
murach’s

TRAINING & REFERENCE

ADO.NET 2.0
database programming with

VB 2005VB 2005VB 2005VB 2005VB 2005

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2007 Mike Murach & Associates. All rights reserved.

(Chapter 2)
Thanks for downloading this chapter from Murach’s ADO.NET 2.0 Database Pro-
gramming with VB 2005. We hope it will show you how easy it is to learn from any
Murach book, with its paired-pages presentation, its “how-to” headings, its practical
coding examples, and its clear, concise style.

To view the full table of contents for this book, you can go to our web site. From there,
you can read more about this book, you can find out about any additional downloads
that are available, and you can review our other books on .NET development.

Thanks for your interest in our books!

http://www.murach.com/books/adv2/index.htm
http://www.murach.com/books/adv2/index.htm
http://www.murach.com
http://www.murach.com
mailto:murachbooks@murach.com


v

Contents
Introduction xiii

Section 1 An introduction to ADO.NET programming

Chapter 1 An introduction to database programming 3
Chapter 2 An introduction to ADO.NET 2.0 33
Chapter 3 How to work with data sources and datasets 57
Chapter 4 How to work with bound controls and parameterized queries 97
Chapter 5 How to use the Dataset Designer 143

Section 2 Three-layer Windows Forms applications

Chapter 6 How to work with commands and data readers 197
Chapter 7 How to work with parameters and stored procedures 221
Chapter 8 How to work with transactions 257
Chapter 9 How to work with object data sources 275
Chapter 10 A complete Payable Entry application 307

Section 3 ADO.NET and web applications

Chapter 11 How to use SQL data source controls 345
Chapter 12 How to use the GridView control 383
Chapter 13 How to use the DetailsView and FormView controls 427
Chapter 14 How to use object data sources 473

Section 4 Datasets and Windows Forms applications

Chapter 15 How to work with typed datasets and table adapters 523
Chapter 16 How to work with untyped datasets and data adapters 563
Chapter 17 How to work with data views and relationships 611

Section 5 Other data access skills

Chapter 18 How to work with XML data 635
Chapter 19 How to use the Server Explorer 673
Chapter 20 How to use Crystal Reports 697

Reference aids

Appendix A How to install and use the software and downloadable files 741
Index 748

Judy
Highlight



Chapter 2      An introduction to ADO.NET 2.0 33

2

An introduction to
ADO.NET 2.0
ADO.NET consists of a set of classes defined by the .NET Framework that you
can use to access the data in a database. The current version of ADO.NET is
ADO.NET 2.0, and that’s the version you’ll learn about in this book.

This chapter introduces you the primary ADO.NET classes that you’ll
use as you develop database applications with Visual Basic. This chapter also
introduces you to the two basic ways that you can develop database applica-
tions with ADO.NET.

If you’ve used ADO.NET 1.0, you’ll see that the classes that are included
in ADO.NET 2.0 have changed very little. But you’ll also see that the fea-
tures that Visual Studio provides for developing database applications with
ADO.NET 2.0 have changed a lot.

An overview of ADO.NET ..................................................... 34
How to use ADO.NET with datasets ............................................................ 34
Two ways to create the ADO.NET objects for working with datasets ......... 36
How to use ADO.NET without using datasets ............................................. 38
Concurrency and the disconnected data architecture ................................... 40

The ADO.NET data providers and their classes ................ 42
The .NET data providers .............................................................................. 42
The SqlConnection class .............................................................................. 44
The SqlCommand class ................................................................................ 44
The SqlDataAdapter class ............................................................................ 46
The SqlDataReader class .............................................................................. 46

ADO.NET datasets ................................................................ 48
How a dataset is organized ........................................................................... 48
The dataset classes ........................................................................................ 50

How ADO.NET applications are structured ....................... 52
How an application that uses datasets is structured ...................................... 52
How an application that uses business classes is structured ......................... 54

Perspective ............................................................................ 56



34 Section 1      An introduction to ADO.NET programming

An overview of ADO.NET

ADO.NET (ActiveX Data Objects .NET) is the primary data access API for
the .NET Framework. It provides the classes that you use as you develop
database applications with Visual Basic as well as the other .NET languages. In
the topics that follow, you’ll learn the two basic ways that you can use the
ADO.NET classes for accessing and updating the data in a database.

How to use ADO.NET with datasets

One way to develop database applications with ADO.NET is to use datasets.
With this approach, your application gets data from a database and stores it in a
dataset that is kept in cache memory on disk. Then, your application can add,
update, or delete rows in the dataset, and it can later save those changes from
the dataset to the database.

