
murach’s

TRAINING & REFERENCE

ADO.NET 2.0
database programming with

VB 2005VB 2005VB 2005VB 2005VB 2005

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2007 Mike Murach & Associates. All rights reserved.

(Chapter 3)
Thanks for downloading this chapter from Murach’s ADO.NET 2.0 Database Pro-
gramming with VB 2005. We hope it will show you how easy it is to learn from any
Murach book, with its paired-pages presentation, its “how-to” headings, its practical
coding examples, and its clear, concise style.

To view the full table of contents for this book, you can go to our web site. From there,
you can read more about this book, you can find out about any additional downloads
that are available, and you can review our other books on .NET development.

Thanks for your interest in our books!

http://www.murach.com/books/adv2/index.htm
http://www.murach.com/books/adv2/index.htm
http://www.murach.com
http://www.murach.com
mailto:murachbooks@murach.com

v

Contents
Introduction xiii

Section 1 An introduction to ADO.NET programming

Chapter 1 An introduction to database programming 3
Chapter 2 An introduction to ADO.NET 2.0 33
Chapter 3 How to work with data sources and datasets 57
Chapter 4 How to work with bound controls and parameterized queries 97
Chapter 5 How to use the Dataset Designer 143

Section 2 Three-layer Windows Forms applications

Chapter 6 How to work with commands and data readers 197
Chapter 7 How to work with parameters and stored procedures 221
Chapter 8 How to work with transactions 257
Chapter 9 How to work with object data sources 275
Chapter 10 A complete Payable Entry application 307

Section 3 ADO.NET and web applications

Chapter 11 How to use SQL data source controls 345
Chapter 12 How to use the GridView control 383
Chapter 13 How to use the DetailsView and FormView controls 427
Chapter 14 How to use object data sources 473

Section 4 Datasets and Windows Forms applications

Chapter 15 How to work with typed datasets and table adapters 523
Chapter 16 How to work with untyped datasets and data adapters 563
Chapter 17 How to work with data views and relationships 611

Section 5 Other data access skills

Chapter 18 How to work with XML data 635
Chapter 19 How to use the Server Explorer 673
Chapter 20 How to use Crystal Reports 697

Reference aids

Appendix A How to install and use the software and downloadable files 741
Index 748

Judy
Highlight

Chapter 3 How to work with data sources and datasets 57

3

How to work with data
sources and datasets
In this chapter, you’ll learn how to use data sources and datasets to develop
database applications. This makes it easier than ever to generate Windows
forms that work with the data that’s in the data sources. And this is especially
useful for developing simple applications or prototyping larger applications.

How to create a data source .. 58
How to use the Data Sources window .. 58
How to start the Data Source Configuration Wizard 60
How to choose a data source type .. 60
How to choose the connection for a data source .. 62
How to create a connection to a database ... 64
How to save a connection string in the app.config file 66
How to choose database objects for a data source 68
The schema file created by the Data Source Configuration Wizard 70

How to use a data source .. 72
How to generate a DataGridView control from a data source 72
A Terms Maintenance application that uses a DataGridView control 74
How to change the controls associated with a data source 76
How to generate detail controls from a data source 78
A Vendor Maintenance application that uses TextBox controls 80

How to handle data errors ... 82
How to handle data provider errors .. 82
How to handle ADO.NET errors .. 84
How to handle data errors for a DataGridView control 86

How to use the Dataset Designer 88
How to view the schema for a dataset .. 88
How to preview the data for a query .. 90
How to interpret the generated SQL statements ... 92

Perspective .. 94

58 Section 1 An introduction to ADO.NET programming

How to create a data source

Before you can take advantage of Visual Studio 2005’s new features for
working with data, you must create a data source for the application. As its
name implies, a data source specifies the source of the data for an application.
Since most applications get their data from a database, the figures that follow
show how to create a data source that gets data from a database.

How to use the Data Sources window

The data sources that are available to a project are listed in the Data Sources
window as shown in figure 3-1. Here, the second screen shows a data source for
the Terms table that’s available from the Payables database that’s described in
figure 1-8 of chapter 1. As you can see, this data source includes three columns
from the Terms table named TermsID, Description, and DueDays.

If no data sources are available to a project, the Data Sources window will
display an Add New Data Source link as shown in the first screen. Then, you
can click on this link to start the Data Source Configuration Wizard described in
figures 3-2 through 3-6. This wizard lets you add a new data source to the
project. When you’re done, you can drag the data source onto a form to create
bound controls as described later in this chapter.

Chapter 3 How to work with data sources and datasets 59

An empty Data Sources window

A Data Sources window after a data source has been added

Description
• A data source shows all the tables and columns in the dataset that are available to your

application.

• You can display the Data Sources window by clicking on the Data Sources tab that’s
usually grouped with the Solution Explorer at the right edge of the Visual Studio window
or by selecting the Show Data Sources command from the Data menu.

• To create a data source, you can click the Add New Data Source link. Then, you can drag
the data source to a form to create controls that are bound to the data source.

Figure 3-1 How to use the Data Sources window

60 Section 1 An introduction to ADO.NET programming

How to start the Data Source Configuration
Wizard

If your project doesn’t already contain a data source, you can start the Data
Source Configuration Wizard by clicking the Add New Data Source link that’s
shown in the previous figure. However, if your project already contains a data
source, this link won’t be available. In that case, you can start the Data Source
Configuration Wizard by using one of the techniques listed in figure 3-2.

The last technique is to add a SQL Server or Access database file to the
project. You may want to do that if the application is for a single user. That way,
the database can easily be distributed with the application.

If you add a database file to your project, you should know that by default,
that file is copied to the output directory for the project every time the project is
built. (The output directory is the directory where the executable file for the
application is stored.) Then, when you run the application, the application works
with the copy of the database file in the output directory. That means that any
changes that you make to the database aren’t applied to the database file in the
project folder. And each time you rebuild the application, the database in the
output directory is overwritten by the unchanged database in the project direc-
tory so you’re back to the original version of the database.

If you want to change the way this works, you can select the database file in
the Solution Explorer and change its “Copy to Output Directory” property from
“Copy always” to “Copy if newer.” Then, the database file in the output direc-
tory won’t be overwritten unless the database file in the project directory
contains more current data.

How to choose a data source type

Figure 3-2 also shows the first step of the Data Source Configuration
Wizard. This step lets you specify the source from which your application will
get its data. To work with data from a database as described in this chapter, you
select the Database option. However, you can also select the Web Service option
to work with data from a web service that’s available from the Internet or from
an intranet. Or, you can select the Object option to work with data that’s stored
in a business object. This option lets you take advantage of the objects that are
available from the middle layer of an application as described in chapter 9.

Chapter 3 How to work with data sources and datasets 61

The first step of the Data Source Configuration Wizard

How to start the Data Source Configuration Wizard
• Click on the Add New Data Source link that’s available from the Data Sources window

when a project doesn’t contain any data sources.

• Click on the Add New Data Source button at the top of the Data Sources window.

