set up a mas-
ter system and deploy new systems with a copy of the master’s hard disk. In educa-
tional establishments and other open access facilities, the hard disk image may be
stored on a shared drive, with each workstation automatically restoring itself to
pristine condition at the end of each day.

More Information

Web www.dhcp.org

FAQ www.dhcp-handbook.com/dhcp_faq.html

HOWTO DHCP Mini HOWTO

How DHCP Works

The client daemon, dhclient (part of the dhcp package), contacts the server daemon,
dhcpd, to obtain the IP address, netmask, broadcast address, nameserver address,
and other networking parameters. The server provides a lease on the IP address to
the client. The client can request the specific terms of the lease, including its dura-
tion; the server can, in turn, limit these terms. While connected to the network, a
client typically requests extensions of its lease as necessary so its IP address remains
the same. The lease can expire once the client is disconnected from the network,
with the server giving the client a new IP address when it requests a new lease. You
can also set up a DHCP server to provide static IP addresses for specific clients
(refer to “Static Versus Dynamic IP Addresses” on page 368).

DHCP is broadcast based, so both client and server must be on the same subnet
(page 371).

DHCP Client

A DHCP client requests network configuration parameters from the DHCP server
and uses those parameters to configure its network interface.

Prerequisites

Install the following package:

• dhclient

dhclient: The DHCP Client

When a DHCP client system connects to the network, dhclient requests a lease from
the DHCP server and configures the client’s network interface(s). Once a DHCP cli-
ent has requested and established a lease, it stores information about the lease in a
file named dhclient.leases, which is stored in the /var/lib/dhclient directory. This
information is used to reestablish a lease when either the server or the client needs
to reboot. The DHCP client configuration file, /etc/dhclient.conf, is required only
for custom configurations. The following dhclient.conf file specifies a single inter-
face, eth0:

Setting Up a Server 453

$ cat /etc/dhclient.conf
interface “eth0”
{
send dhcp-client-identifier 1:xx:xx:xx:xx:xx:xx;
send dhcp-lease-time 86400;
}

In the preceding file, the 1 in the dhcp-client-identifier specifies an Ethernet net-
work and xx:xx:xx:xx:xx:xx is the MAC address (page 1092) of the device control-
ling that interface. See page 454 for instructions on how to display a MAC address.
The dhcp-lease-time is the duration, in seconds, of the lease on the IP address. While
the client is connected to the network, dhclient automatically renews the lease each
time half of the lease is up. A lease time of 86,400 seconds (or one day) is a reason-
able choice for a workstation.

DHCP Server

The DHCP server maintains a list of IP addresses and other configuration parame-
ters. When requested to do so, the DHCP server provides configuration parameters
to a client.

Prerequisites

Install the following package:

• dhcp

Run chkconfig to cause dhcpd to start when the system enters multiuser mode:

/sbin/chkconfig dhcpd on

Start dhcpd:

/sbin/service dhcpd start

dhcpd: The DHCP Daemon

A simple DHCP server allows you to add clients to a network without maintaining a
list of assigned IP addresses. A simple network, such as a home LAN sharing an Inter-
net connection, can use DHCP to assign a dynamic IP address to almost all nodes.
The exceptions are servers and routers, which must be at known network locations to
be able to receive connections. If servers and routers are configured without DHCP,
you can specify a simple DHCP server configuration in /etc/dhcp/dhcpd.conf (FEDORA)
or /etc/dhcpd.conf (RHEL):

$ cat /etc/dhcp/dhcpd.conf
default-lease-time 600;
max-lease-time 86400;

option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.1;
option domain-name-servers 192.168.1.1;

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.2 192.168.1.200;
}

454 Chapter 11 System Administration: Core Concepts

The preceding configuration file specifies a LAN where the router and DNS are
both located on 192.168.1.1. The default-lease-time specifies the number of seconds
the dynamic IP lease will remain valid if the client does not specify a duration. The
max-lease-time is the maximum time allowed for a lease.

The information in the option lines is sent to each client when it connects. The
names following the word option specify what the following argument represents.
For example, the option broadcast-address line specifies the broadcast address of
the network. The routers and domain-name-servers options can be followed by
multiple values separated by commas.

The subnet section includes a range line that specifies the range of IP addresses that
the DHCP server can assign. If you define multiple subnets, you can define options,
such as subnet-mask, inside the subnet section. Options defined outside all subnet
sections are global and apply to all subnets.

The preceding configuration file assigns addresses in the range between 192.168.1.2
and 192.168.1.200. The DHCP server starts at the bottom (FEDORA) or top (RHEL) of
this range and attempts to assign a new IP address to each new client. Once the
DHCP server reaches the top/bottom of the range, it starts reassigning IP addresses
that have been used in the past, but are not currently in use. If you have fewer sys-
tems than IP addresses, the IP address of each system should remain fairly constant.
You cannot use the same IP address for more than one system at a time.