When you use this approach, your application uses the ADO.NET objects
shown in figure 2-1. To load data into a data table within a dataset, you use a
data adapter. Its main function is to manage the flow of data between a dataset
and a database. To do that, it uses commands that define the SQL statements to
be issued. The command for retrieving data, for example, typically defines a
Select statement. Then, the command connects to the database using a connec-
tion and passes the Select statement to the database. After the Select statement
is executed, the result set it produces is sent back to the data adapter, which
stores the results in the data table.

To update the data in a database, the data adapter determines which rows in
the data table have been inserted, updated, or deleted. Then, it uses commands
that define Insert, Update, and Delete statements for the data table to update the
associated rows in the database. Like the command that retrieves data from the
database, the commands that update the database use a connection to connect to
the database and perform the requested operation.

Note that the data in a dataset is independent of the database that the data
was retrieved from. In fact, the connection to the database is typically closed
after the data is retrieved from the database. Then, the connection is opened
again when it’s needed. Because of that, the application must work with the
copy of the data that’s stored in the dataset. The architecture that’s used to
implement this type of data processing is referred to as a disconnected data
architecture.

Although this approach is more complicated than a connected architecture,
it has several advantages. One advantage is that using a disconnected data
architecture can improve system performance due to the use of fewer system
resources for maintaining connections. Another advantage is that it makes
ADO.NET compatible with ASP.NET web applications, which are inherently
disconnected.



Chapter 2      An introduction to ADO.NET 2.0 35

Basic ADO.NET objects

Figure 2-1 How to use ADO.NET with datasets

Description
• A .NET data provider provides the classes that let you create the objects that you use to

retrieve data from a database and to store data in a database.

• One way to work with a database when you use ADO.NET is to retrieve data from a
database into a dataset and to store data from the dataset to the database.

• A dataset contains one or more data tables that store the data retrieved from the data-
base. Then, the application can work with the data in the data tables, and it can insert,
update, and delete rows in the data tables.

• To retrieve data from a database and store it in a data table, a data adapter object issues a
Select statement that’s stored in a command object. Next, the command object uses a
connection object to connect to the database and retrieve the data. Then, the data is
passed back to the data adapter, which stores the data in the dataset.

• To update the data in a database based on the data in a data table, the data adapter object
issues an Insert, Update, or Delete statement that’s stored in a command object. Then,
the command object uses a connection to connect to the database and update the data.

• When you use a data adapter to work with the data in a database, the data provider
remains connected to the database only long enough to retrieve or update the specified
data. Then, it disconnects from the database and the application works with the data via
the dataset object. This is referred to as a disconnected data architecture.

• The disconnected data architecture offers improved system performance due to the use
of fewer system resources for maintaining connections.

.NET data providerDataset

Data adapterData table

Command

Connection

Database server

Database



36 Section 1      An introduction to ADO.NET programming

Two ways to create the ADO.NET objects for
working with datasets

When you use datasets in your database applications, there are two basic
techniques you can use to create the ADO.NET objects that you need. Both are
illustrated in figure 2-2.

First, you can create the ADO.NET objects from a data source that’s shown
in the Data Sources window. Data sources are a new feature of .NET 2.0 that
makes it easy to create forms that work with the data in a data source such as a
database. In this example, the data source corresponds with the data in the
Terms table in the Payables database.

In the next chapter, you’ll learn how to create a data source. For now, you
should know that once you create a data source, you can drag it onto a form to
automatically add controls to the form and to create the ADO.NET objects for
working with the data in the data source.

In this figure, for example, you can see the controls and objects that are
generated when you drag the Terms table onto the form. Here, a DataGridView
control has been added to the form to display the terms in the Terms table, and a
toolbar has been added that lets you work with this data.

In addition, four objects have been added to the Component Designer tray
below the form. Two of these are ADO.NET objects. The first one, named
PayablesDataSet, defines the dataset for the form. Then, an object named
TermsTableAdapter defines the table adapter for the Terms table. Although a
table adapter is similar to a data adapter, it provides improved functionality,
including a built-in connection object and the ability to contain multiple queries.
You’ll learn more about table adapters in the next chapter.

The other two objects in the Component Designer tray are used to bind the
controls on the form to the data source. The first object, named
TermsBindingSource, identifies the Terms table as the data source for the
controls. The second object, named TermsBindingNavigator, defines the toolbar
that’s displayed across the top of the form.

Although you don’t usually need to change the properties of the objects in
the Component Designer tray, you should know that you can do that using the
same technique you use to change the properties of a control on a form. That is,
you just select an object to display its properties in the Properties window and
then work with them from there.