• Select the Add New Data Source command from Visual Studio’s Data menu.

• Add a SQL Server (.mdf) or Access (.mdb) data file to the project using the
Project�Add�Existing Item command. Then, the wizard will skip to the step shown in
figure 3-6 that lets you choose the database objects you want to include.

How to choose a data source type
• To get your data from a database, select the Database option. This option lets you create

applications like the ones described in this chapter.

• To get your data from a web service, select the Web Service option. This option lets you
browse the web to select a web service that will supply data to your application.

• To get your data from a business object, select the Object option. This option lets you
create applications like the ones described in chapter 9.

Note
• Before you start this procedure, you need to install your database server software on

your own PC or on a network server, and you need to attach your database to it. For
more information, please refer to appendix A.

Figure 3-2 How to start the Data Source Configuration Wizard and choose a data source
type

62 Section 1 An introduction to ADO.NET programming

How to choose the connection for a data source

The second step of the Data Source Configuration Wizard, shown in figure
3-3, lets you choose the data connection you want to use to connect to the
database. If you’ve previously defined a data connection, you can choose that
connection from the drop-down list. To be sure you use the right connection,
you can click the button with the plus sign on it to display the connection string.

If the connection you want to use hasn’t already been defined, you can click
the New Connection button. Then, you can use the dialog boxes shown in the
next figure to create the connection.

Before I go on, you should know that once you create a connection using
the Data Source Configuration Wizard, it’s available to any other project you
create. To see a list of the existing connections, you can open the Server Ex-
plorer window (View�Server Explorer) and then expand the Data Connections
node. You can also use the Server Explorer to create data connections without
creating a data source. See chapter 19 for more information.

Chapter 3 How to work with data sources and datasets 63

The second step of the Data Source Configuration Wizard

Description
• When you click the Next button in the first step of the Data Source Configuration

Wizard, the Choose Your Data Connection step shown above is displayed.

• If you’ve already established a connection to the database you want to use, you can
choose that connection. Otherwise, you can click the New Connection button to display
the Add Connection dialog box shown in the next figure.

• To see the connection string for an existing connection, click the button with the plus
sign on it.

Figure 3-3 How to choose the connection for a data source

64 Section 1 An introduction to ADO.NET programming

How to create a connection to a database

If you click the New Connection button from the second step of the Data
Source Configuration Wizard, the Add Connection dialog box shown in figure
3-4 is displayed. This dialog box helps you identify the database that you want
to access and provides the information you need to access it. That includes
specifying the name of the server that contains the database, entering the
information that’s required to log on to the server, and specifying the name of
the database. How you do that, though, varies depending on whether you’re
running SQL Server Express on your own PC or whether you’re using a data-
base server that’s running on a network server.

If you’re using SQL Server Express on your own PC and you’ve down-
loaded and installed it as described in appendix A, you can use the localhost
keyword to specify that the database server is running on the same PC as the
application. This keyword should be followed by a backslash and the name of
the database server: SqlExpress.

For the logon information, you should select the Use Windows Authentica-
tion option. Then, SQL Server Express will use the login name and password
that you use to log in to Windows as the name and password for the database
server too. As a result, you won’t need to provide a separate user name and
password in this dialog box.

Last, you enter or select the name of the database that you want to connect
to. In this figure, for example, the connection is for the Payables database that’s
used throughout book. When you’re done supplying the information for the
connection, you can click the Test Connection button to be sure that the connec-
tion works.

In contrast, if you need to connect to a database that’s running on a database
server that’s available through a network, you need to get the connection
information from the network or database administrator. This information will
include the name of the database server, logon information, and the name of the
database.

The first time you create a data connection, Visual Studio displays the
Change Data Source dialog box shown in this figure before it displays the Add
Connection dialog box. The Change Data Source dialog box lets you choose the
data source and data provider you want to use for the data connection. By
default, the data source is Microsoft SQL Server and the data provider is .NET
Framework Data Provider for SQL Server. This works for SQL Server 7, 2000,
and 2005 databases including SQL Server Express databases. If that’s what you
want, you can just click the OK button. Then, Visual Studio will assume that
you want to use those values for any data connections you create in the future.

If you ever want to change the data source, you can click the Change button
in the Add Connection dialog box to display the Change Data Source dialog
box. Then, you can select the data source and data provider you want to use. If
you want to access an Oracle database, for example, you can select the Oracle
Database item in the Data Source list. Then, you can choose the data provider
for Oracle or the data provider for OLE DB from the Data Provider drop-down
list.

Chapter 3 How to work with data sources and datasets 65

The Add Connection and Change Data Source dialog boxes

Description
• The first time you create a connection, the Change Data Source dialog box is displayed.

You can use this dialog box to choose the data source and data provider you want to use
by default for the connections you create. If you ever want to change the data source for
a connection, you can click the Change button in the Add Connection dialog box to
redisplay the Change Data Source dialog box.

• To create a connection, specify the name of the server that contains the database, enter
the information that’s required to log on to the server, and specify the name of the
database you want to connect to.

• To be sure that the connection is configured properly, you can click the Test Connection
button in the Add Connection dialog box.

Express Edition differences
• The Change Data Source dialog box provides only two options: Microsoft Access

Database File and Microsoft SQL Server Database File.

• The Add Connection dialog box is simpler, and it includes a Database File Name text
box that you use to specify the database. To do that, you click the Browse button to the
right of the text box and use the resulting dialog box to point to the data file for the
database.

Figure 3-4 How to create a connection to a database

66 Section 1 An introduction to ADO.NET programming

How to save a connection string in the
app.config file

After you select or create a data connection, the third step of the Data
Source Configuration Wizard is displayed. This step, shown in figure 3-5, asks
whether you want to save the connection string in the application configuration
file (app.config). In most cases, that’s what you’ll want to do. Then, any table
adapter that uses the connection can refer to the connection string by name.
That way, if the connection information changes, you only need to change it in
the app.config file. Otherwise, the connection string is stored in each table
adapter that uses the connection, and you’ll have to change each table adapter if
the connection information changes.

This figure also shows how the connection string is stored in the app.config
file. Although this file contains XML data, you should be able to understand it
even if you don’t know XML. Here, for example, you can see that the
connectionStrings element contains an add element that contains three at-
tributes. The first attribute, name, specifies the name of the connection string, in
this case, PayablesConnectionString. The second attribute, connectionString,
contains the actual connection string. And the third attribute, providerName,
identifies the data provider, in this case, SqlClient.

Chapter 3 How to work with data sources and datasets 67

The third step of the Data Source Configuration Wizard

The information that’s stored in the app.config file
<connectionStrings>
 <add name="TermsMaintenance.My.MySettings.PayablesConnectionString"
 connectionString="Data Source=localhost\sqlexpress;
 Initial Catalog=Payables;
 Integrated Security=True"
 providerName="System.Data.SqlClient" />
</connectionStrings>

Description
• By default, the connection string is saved in the application configuration file

(app.config). If that’s not what you want, you can remove the check mark from the Yes
option in the third step of the Data Source Configuration Wizard shown above.