Once you have configured a DHCP server, you can start (or restart) it by using the
dhcpd init script:

/sbin/service dhcpd restart

Once the server is running, clients configured to obtain an IP address from the
server using DHCP should be able to do so.

Static IP Addresses

As mentioned earlier, routers and servers typically require static IP addresses. While
you can manually configure IP addresses for these systems, it may be more conve-
nient to have the DHCP server provide them with static IP addresses.

When a system that requires a specific static IP address connects to the network and
contacts the DHCP server, the server needs a way to identify the system so the
server can assign the proper IP address to the system. The DHCP server uses the
MAC address (page 1092) of the system’s Ethernet card (NIC) as an identifier.
When you set up the server, you must know the MAC address of each system that
requires a static IP address.

Displaying a MAC
address

You can use ifconfig to display the MAC addresses of the Ethernet cards (NICs) in a
system. In the following example, the MAC addresses are the colon-separated series
of hexadecimal number pairs following HWaddr:

$ /sbin/ifconfig | grep -i hwaddr
eth0 Link encap:Ethernet HWaddr BA:DF:00:DF:C0:FF
eth1 Link encap:Ethernet HWaddr 00:02:B3:41:35:98

nsswitch.conf: Which Service to Look at First 455

Run ifconfig on each system that requires a static IP address. Once you have deter-
mined the MAC address of each of these systems, you can add a host section to the
/etc/dhcp/dhcpd.conf file for each system, instructing the DHCP server to assign a
specific address to the system. The following host section assigns the address
192.168.1.1 to the system with the MAC address of BA:DF:00:DF:C0:FF:

$ cat /etc/dhcp/dhcpd.conf
...
host router {
 hardware ethernet BA:DF:00:DF:C0:FF;
 fixed-address 192.168.1.1;
 option host-name router;
}

The name following host is used internally by dhcpd. The name specified after
option host-name is passed to the client and can be a hostname or an FQDN.

After making changes to dhcpd.conf, restart dhcpd using the service utility and the
dhcpd init script (page 453).

nsswitch.conf: Which Service to Look at First

With the advent of NIS and DNS, finding user and system information was no
longer a simple matter of searching a local file. Where once you looked in
/etc/passwd to get user information and in /etc/hosts to find system address infor-
mation, you can now use several methods to find this type of information. The
/etc/nsswitch.conf (name service switch configuration) file specifies the methods to
use and the order in which to use them when looking for a certain type of informa-
tion. You can also specify what action the system takes based on whether a method
works or fails.

Format Each line in nsswitch.conf specifies how to search for a piece of information, such
as a user’s password. A line in nsswitch.conf has the following format:

info: method [[action]] [method [[action]]...]

where info is the type of information that the line describes, method is the method
used to find the information, and action is the response to the return status of the
preceding method. The action is enclosed within square brackets.

How nsswitch.conf Works

When called upon to supply information that nsswitch.conf describes, the system
examines the line with the appropriate info field. It uses the methods specified on
the line starting with the method on the left. By default, when it finds the desired
information, the system stops searching. Without an action specification, when a
method fails to return a result, the system tries the next method. It is possible for the
search to end without finding the requested information.

456 Chapter 11 System Administration: Core Concepts

Information

The nsswitch.conf file commonly controls searches for users (in passwd), pass-
words (in shadow), host IP addresses, and group information. The following list
describes most of the types of information (info in the format discussed earlier)
that nsswitch.conf controls searches for.

automount Automount (/etc/auto.master and /etc/auto.misc; page 744)
bootparams Diskless and other booting options (See the bootparam man page.)
ethers MAC address (page 1092)
group Groups of users (/etc/group; page 472)
hosts System information (/etc/hosts; page 472)
netgroup Netgroup information (/etc/netgroup; page 474)
networks Network information (/etc/networks)
passwd User information (/etc/passwd; page 475)
protocols Protocol information (/etc/protocols; page 476)
publickey Used for NFS running in secure mode
rpc RPC names and numbers (/etc/rpc; page 477)
services Services information (/etc/services; page 477)
shadow Shadow password information (/etc/shadow; page 477)

Methods

Following is a list of the types of information that nsswitch.conf controls searches
for (method in the syntax shown on page 455). For each type of information, you
can specify one or more of the following methods:1

files Searches local files such as /etc/passwd and /etc/hosts
nis Searches the NIS database; yp is an alias for nis
dns Queries the DNS (hosts queries only)
compat ± syntax in passwd, group, and shadow files (page 458)

Search Order

The information provided by two or more methods may overlap: For example, files
and nis may each provide password information for the same user. With overlap-
ping information, you need to consider which method you want to be authoritative
(take precedence) and then put that method at the left of the list of methods.