The second technique for creating the ADO.NET objects that you need for
using datasets is to write the code yourself. In this figure, for example, you can
see the code that creates four objects: a connection, a command named
selectCommand that contains a Select statement, a data adapter named
termsDataAdapter, and a dataset named termsDataSet.

Although creating ADO.NET objects through code is more time-consuming
than using data sources, it can help you do tasks that are difficult or impossible
to do with data sources. It can result in more compact and efficient code. And it
lets you encapsulate an application’s database processing in database classes.
You’ll learn more about this in section 4 of this book.



Chapter 2      An introduction to ADO.NET 2.0 37

Using the Data Sources window to create ADO.NET objects

Visual Basic code that creates ADO.NET objects
Dim connectionString As String _
    = "Data Source=localhost\SqlExpress;Initial Catalog=Payables;" _
    & "Integrated Security=True"
Dim connection As New SqlConnection(connectionString)

Dim selectStatement As String = "SELECT * FROM Terms"
Dim selectCommand As New SqlCommand(selectStatement, connection)

Dim termsDataAdapter As New SqlDataAdapter(selectCommand)

Dim termsDataSet As New DataSet

Description
• You can use the Data Sources window in Visual Studio to create a data source. Then,

you can drag the data source onto the form to automatically generate a table adapter
object and a dataset object.

• A table adapter is like a data adapter, but it has a built-in connection object, and it can
contain more than one query. You’ll learn how to work with table adapters in chapter 3.

• To create ADO.NET objects in code, you write declarations that identify the class each
object is created from. You’ll learn how to write code like this in section 4.

Figure 2-2 Two ways to create the ADO.NET objects for working with datasets



38 Section 1      An introduction to ADO.NET programming

How to use ADO.NET without using datasets

The second way to develop database applications is to work with the
database directly, without using datasets. This approach is illustrated in figure 2-
3. As you can see, you still use command and connection objects to access the
database. But instead of using a data adapter to execute the commands, you
execute the commands directly.

When you work this way, you have to provide the code that handles the
result of each command. If you issue a command that contains an Insert,
Update, or Delete statement, for example, the result is an integer that indicates
the number of rows that were affected by the operation. You can use that infor-
mation to determine if the operation was successful.

The code example in this figure illustrates how this works. Here, a com-
mand that inserts a row into the Terms table is created. In this case, the Insert
statement uses parameters to identify the column values that must be supplied.
Then, values are assigned to these parameters before the command is executed.
Finally, the connection is opened, the command is executed, and the connection
is closed.

If you execute a command that contains a Select statement, the result is a
result set that contains the rows you requested. To read through the rows in the
result set, you use a data reader object. Although a data reader provides an
efficient way of reading the rows in a result set, you can’t use it to modify those
rows. In addition, it only lets you read rows in a forward direction, so once you
read the next row, the previous row is unavailable. Because of that, you typically
use a data reader either to retrieve rows that are displayed in a control such as a
combo box, or to retrieve and work with a single database row at a time.



Chapter 2      An introduction to ADO.NET 2.0 39

ADO.NET components for accessing a database directly

Figure 2-3 How to use ADO.NET without using datasets

Code that creates and executes a command that inserts a row
Dim insertStatement As String _
    = "INSERT Terms (Description, DueDays) " _
    & "VALUES (@Description, @DueDays)"
Dim insertCommand As New SqlCommand(insertStatement, connection)
insertCommand.Parameters.AddWithValue("@Description", terms.Description)
insertCommand.Parameters.AddWithValue("@UnitPrice", terms.DueDays)
connection.Open()
Dim count As Integer = insertCommand.ExecuteNonQuery
connection.Close()

Description
• Instead of executing the commands associated with a data adapter to manage the flow of

data between a dataset and a database, you can execute those commands directly. When
you do that, you create and work with the ADO.NET objects through code.

• To retrieve data from a database, you execute a command object that contains a Select
statement. Then, the command object uses a connection to connect to the database and
retrieve the data. You can then read the results one row at a time using a data reader
object.

• To insert, update, or delete data in a database, you execute a command object that
contains an Insert, Update, or Delete statement. Then, the command object uses a
connection to connect to the database and update the data. You can then check the value
that’s returned to determine if the operation was successful.

.NET data provider

Data reader

Select command

Connection

Database server

Database

Insert, Delete, or
Update command



40 Section 1      An introduction to ADO.NET programming

Concurrency and the disconnected data
architecture

Although the disconnected data architecture has advantages, it also has
some disadvantages. One of those is the conflict that can occur when two or
more users retrieve and then try to update data in the same row of a table. This
is called a concurrency problem. This is possible because once a program
retrieves data from a database, the connection to that database is dropped. As a
result, the database management system can’t manage the update process.