• If you don’t save the connection string in the app.config file, the string is specified for
the connection of each table adapter you create from the data source. Because of that, we
recommend you always save the connection string in the app.config file. Then, only the
name of the connection string is stored in the connection for each table adapter.

• You can also enter the name you want to use for the connection string in this dialog box.
By default, the connection string is given a name that consists of the database name
appended with “ConnectionString”.

Figure 3-5 How to save a connection string in the app.config file

68 Section 1 An introduction to ADO.NET programming

How to choose database objects for a data
source

Figure 3-6 shows how you can use the last step of the Data Source Configu-
ration Wizard to choose the database objects for a data source. This step lets you
choose any tables, views, stored procedures, or functions that are available from
the database. In some cases, you can just select the table you need from the list
of tables that are available from the database. Then, all of the columns in the
table are included in the dataset. In this figure, for example, the Terms table is
selected.

If you want to include selected columns from a table, you can expand the
node for the table and select just the columns you want. Later in this chapter, for
example, you’ll see a Vendor Maintenance application that uses selected col-
umns from the Vendors table. Note that if an application will allow rows to be
added to a table, you can omit a column only if it can have a null value or if it’s
defined with a default value. Otherwise, you have to provide a value for it.

If you include a column with a default value in a dataset, you need to realize
that this value isn’t assigned to the column in the dataset, even though the
dataset enforces the constraints for that column. Instead, the column will be
defined with a default value of null, even though null values aren’t allowed in
columns with default values. As a result, an exception will be thrown whenever
a new row is added to the dataset and a value other than null isn’t provided for
that column.

This means that either the user or the application must provide an accept-
able value for the column. One way to do that is to provide a way for the user to
enter a value for the column. Another way is to use the Dataset Designer to set
the DefaultValue property for this column as described in this figure. You’ll
learn more about working with the Dataset Designer later in this chapter.

In a larger project, you might want to include several tables in the dataset.
Then, the dataset will maintain the relationships between those tables whenever
that’s appropriate. Or, you might want to use views, stored procedures, or
functions to work with the data in the database. If you have experience working
with these database objects, you shouldn’t have any trouble understanding how
this works. Otherwise, you can refer to Murach’s SQL Server 2005 for Develop-
ers for more information.

Chapter 3 How to work with data sources and datasets 69

The last step of the Data Source Configuration Wizard

Description
• In the last step of the Data Source Configuration Wizard, you can choose the database

objects that you want to include in the dataset for your project.

• In this step, you can choose from any tables, views, stored procedures, or functions that
are available from the database. In addition, you can expand the node for any table, view,
stored procedure, or function and choose just the columns you want to include in the data
source.

• You can also enter the name you want to use for the dataset in this dialog box. By
default, the name is the name of the database appended with “DataSet”.

How to work with columns that have default values
• If a column in a database has a default value, that value isn’t included in the column

definition in the dataset. Because of that, you may want to omit columns with default
values from the dataset unless they’re needed by the application. Then, when a row is
added to the table, the default value is taken from the database.

• If you include a column that’s defined with a default value, you must provide a value for
that column whenever a row is added to the dataset. One way to do that is to let the user
enter a value. Another way is to display the Dataset Designer as described in figure 3-16,
click on the column, and use the Properties window to set the DefaultValue property.

Figure 3-6 How to choose database objects for a data source

70 Section 1 An introduction to ADO.NET programming

The schema file created by the Data Source
Configuration Wizard

After you complete the Data Source Configuration Wizard, the new data
source is displayed in the Data Sources window you saw in figure 3-1. In
addition to this data source, Visual Studio generates a file that contains the
schema for the dataset class. This file defines the structure of the dataset,
including the tables it contains, the columns that are included in each table, the
data types of each column, and the constraints that are defined for each table.

This schema file is listed in the Solution Explorer window and is given the
name you specified for the dataset in the last step of the Data Source Configura-
tion Wizard with a file extension of xsd. In figure 3-7, for example, you can see
the schema file named PayablesDataSet.xsd. As you’ll learn later in this chapter,
you can view a graphic representation of this schema by double-clicking on this
file.

Beneath the schema file, the Solution Explorer displays the file that contains
the generated code for the dataset class. In this figure, this code is stored in the
PayablesDataSet.Designer.vb file. When you create bound controls from the
data source as shown in this chapter, the code in this class is used to define the
dataset object that the controls are bound to. Although you may want to view
this code to see how it works, you shouldn’t change it. If you do, the dataset
may not work correctly.

By the way, you should know that a dataset that’s created from a dataset
class like the one shown here is called a typed dataset. The code in the dataset
class makes it possible for you to refer to the tables, rows, and columns in the
typed dataset using the simplified syntax you’ll see in this chapter and the next
chapter.

In contrast, you’ll learn how to create and work with an untyped dataset in
chapter 16. As you’ll see, you create this type of dataset using code.

Chapter 3 How to work with data sources and datasets 71

A project with a dataset defined by a data source

Description
• After you create a data source, it’s displayed in the Data Sources window. Then, you can

use it to create bound controls as shown in this chapter.

• Visual Studio also generates a file that contains the schema for the dataset defined by the
data source. This file appears in the Solution Explorer and has a file extension of xsd. It
defines the structure of the dataset, including the tables it contains, the columns in each
table, the data types of each column, and the constraints for each table.

• Subordinate to the schema file is a file that contains the generated code for the dataset
class. Visual Studio uses this class to create a dataset object when you add the data
source to a form.

Note
• To see the files that are subordinate to the schema file, click the Show All Files button at

the top of the Solution Explorer. Then, expand the node for the schema file.

Figure 3-7 The schema file created by the Data Source Configuration Wizard

Dataset schema
file

Dataset class

72 Section 1 An introduction to ADO.NET programming

How to use a data source

Once you’ve created a data source, you can bind controls to the data source
and then use the bound controls to add, update, and delete the data in the data
source. In this chapter, for example, you’ll learn how to bind the DataGridView
control and TextBox controls to a data source. The DataGridView control is new
to .NET 2.0 and has been designed specifically for working with data sources.
Although it is similar to the DataGrid control that was available with previous
versions of .NET, it also provides some significant enhancements.

How to generate a DataGridView control from a
data source

By default, if you drag a table from the Data Sources window onto a form,
Visual Studio adds a DataGridView control to the form and binds it to the table
as shown in figure 3-8. This creates a DataGridView control that lets you
browse all the rows in the table as well as add, update, and delete rows in the
table. To provide this functionality, Visual Studio adds a toolbar to the top of the
form that provides navigation buttons along with Add, Delete, and Save buttons.

To bind a DataGridView control to a table, Visual Studio uses a technique
called complex data binding. This just means that the bound control is bound to
more than one data element. The DataGridView control in this figure, for
example, is bound to all the rows and columns in the Terms table.