The default nsswitch.conf file lists methods without actions, assuming no overlap
(which is normal). In this case, the order is not critical: When one method fails, the
system goes to the next one; all that is lost is a little time. Order becomes critical
when you use actions between methods or when overlapping entries differ.

1. There are other, less commonly used methods. See the default /etc/nsswitch.conf file and the nsswitch.conf
man page for more information. Although NIS+ belongs in this list, it is not implemented for Linux and is not
discussed in this book.

nsswitch.conf: Which Service to Look at First 457

The first of the following lines from nsswitch.conf causes the system to search for
password information in /etc/passwd and, if that fails, to use NIS to find the infor-
mation. If the user you are looking for is listed in both places, the information in the
local file would be used—it would be authoritative. The second line uses NIS; if that
fails, it searches /etc/hosts; if that fails, it checks with DNS to find host information.

passwd files nis
hosts nis files dns

Action Items

Each method can optionally be followed by an action item that specifies what to do
if the method succeeds or fails for any of a number of reasons. An action item has
the following format:

[[!]STATUS=action]

where the opening and closing square brackets are part of the format and do not
indicate that the contents are optional; STATUS (by convention uppercase although
it is not case sensitive) is the status being tested for; and action is the action to be
taken if STATUS matches the status returned by the preceding method. The leading
exclamation point (!) is optional and negates the status.

STATUS STATUS may have the following values:

NOTFOUND—The method worked but the value being searched for was not
found. Default action is continue.

SUCCESS—The method worked and the value being searched for was found; no
error was returned. Default action is return.

UNAVAIL—The method failed because it is permanently unavailable. For example,
the required file may not be accessible or the required server may be down. Default
action is continue.

TRYAGAIN—The method failed because it was temporarily unavailable. For
example, a file may be locked or a server overloaded. Default action is continue.

action Values for action are as follows:

return—Returns to the calling routine with or without a value.

continue—Continues with the next method. Any returned value is overwritten by a
value found by the next method.

Example The following line from nsswitch.conf causes the system first to use DNS to search
for the IP address of a given host. The action item following the DNS method tests
whether the status returned by the method is not (!) UNAVAIL.

hosts dns [!UNAVAIL=return] files

The system takes the action associated with the STATUS (return) if the DNS
method does not return UNAVAIL (!UNAVAIL)—that is, if DNS returns SUCCESS,
NOTFOUND, or TRYAGAIN. As a consequence, the following method (files) is

458 Chapter 11 System Administration: Core Concepts

used only when the DNS server is unavailable: If the DNS server is not unavailable
(read the two negatives as “is available”), the search returns the domain name or
reports that the domain name was not found. The search uses the files method
(check the local /etc/hosts file) only if the server is not available.

compat Method: ± in passwd, group, and shadow Files

You can put special codes in the /etc/passwd, /etc/group, and /etc/shadow files that
cause the system, when you specify the compat method in nsswitch.conf, to com-
bine and modify entries in the local files and the NIS maps. That is, a plus sign (+) at
the beginning of a line in one of these files adds NIS information; a minus sign (–)
removes information.

For example, to use these codes in the passwd file, specify passwd: compat in nss-
witch.conf. The system then goes through the passwd file in order, adding or remov-
ing the appropriate NIS entries when it reaches each line that starts with a + or –.

Although you can put a plus sign at the end of the passwd file, specify passwd: com-
pat in nsswitch.conf to search the local passwd file, and then go through the NIS
map, it is more efficient to put passwd: file nis in nsswitch.conf and not modify the
passwd file.

PAM

PAM (actually Linux-PAM, or Linux Pluggable Authentication Modules) allows asystem administrator to determine how applications use authentication (page 1070)to verify the identity of a user. PAM provides shared libraries of modules (located in/lib/security) that, when called by an application, authenticate a user. The term“Pluggable” in PAM’s name refers to the ease with which you can add and removemodules from the authentication stack. The configuration files kept in the/etc/pam.d directory determine the method of authentication and contain a list (i.e.,stack) of calls to the modules. PAM may also use other files, such as /etc/passwd,when necessary.

Instead of building the authentication code into each application, PAM providesshared libraries that keep the authentication code separate from the applicationcode. The techniques of authenticating users stay the same from application toapplication. In this way, PAM enables a system administrator to change the authen-tication mechanism for a given application without ever touching the application.

PAM provides authentication for a variety of system-entry services (login, ftp, and soon). You can take advantage of PAM’s ability to stack authentication modules tointegrate system-entry services with different authentication mechanisms, such asRSA, DCE, Kerberos, and smartcards.