To illustrate, consider the situation shown in figure 2-4. Here, two users
have retrieved the Vendors table from a database, so a copy of the Vendors table
is stored on each user’s PC. These users could be using the same program or
two different programs. Now, suppose that user 1 modifies the address in the
row for vendor 123 and updates the Vendors table in the database. And suppose
that user 2 modifies the phone number in the row for vendor 123 and then tries
to update the Vendors table in the database. What will happen? That will depend
on the concurrency control that’s used by the programs.

When you use ADO.NET, you have two choices for concurrency control.
First, you can use optimistic concurrency, which checks whether a row has been
changed since it was retrieved. If it has, the update or deletion will be refused
and a concurrency exception will be thrown. Then, the program should handle
the error. For example, it could display an error message that tells the user that
the row could not be updated and then retrieve the updated row so the user can
make the change again.

In contrast, the “last in wins” technique works the way its name implies.
Since no checking is done with this technique, the row that’s updated by the last
user overwrites any changes made to the row by a previous user. For the ex-
ample above, the row updated by user 2 will overwrite changes made by user 1,
which means that the phone number will be right but the address will be wrong.
Since errors like this corrupt the data in a database, optimistic concurrency is
used by most programs, which means that your programs have to handle the
concurrency exceptions that are thrown.

If you know that concurrency will be a problem, you can use a couple of
programming techniques to limit concurrency exceptions. If a program uses a
dataset, one technique is to update the database frequently so other programs
can retrieve the current data. The program should also refresh its dataset fre-
quently so it contains the recent changes made by other programs.

Another way to avoid concurrency exceptions is to retrieve and work with
just one row at a time. That way, it’s less likely that two programs will update
the same row at the same time. In contrast, if two programs retrieve the same
table, they will of course retrieve the same rows. Then, if they both update the
same row in the table, even though it may not be at the same time, a
concurrency exception will occur when they try to update the database.

Of course, you will understand and appreciate this more as you learn how to
develop your own database applications. As you develop them, though, keep in
mind that most applications are multi-user applications. That’s why you have to
be aware of concurrency problems.



Chapter 2      An introduction to ADO.NET 2.0 41

Two users who are working with copies of the same data

Figure 2-4 Concurrency and the disconnected data architecture

What happens when two users try to update the same row
• When two or more users retrieve the data in the same row of a database table at the same

time, it is called concurrency. Because ADO.NET uses a disconnected data architecture,
the database management system can’t prevent this from happening.

• If two users try to update the same row in a database table at the same time, the second
user’s changes could overwrite the changes made by the first user. Whether or not that
happens, though, depends on the concurrency control that the programs use.

• By default, ADO.NET uses optimistic concurrency. This means that the program checks
to see whether the database row that’s going to be updated or deleted has been changed
since it was retrieved. If it has, a concurrency exception occurs and the update or deletion
is refused. Then, the program should handle the exception.

• If optimistic concurrency isn’t in effect, the program doesn’t check to see whether a row
has been changed before an update or deletion takes place. Instead, the operation pro-
ceeds without throwing an exception. This is referred to as “last in wins” because the last
update overwrites any previous update. And this leads to errors in the database.

How to avoid concurrency errors
• For many applications, concurrency errors rarely occur. As a result, optimistic

concurrency is adequate because the users will rarely have to resubmit an update or
deletion that is refused.

• If concurrency is likely to be a problem, a program that uses a dataset can be designed so
it updates the database and refreshes the dataset frequently. That way, concurrency errors
are less likely to occur.

• Another way to avoid concurrency errors is to design a program so it retrieves and
updates just one row at a time. That way, there’s less chance that two users will retrieve
and update the same row at the same time.

Database server

DBMS

Vendors
table

User 2

Vendors
data table

User 1

Vendors
data table



42 Section 1      An introduction to ADO.NET programming

The ADO.NET data providers and their
classes

The .NET data providers provide the ADO.NET classes that you use for
connecting to and working directly with a database. That’s why these classes are
sometimes called the connected classes. In the topics that follow, you’ll learn
more about the data providers and the classes that they provide.

The .NET data providers

All .NET data providers include the core classes for creating the four types
of objects listed in the first table in figure 2-5. You’ve already learned the basic
functions of these classes, and you’ll learn more about these classes throughout
this book.

The second table in this figure lists the four data providers that come with
the .NET Framework. The SQL Server data provider is designed to provide
efficient access to a Microsoft SQL Server database. The OLE DB data provider
is a generic data provider that can access any database that supports the industry
standard OLE DB interface. The ODBC provider lets you access any database
that can work with ODBC, another industry standard database interface. And
the Oracle provider lets you access data that’s stored in Oracle databases.
Although you can use the OLE DB data provider to access a SQL Server
database, you shouldn’t do that unless you plan on migrating the data to another
database since the SQL Server data provider is optimized for accessing SQL
Server data.