When you generate a DataGridView control from a data source, Visual
Studio also adds four additional objects to the Component Designer tray at the
bottom of the Form Designer. First, the DataSet object defines the dataset that
contains the Terms table. Second, the TableAdapter object provides commands
that can be used to work with the Terms table in the database. Third, the
BindingSource object specifies the data source (the Terms table) that the
controls are bound to, and it provides functionality for working with the data
source. Finally, the BindingNavigator defines the toolbar that contains the
controls for working with the data source.

Before I go on, I want to point out that the TableAdapter object is similar to
the DataAdapter object you learned about in the previous chapter. However, it
has a built-in connection and, as you’ll see in chapter 4, it can contain more than
one query. Also, a TableAdapter object can only be created by using Visual
Studio design tools like the Data Source Configuration Wizard.

I also want to mention that, in general, you shouldn’t have any trouble
figuring out how to use the binding navigator toolbar. However, you may want
to know that if you click the Add button to add a new row and then decide you
don’t want to do that, you can click the Delete button to delete the new row.
However, there’s no way to cancel out of an edit operation. Because of that, you
may want to add a button to the toolbar that provides this function. You’ll learn
how to do that in the next chapter.

Chapter 3 How to work with data sources and datasets 73

A form after the Terms table has been dragged onto it

The controls and objects that are created when you drag a data source to
a form

Control/object Description

DataGridView control Displays the data from the data source in a grid.

BindingNavigator control Defines the toolbar that can be used to navigate, add, update, and delete rows in
the DataGridView control.

BindingSource object Identifies the data source that the controls on the form are bound to and
provides functionality for working with the data source.

DataSet object Provides access to all of the tables, views, stored procedures, and functions that
are available to the project.

TableAdapter object Provides the commands that are used to read and write data to and from the
specified table in the database.

Description
• To bind a DataGridView control to a table in a dataset, just drag the table from the Data

Sources window onto the form. Then, Visual Studio automatically adds a DataGridView
control to the form along with the other controls and objects it needs to work properly.
Because the DataGridView control is bound to the table, it can be referred to as a bound
control.

• To bind a DataGridView control to a data table, Visual Studio uses a technique called
complex data binding. This means that the control is bound to more than one data
element, in this case, all the rows and columns in the table.

Figure 3-8 How to generate a DataGridView control from a data source

74 Section 1 An introduction to ADO.NET programming

A Terms Maintenance application that uses a
DataGridView control

At this point, the DataGridView control and binding navigator toolbar
provide all the functionality needed for an application that can be used to
maintain the data in the Terms table. Figure 3-9 shows how this application
appears to the user at runtime. Note that the appearance and operation of the
DataGridView control haven’t been changed from their defaults. In most cases,
however, you’ll want to at least make some minor changes in the appearance of
this control. You’ll learn how to do that in the next chapter when I present some
additional skills for working with the DataGridView control.

This figure also presents the code that Visual Studio generates when you
create this application, which includes everything needed to make it work. As a
result, you can create an application like this one without having to write a
single line of code. If you’ve ever had to manually write an application that
provides similar functionality, you can appreciate how much work this saves
you.

When this application starts, the first event handler in this figure is ex-
ecuted. This event handler uses the Fill method of the TableAdapter object to
load data into the DataSet object. In this example, the data in the Terms table of
the Payables database is loaded into the Terms table of the dataset. Then,
because the DataGridView control is bound to this table, the data is displayed in
this control and the user can use it to modify the data in the table by adding,
updating, or deleting rows.

When the user changes the data in the DataGridView control, those changes
are saved to the dataset. However, the changes aren’t saved to the database until
the user clicks the Save button in the toolbar. Then, the second event handler in
this figure is executed. This event handler starts by calling the Validate method
of the form, which causes the Validating and Validated events of the control
that’s losing focus to be fired. Although you probably won’t use the Validated
event, you may use the Validating event to validate a row that’s being added or
modified. However, I’ve found that this event doesn’t work well with the
binding navigator toolbar, so you won’t see it used in this book.

Next, the EndEdit method of the BindingSource object applies any pending
changes to the dataset. That’s necessary because when you add or update a row,
the new or modified row isn’t saved until you move to another row.

Finally, the Update method of the TableAdapter object saves the Terms table
in the DataSet object to the Payables database. When this method is called, it
checks each row in the table to determine if it’s a new row, a modified row, or a
row that should be deleted. Then, it causes the appropriate SQL Insert, Update,
and Delete statements to be executed for these rows. As a result, the Update
method works efficiently since it only updates the rows that need to be updated.

Now that you understand this code, you should notice that it doesn’t provide
for any exceptions that may occur during this processing. Because of that, you
need to add the appropriate exception handling code for any production applica-
tions that you develop so that they won’t crash. You’ll learn how to do that later
in this chapter.

Chapter 3 How to work with data sources and datasets 75

The user interface for the Terms Maintenance application

The code that’s generated by Visual Studio
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'TODO: This line of code loads data into the 'PayablesDataSet.Terms'
 'table. You can move, or remove it, as needed.
 Me.TermsTableAdapter.Fill(Me.PayablesDataSet.Terms)
End Sub

Private Sub TermsBindingNavigatorSaveItem_Click(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles TermsBindingNavigatorSaveItem.Click
 Me.Validate()
 Me.TermsBindingSource.EndEdit()
 Me.TermsTableAdapter.Update(Me.PayablesDataSet.Terms)
End Sub

The syntax of the Fill method
TableAdapter.Fill(DataSet.TableName)

The syntax of the Update method
TableAdapter.Update(DataSet.TableName)

Description
• Visual Studio automatically generates the code shown above and places it in the source

code file when you drag a data source onto a form. If necessary, you can edit this code.

• The generated code uses the Fill and Update methods of the TableAdapter object that’s
generated for the table to read data from and write data to the database. It also uses the
EndEdit method of the BindingSource object to save any changes that have been made to
the current row to the dataset.

• The Validate method causes the Validating and Validated events of the control that is
losing the focus to be fired. You can use the Validating event to perform any required
data validation for the form.

• Users of a DataGridView control can sort the rows by clicking on a column heading and
can size columns by dragging the column separators to the left or right.

Figure 3-9 A Terms Maintenance application that uses a DataGridView control

76 Section 1 An introduction to ADO.NET programming

How to change the controls associated with a
data source

If the DataGridView control isn’t appropriate for your application, you can
bind the columns of a data source to individual controls as shown in figure 3-10.
Here, the data source consists of several columns from the Vendors table.

To associate the columns in a table with individual controls, you select the
Details option from the drop-down list that’s available when you select the table
in the Data Sources window. This is illustrated in the first screen in this figure.
Then, if you drag that table from the Data Sources window onto a form, Visual
Studio generates a label and a bound control for each column in the table.

For most string and numeric columns, Visual Studio generates a TextBox
control. That’s the case for the Vendors table, as you’ll see in the next figure. If
you want to change the type of control that’s associated with a column, though,
you can select the column in the Data Sources window and then use the drop-
down list that’s displayed to select a different type of control. You can see the
list of controls that are available in the second screen in this figure.

Chapter 3 How to work with data sources and datasets 77

How to change the default control for a data table

How to change the default control for a column in a data table

Description
• By default, a data table is associated with a DataGridView control. To change this default

so that each column in the table is displayed in a separate control, select the Details
option from the drop-down list for the table.

• By default, most string and numeric columns within a data table are associated with the
TextBox control. To change this default, select the type of control you want to use from
the drop-down list for the column.

Figure 3-10 How to change the controls associated with a data source

78 Section 1 An introduction to ADO.NET programming

How to generate detail controls from a data
source

If you change the control type that’s associated with a table from
DataGridView to Details and then drag that table from the Data Sources win-
dow onto a form, Visual Studio will add the appropriate controls to the form as
shown in figure 3-11. In addition, it will bind those controls to the appropriate
columns in the table, and it will add a Label control for each column to identify
it. In this figure, for example, you can see that Visual Studio added a TextBox
control and a Label control for each of the seven columns in the Vendors table.
In addition, it added DataSet, BindingSource, TableAdapter, and
BindingNavigator objects, plus a binding navigator toolbar, just as it does when
you generate a DataGridView control.

Notice that when you use text boxes to work with the data in a table, only
one row of the table is displayed at a time. Then, Visual Studio uses simple data
binding to bind each text box to a single column value. To do that, it sets the
Text property in the DataBindings collection to the name of the data column
that the control is bound to. In this figure, for example, you can see the drop-
down list for the Text property of the DataBindings collection. It shows that the
Vendor ID text box is bound to the VendorID column of the
VendorsBindingSource object.

Once the labels and text boxes are displayed on the form, you can use
standard skills for editing the labels and text boxes to get the form to work
correctly. For example, if you want to change the text that’s displayed in a label,
you can select the label and edit its Text property. If you don’t want the user to
be able to enter data for a particular column, you can change the ReadOnly
property of the text box to True. Or, if you don’t want to display a column, you
can delete the label and text box for that column.

Alternatively, instead of dragging the entire table onto the form, you can
drag just the columns you want. In addition, if you want to create a read-only
form, you can edit the BindingNavigator toolbar to remove its Add, Delete, and
Save buttons. You’ll learn how to do that in the next chapter.

Chapter 3 How to work with data sources and datasets 79

A form after the Vendors table has been dragged onto it

Description
• When you drag a table whose columns are associated with individual controls to a form,

Visual Studio automatically adds the controls along with labels that identify the columns.
It also adds a binding navigator toolbar and the objects for working with the bound data
just as it does for a DataGridView control.

• To display the value of a column in a text box, Visual Studio sets the Text property in the
DataBindings collection to the name of the data column. This is known as simple data
binding because the control is bound to a single column value. To change the binding,
you can use the drop-down list for the Text property as shown above.

Note
• When you drag individual controls to a form, don’t drop them at the top of the form. If

you do, the toolbar will overlay the first label and text box and make them difficult to
move.

Figure 3-11 How to generate detail controls from a data source

80 Section 1 An introduction to ADO.NET programming

A Vendor Maintenance application that uses
TextBox controls

Figure 3-12 shows the user interface for a Vendor Maintenance application
that uses the Label and TextBox controls shown in the previous figure. How-
ever, I rearranged and made several changes to those controls.

First, I changed the label for the Address1 text box to “Address:” and I
removed the label from the Address2 text box. Next, I changed the sizes of the
text boxes so that they are appropriate for the data they will be used to display.
Finally, I changed the ReadOnly property of the VendorID text box to True so
the user can’t enter data into this control, and I change the TabStop property of
this text box to False so that it isn’t included in the tab sequence.

This figure also shows the code for the Vendor Maintenance application. If
you compare this code with the code for the Terms Maintenance application in
figure 3-9, you’ll see that it’s almost identical. The only difference is that the
code for the Vendor Maintenance application works with the Vendors table,
table adapter, and binding source instead of the Terms table, table adapter, and
binding source.

Chapter 3 How to work with data sources and datasets 81

The user interface for the Vendor Maintenance application

The code for the application
Public Class Form1

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'TODO: This line of code loads data into the
 'PayablesDataSet.Vendors' table.
 'You can move, or remove it, as needed.
 Me.VendorsTableAdapter.Fill(Me.PayablesDataSet.Vendors)
 End Sub

 Private Sub VendorsBindingNavigatorSaveItem_Click(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles VendorsBindingNavigatorSaveItem.Click
 Me.Validate()
 Me.VendorsBindingSource.EndEdit()
 Me.VendorsTableAdapter.Update(Me.PayablesDataSet.Vendors)
 End Sub

End Class

Figure 3-12 A Vendor Maintenance application that uses TextBox controls

82 Section 1 An introduction to ADO.NET programming

How to handle data errors

When you develop an application that uses a data source, you’ll want to
provide code that handles any data errors that might occur. In general, those
errors fall into three categories: data provider errors, ADO.NET errors, and
errors that the DataGridView control detects. You’ll learn how to provide for
these errors in the topics that follow.

How to handle data provider errors

When you access a database, there is always the possibility that an unrecov-
erable error might occur. For example, the database server might be shut down
when you try to access it, or the network connection to the database server
might be broken. Either way, your applications should usually anticipate such
problems by catching any database exceptions that might occur.

Figure 3-13 shows the exceptions thrown by the .NET data providers when
an unrecoverable error occurs. You can refer to these errors as data provider
errors. As you can see, each data provider has its own exception class. So, if
you’re using the SQL Server data provider, you should catch exceptions of the
SqlException class. If you’re using the Oracle data provider, you should catch
exceptions of the OracleException class. And so on.

The code example in this figure shows how you can catch a SqlException
that might occur when attempting to fill a dataset using a table adapter. Here,
the shaded lines show the code that has been added to the generated code. This
code will display an error message when a SqlException occurs, and it uses the
Number and Message properties of the SqlException class to display details
about the exception. It also uses the GetType method to indicate the type of
exception that occurred.

Although it’s uncommon, more than one server error can occur as the result
of a single database operation. In that case, an error object is created for each
error. These objects are stored in a collection that you can access through the
Errors property of the exception object. Each error object contains a Number
and Message property just like the exception object. However, because the
Number and Message properties of the exception object are set to the Number
and Message properties of the first error in the Errors collection, you don’t
usually need to work with the individual error objects.

Chapter 3 How to work with data sources and datasets 83

.NET data provider exception classes
Name Description

SqlException Thrown if a server error occurs when accessing a SQL Server database.

OracleException Thrown if a server error occurs when accessing an Oracle database.

OdbcException Thrown if a server error occurs when accessing an ODBC database.

OleDbException Thrown if a server error occurs when accessing an OLE DB database.

Common members of the .NET data provider exception classes
Property Description

Number An error number that identifies the type of error.

Message A message that describes the error.

Source The name of the provider that generated the error.

Errors A collection of error objects that contain information about the errors that occurred
during a database operation.

Method Description

GetType() Gets the type of the current exception.

Code that catches a SQL exception
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Try
 Me.VendorsTableAdapter.Fill(Me.PayablesDataSet.Vendors)
 Catch ex As SqlException
 MessageBox.Show("SQL Server error # " & ex.Number _
 & ": " & ex.Message, ex.GetType.ToString)
 End Try
End Sub

Description
• Whenever the data provider (SQL Server, Oracle, ODBC, or OLE DB) encounters a

situation it can’t handle, a data provider exception is thrown. You can handle these types
of exceptions by catching them and displaying appropriate error messages.

• The Number and Message properties pinpoint the specific server error that caused the
data provider exception to be thrown.

• The SqlException class is stored in the System.Data.SqlClient namespace.

Figure 3-13 How to handle data provider errors

84 Section 1 An introduction to ADO.NET programming

How to handle ADO.NET errors

When you work with bound controls, ADO.NET errors can occur when the
data in those controls is saved to the dataset (not the database), or when an
Insert, Update, or Delete statement can’t be executed against the database.
Figure 3-14 presents some of the most common of those errors.

Here, ConstraintException and NoNullAllowedException are subclasses of
the DataException class, so you can catch either of these errors by catching
DataException errors. In contrast, DBConcurrencyException isn’t a subclass of
the DataException class, so you must catch DBConcurrencyException errors
separately. All of the ADO.NET exception classes are members of the
System.Data namespace.

The error-handling code in this figure catches errors caused by the EndEdit
method of a binding source and the Update method of a table adapter. The first
exception, DBConcurrencyException, occurs if the number of rows that are
affected by an insert, update, or delete operation is zero, which typically indi-
cates that concurrency errors have occurred. Then, a message box is used to
display an error message, and the Fill method of the table adapter is used to
retrieve the current data from the database and load it into the Vendors data
table. That will help prevent further concurrency errors from occurring.

Although you might think that a concurrency error would be generated by
the database rather than ADO.NET, that’s not the case. To understand why, you
need to remember that the Update and Delete statements that are generated for a
table adapter contain code that checks that a row hasn’t changed since it was
retrieved. But if the row has changed, the row with the specified criteria won’t
be found and the SQL statement won’t be executed. When the table adapter
discovers that the row wasn’t updated or deleted, however, it realizes there was
a concurrency error and throws an exception.

Like other exception classes provided by the .NET Framework, each
ADO.NET exception class has a Message property and a GetType method that
you can use to display information about the error. You can see how this prop-
erty and method are used in the second Catch block in this figure, which catches
any other ADO.NET exceptions that may occur. This Catch block displays a
dialog box that uses the Message property and the GetType method of the
DataException object to describe the error. Then, it uses the CancelEdit method
of the binding source to cancel the current edit operation.

Incidentally, to test your handling of concurrency exceptions, you can start
two instances of Visual Studio and run the same application from both of them.
Then, you can access and update the same row from both instances.

Chapter 3 How to work with data sources and datasets 85

Common ADO.NET exception classes
Class Description

DBConcurrencyException The exception that’s thrown by the data adapter if the number of rows affected
by an insert, update, or delete operation is zero. This exception is typically
caused by a concurrency violation.

DataException The general exception that’s thrown when an ADO.NET error occurs.

ConstraintException The exception that’s thrown if an operation violates a constraint. This is a
subclass of the DataException class.

NoNullAllowedException The exception that’s thrown when an add or update operation attempts to save
a null value in a column that doesn’t allow nulls. This is a subclass of the
DataException class.

Common members of the ADO.NET exception classes
Property Description

Message A message that describes the exception.

Method Description

GetType() Gets the type of the current exception.

Code that handles ADO.NET errors
Try
 Me.VendorsBindingSource.EndEdit()
 Me.VendorsTableAdapter.Update(Me.PayablesDataSet.Vendors)
Catch ex As DBConcurrencyException
 MessageBox.Show("A concurrency error occurred. " _
 & "The row was not updated.", "Concurrency Exception")
 Me.VendorsTableAdapter.Fill(Me.PayablesDataSet.Vendors)
Catch ex As DataException
 MessageBox.Show(ex.Message, ex.GetType.ToString)
 VendorsBindingSource.CancelEdit()
Catch ex As SqlException
 MessageBox.Show("SQL Server error # " & ex.Number _
 & ": " & ex.Message, ex.GetType.ToString)
End Try

Description
• An ADO.NET exception is an exception that occurs on any ADO.NET object. All of

these exceptions are members of the System.Data namespace.

• In most cases, you’ll catch specific types of exceptions if you want to perform special
processing when those exceptions occur. Then, you can use the DataException class to
catch other ADO.NET exceptions that are represented by its subclasses.

Figure 3-14 How to handle ADO.NET errors

86 Section 1 An introduction to ADO.NET programming

How to handle data errors for a DataGridView
control

Because the DataGridView control was designed to work with data sources,
it can detect some types of data entry errors before they’re saved to the dataset.
If, for example, a user doesn’t enter a value for a column that’s required by the
data source, or if a user tries to add a new row with a primary key that already
exists, the DataGridView control will raise the DataError event. Then, you can
code an event handler for this event as shown in figure 3-15.

The second parameter that’s received by this event handler has properties
you can use to display information about the error. The one you’ll use most
often is the Exception property, which provides access to the exception object
that was thrown as a result of the error. Like any other exception object, this
object has a Message property that provides a description of the error. You can
also use the RowIndex and ColumnIndex properties of the second parameter to
identify the row and column that caused the data error.

Chapter 3 How to work with data sources and datasets 87

An event of the DataGridView control
Event Description

DataError Raised when the DataGridView control detects a data error such as a value that isn’t in the
correct format or a null value where a null value isn’t valid.

Three properties of the DataGridViewDataErrorEventArgs class
Property Description

Exception The exception that was thrown as a result of the error. You can use the Message property of
this object to get additional information about the exception.

RowIndex The index for the row where the error occurred.

ColumnIndex The index for the column where the error occurred.

Code that handles a data error for a DataGridView control
Private Sub TermsDataGridView_DataError(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.DataGridViewDataErrorEventArgs) _
 Handles TermsDataGridView.DataError
 Dim row As Integer = e.RowIndex + 1
 Dim errorMessage As String = "A data error occurred." & vbCrLf _
 & "Row: " & row & vbCrLf _
 & "Error: " & e.Exception.Message
 MessageBox.Show(errorMessage, "Data Error")
End Sub

Description
• You can code an event handler for the DataError event of the DataGridView control to

handle any data errors that occur when working with the DataGridView control.

• You can use the Exception, RowIndex, and ColumnIndex properties of the second
parameter of the event handler to display a meaningful error message.

Figure 3-15 How to handle data errors for a DataGridView control

88 Section 1 An introduction to ADO.NET programming

How to use the Dataset Designer

The Dataset Designer lets you work with a dataset schema using a graphic
interface. In the topics that follow, you’ll learn three basic skills for working
with the Dataset Designer. Then, in chapter 5, you’ll learn some additional skills
for using this designer.

How to view the schema for a dataset

To learn more about a dataset, you can display its schema in the Dataset
Designer. In figure 3-16, for example, you can see the schema for the Payables
dataset used by the Vendor Maintenance application. For this simple applica-
tion, this dataset contains just the Vendors table since this is the only table used
by the application. The key icon in this table indicates that the VendorID column
is the primary key for the table.

For each table in a dataset, the dataset schema also includes a table adapter
that lists the queries that can be used with the table. Each table adapter includes
at least a main query named Fill that determines the columns that are used when
you drag the table from the Data Sources window. This query is also used to
generate the Insert, Update, and Delete statements for the table. In addition, the
table adapter includes any other queries you’ve defined for the table. You’ll
learn more about defining additional queries in the next two chapters.

If you click on a table adapter in the Dataset Designer, you’ll see that its
properties in the Properties window include the ADO.NET objects that the table
adapter defines. That includes a Connection object, as well as SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand objects. If you expand
any of these command objects, you can look at the CommandText property that
defines the SQL statement it executes. In this figure, for example, you can see
the beginning of the Select statement for the SelectCommand object that’s used
by the Fill query of the table adapter for the Vendors table. If you click on the
ellipsis button for this property, you can work with the query using the Query
Builder that’s described in chapter 5.

Note that the Dataset Designer also makes it easy to set the properties for a
column in a table that’s in the dataset. To do that, just select a column and use
the Properties window. For instance, you can use this technique to set the
DefaultValue property for a column in the dataset, which is something that you
often have to do.

Chapter 3 How to work with data sources and datasets 89

The schema displayed in the Dataset Designer

Description
• To view the schema for the dataset of a data source, double-click on the schema file for

the dataset (.xsd) in the Solution Explorer, or select the schema file and click the View
Designer button at the top of the Solution Explorer. The schema is displayed in the
Dataset Designer.

• To view the properties for a table adapter in the Properties window, select the table
adapter in the Dataset Designer. These properties include the Connection object that’s
used to connect to the database, and the SelectCommand, InsertCommand,
UpdateCommand, and DeleteCommand objects that are used to work with the data in the
database.

• For each table adapter, the query named Fill is the main query. This query determines the
columns that are used when you drag a table from the Data Sources window onto a form.
The Insert, Update, and Delete statements for the table are also based on this query.

• To view the properties for a query, select the query in the Dataset Designer.

• To work with the SQL statement in a CommandText property, you can click on the
ellipsis button that appears when that property is selected. This displays the statement in
the Query Builder, which you’ll learn about in chapter 5.

• To view and set the properties for a column in a table, select the column. This is an easy
way to set the DefaultValue property for a column.

Figure 3-16 How to view the schema for a dataset

90 Section 1 An introduction to ADO.NET programming

How to preview the data for a query

After you create a query, you can use the Dataset Designer to preview the
data it retrieves. To do that, you use the Preview Data dialog box as shown in
figure 3-17. Here, the data returned by the Fill query for the Vendors table
adapter is being previewed.

To preview the data for a query, you just click the Preview button. When
you do, the data will be displayed in the Results grid, and the number of col-
umns and rows returned by the query will be displayed just below the grid. In
this example, the query retrieved 7 columns and 122 rows.

In the next chapter, you’ll learn how to create queries that use parameters.
For those queries, you must enter a value for each parameter in the Value
column of the Parameters grid before you can preview its data. For example,
suppose you want to retrieve the data for a vendor with a specific vendor ID.
Then, you have to enter that vendor ID in the Parameters grid to retrieve the
data for that vendor.

Chapter 3 How to work with data sources and datasets 91

The Preview Data dialog box

Description
• To display the Preview Data dialog box for a query, right-click on the query in the

Dataset Designer and select the Preview Data command, or select the query and then use
the Data�Preview Data command.

• To preview the data, click the Preview button. When you do, the data will be displayed in
the Results grid, and the number of columns and rows returned by the query will be
displayed just below the Results grid.

• If a query requires parameters, you must enter a value for each parameter in the Value
column of the Parameters grid. See chapter 4 for more information on query parameters.

Figure 3-17 How to preview the data for a query

92 Section 1 An introduction to ADO.NET programming

How to interpret the generated SQL statements

The Fill method of a table adapter uses the SQL Select statement that’s
stored in the SelectCommand object for the Fill query of the table adapter to
retrieve data from a database. Similarly, the Update method of a table adapter
uses the SQL Insert, Update, and Delete statements that are stored in the
InsertCommand, UpdateCommand, and DeleteCommand objects of the table
adapter to add, update, and delete data from the database.

To help you understand what these statements do, figure 3-18 presents the
Select statement for the Vendor Maintenance form and the Insert and Update
statements that were generated from this statement. Although these statements
may look complicated, the information presented here will give you a good idea
of how they work.

To start, notice that the Insert statement is followed by a Select statement
that retrieves the row that was just added to the database. That may be necessary
in cases where the database generates some of the data for the new row. When a
vendor row is added to the database, for example, the database generates the
value of the VendorID column. Then, the Select statement in this figure uses the
SCOPE_IDENTITY function that you learned about in chapter 1 to retrieve the
row with this ID. For now, just realize that if the database doesn’t generate or
calculate any of the column values, this Select statement, as well as the one
after the Update statement, aren’t needed.

Also notice that the Update statement uses optimistic concurrency. (Al-
though the Delete statement isn’t shown here, it uses optimistic concurrency as
well.) Because of that, code is added to the Where clause of this statement to
check whether any of the column values have changed since they were retrieved
from the database. This code compares the current value of each column in the
database against the original value of the column, which is stored in the dataset.
If one or more columns can contain a null value, it also checks if both the
original value and the current value of those columns are null. That’s the case
for the Address2 column in the Vendors table. This is necessary because one
null value isn’t considered equal to another null value. Then, if none of the
values have changed, the operation is performed. Otherwise, it’s not.

Finally, notice that most of the statements in this figure use one or more
parameters. For example, parameters are used in the Values clause of the Insert
statement and the Set clause of the Update statement to refer to the current
values of the columns in the dataset. Parameters are also used in the Where
clause of the Update statement to refer to the original values of the columns in
the dataset. The wizard inserts these parameters when it creates the command
objects for a table adapter. Then, before each statement is executed, Visual
Studio substitutes the appropriate value for each variable.

This should give you more perspective on how the dataset is refreshed and
how optimistic concurrency is provided when you use ADO.NET. Because of
the disconnected data architecture, these features can’t be provided by the
database management system or by ADO.NET. Instead, they are provided by
the SQL statements that are generated by the Data Source Configuration Wiz-
ard.

Chapter 3 How to work with data sources and datasets 93

SQL that retrieves vendor rows
SELECT VendorID, Name, Address1, Address2, City, State, ZipCode
FROM Vendors

SQL that inserts a vendor row and refreshes the dataset
INSERT INTO Vendors
 (Name, Address1, Address2, City, State, ZipCode)
VALUES (@Name,@Address1,@Address2,@City,@State,@ZipCode);

SELECT VendorID, Name, Address1, Address2, City, State, ZipCode
FROM Vendors
WHERE (VendorID = SCOPE_IDENTITY())

SQL that updates a vendor row and refreshes the dataset
UPDATE Vendors
SET Name = @Name, Address1 = @Address1, Address2 = @Address2,
 City = @City, State = @State, ZipCode = @ZipCode
WHERE ((VendorID = @Original_VendorID) AND
 (Name = @Original_Name) AND (Address1 = @Original_Address1) AND
 (@IsNull_Address2 = 1) AND (Address2 IS NULL) AND
 (City = @Original_City) AND (State = @Original_State) AND
 (ZipCode = @Original_ZipCode)
 OR
 (VendorID = @Original_VendorID) AND
 (Name = @Original_Name) AND (Address1 = @Original_Address1) AND
 (Address2 = @Original_Address2) AND (City = @Original_City) AND
 (State = @Original_State) AND (ZipCode = @Original_ZipCode));

SELECT VendorID, Name, Address1, Address2, City, State, ZipCode
FROM Vendors
WHERE (VendorID = @VendorID)

Description
• By default, the Data Source Configuration Wizard adds code to the Where clause of the

Update and Delete statements that checks that the data hasn’t changed since it was
retrieved. (Although the Delete statement isn’t shown here, its Where clause is identical
to the Where clause of the Update statement.)

• By default, the Data Source Configuration Wizard adds a Select statement after the Insert
and Update statements to refresh the new or modified row in the dataset.

• If a column can contain a null value, code is added to the Where clause of the Update
and Delete statements that checks if both the original column value and the current value
of the column in the database are null. That’s necessary because two null values aren’t
considered equal.

• The SQL statements use parameters to identify the new values for an insert or update
operation. Parameters are also used for the original column values, which are used to
check that a row hasn’t changed for an update or delete operation. And one is used in the
Where clause of the Select statement after the Update statement to refer to the current
row. The values for these parameters are stored in and retrieved from the dataset.

Figure 3-18 How to interpret the generated SQL statements

94 Section 1 An introduction to ADO.NET programming

Perspective

Now that you’ve completed this chapter, you should be able to use a data
source to create simple applications that let you view and maintain the data in one
table of a database. That should give you some idea of how quickly and easily you
can create applications when you use the data source feature. And in the next two
chapters, you’ll learn how you can use data sources and datasets to build more
complex applications.

Terms

data source
schema
typed dataset
untyped dataset
binding a control
bound control

complex data binding
simple data binding
data provider error
ADO.NET error
Dataset Designer
main query

Before you do any of the exercises…
Before you do any of the exercises in this book, you need to download the
directories and files for this book from our web site and install them on your
PC. When you do, a directory named ADO.NET 2.0 VB will be created on
your C drive. This directory will contain the subdirectories and files you need
to do the exercises. For example, you can build the applications for this
chapter in the C:\ADO.NET 2.0 VB\Chapter 03 directory. You also need to
install SQL Server Express and attach the Payables database that you’ve
downloaded as explained in appendix A.

Exercise 3-1 Build a DataGridView application
In this exercise, you’ll build the application shown in figure 3-9. That will
show you how to build a simple application with data sources, a dataset, and a
GridView control.

Build the form and test it with valid data
1. Start a new application named TermsMaintenance in your chapter 3 directory,

and use the techniques in figures 3-1 through 3-8 to create the data source and
drag it onto the form. Then, adjust the size of the form and the DataGridView
control as needed, but don’t change anything else.

2. Test the application with valid data in three phases. First, sort the rows by
clicking on a column header, and size one of the columns by dragging its
column separator. Second, change the data in one column of a row, and move

Chapter 3 How to work with data sources and datasets 95

to another row to see that the data is changed in the dataset. Third, add a new
row with valid data in all columns, and move to another row to see that the row
has been added. At this point, the changes have been made to the dataset only,
not the database. Now, click the Save button to save the changes to the database.

Test the form with invalid data and provide exception handling
3. Test the application with invalid data by deleting the data in the Description

column of a row and moving to another row. This should cause a
NoNullAllowedException that’s automatically handled by the DataGridView
control so the application doesn’t crash.

4. Add an exception handler for the DataError event of a DataGridView control as
shown in figure 3-15. To start the code for that handler, click on the control,
click on the Events button in the Properties window, and double-click on the
DataError event. Then, write the code for the event, and redo the testing of step 3
to see how your code works.

5. When you’re through experimenting, end the application and close the project.

Exercise 3-2 Build an application with text
boxes

In this exercise, you’ll build the application shown in figure 3-12. That will
show you how to use data sources with controls like text boxes.

Build the form and test it with valid data
1. Start a new application named VendorMaintenance in your chapter 3 directory,

and create a data source for the fields in the Vendor table that are used by the
form in figure 3-12. Then, use the techniques in figures 3-10 and 3-11 to drag
the data source fields onto the form as text boxes. At this point, the form should
look like the one in figure 3-11.

2. Test the application with valid data in three phases. First, use the toolbar to
navigate through the rows. Second, change the data in one column of a row,
move to another row, and return to the first row to see that the data has been
changed in the dataset. Third, add a new row with valid data in all columns,
move to another row, and return to the added row to see that the row has been
added to the dataset. Now, click the Save button to save the dataset to the
database.

Test the form with invalid data and provide exception handling
3. Add a new row to the dataset, but don’t enter anything into the City field. Then,

click on the Save button. This should cause a NoNullAllowedException, since
City is a required field.

4. Add exception handling code for an ADO.NET DataException as shown in
figure 3-14 to catch this type of error. Then, run the application and redo the
testing of step 3 to see how this error is handled now.

96 Section 1 An introduction to ADO.NET programming

5. Delete the data in the Name column of a row, which means that the column
contains an empty string. Next, move to another row, and return to the first row
to see that the row has been accepted into the dataset. Then, click on the Save
button and discover that this doesn’t throw an exception because an empty
string isn’t the same as a null value. This indicates that data validation is
required because an empty string isn’t an acceptable value in the database. In
the next chapter, you’ll learn one way to provide data validation.

6. Adjust the controls on the form and any related properties so the form looks
like the one in figure 3-12. This should take just a minute or two.

Use the Dataset Designer
7. Use one of the techniques in figure 3-16 to view the schema for the dataset in

the Dataset Designer.

8. Click on the table adapter in the Dataset Designer and review its properties in
the Properties window. Then, look at the Select statement that’s used for getting
the data into the dataset. To do that, click on the plus sign in front of
SelectCommand, and click on the ellipsis button for CommandText. This opens
up the Query Builder, which you’ll learn about in chapter 5, and there you can
see the Select statement that’s used for getting the data into the dataset. Now,
close the Query Builder.

9. Right-click on the query in the Dataset Designer, and preview the data that will
be retrieved by that query as shown in figure 3-17.

10. When you’re through experimenting, end the application and close the project.