Besides the providers that come with the .NET Framework, several database
vendors have developed .NET data providers that are optimized for use with
their databases. For example, .NET data providers are available for the popular
MySQL and Sybase databases as well as for a variety of other databases. Before
you develop an application using the OLE DB provider, then, you should check
with your database vendor to see if a specialized .NET data provider is avail-
able.

The third table in this figure lists the names of the classes you use to create
objects using the SQL Server, OLE DB, ODBC, and Oracle providers. Notice
that these classes use prefixes (“Sql,” “OleDb,” “Odbc,” and “Oracle”) to
indicate which provider each class belongs to.

When you develop a Visual Basic application that uses ADO.NET, you’ll
want to add an Imports statement for the namespace that contains the data
provider classes at the beginning of each source file that uses those classes. That
way, you won’t have to qualify the references to these classes. These
namespaces are listed in the second table in this figure.

Now that you’re familiar with the core classes of the four .NET data provid-
ers that come with the .NET Framework, the next four topics describe the
classes of the SQL Server data provider in more detail. You should realize,
though, that the information presented in these topics applies to the classes of
the other data providers as well.



Chapter 2      An introduction to ADO.NET 2.0 43

.NET data provider core objects
Object Description

Connection Establishes a connection to a database.

Command Represents an individual SQL statement or stored procedure that can be executed against
the database.

Data reader Provides read-only, forward-only access to the data in a database.

Data adapter Provides the link between the command and connection objects and a dataset object.

Data providers included with the .NET framework
Provider Namespace Description

SQL Server System.Data.SqlClient Lets you access SQL Server databases.

OLE DB System.Data.OleDb Lets you access any database that supports OLE DB.

ODBC System.Data.Odbc Lets you access any database that supports ODBC.

Oracle System.Data.OracleClient Lets you access Oracle databases.

Class names for the data providers
Object SQL Server OLE DB ODBC Oracle

Connection SqlConnection OleDbConnection OdbcConnection OracleConnection

Command SqlCommand OleDbCommand OdbcCommand OracleCommand

Data reader SqlDataReader OleDbDataReader OdbcDataReader OracleDataReader

Data adapter SqlDataAdapter OleDbDataAdapter OdbcDataAdapter OracleDataAdapter

An Imports statement for the SQL Server data provider namespace
Imports System.Data.SqlClient

Description
• The .NET data providers provide the ADO.NET classes that are responsible for working

directly with a database. In addition to the core classes shown above, classes are pro-
vided for other functions such as passing parameters to commands and working with
transactions.

• To use a .NET data provider in an application, you should add an Imports statement for
the appropriate namespace at the beginning of the source file. Otherwise, you’ll have to
qualify each class you refer to with the SqlClient, OleDb, Odbc, or OracleClient
namespace since these namespaces aren’t included as references by default.

• Other .NET data providers are available to provide efficient access to non-Microsoft
databases such as MySQL, Sybase, PostgreSQL, and IBM DB2.

• All of the ADO.NET objects are implemented by classes in the System.Data namespace
of the .NET Framework. However, the specific classes used to implement the connec-
tion, command, data reader, and data adapter objects depend on the .NET data provider
you use.

Figure 2-5 The .NET data providers



44 Section 1      An introduction to ADO.NET programming

The SqlConnection class

Before you can access the data in a database, you have to create a connec-
tion object that defines the connection to the database. To do that, you use the
SqlConnection class presented in figure 2-6.

The most important property of the SqlConnection class is
ConnectionString. A connection string is a text string that provides the informa-
tion necessary to establish a connection to a database. That means it includes
information such as the name of the database you want to access and the
database server that contains it. It can also contain authentication information
such as a user ID and password.

The two methods of the SqlConnection class shown in this figure let you
open and close the connection. In general, you should leave a connection open
only while data is being retrieved or updated. That’s why when you use a data
adapter, the connection is opened and closed for you. In that case, you don’t
need to use the Open and Close methods.

The SqlCommand class

To execute a SQL statement against a SQL Server database, you create a
SqlCommand object that contains the statement. Figure 2-6 presents the
SqlCommand class you use to create this object. Notice that the Connection
property of this class associates the command with a SqlConnection object, and
the CommandText property contains the SQL statement to be executed.

The CommandType property indicates how the command object should
interpret the value of the CommandText property. Instead of specifying a SQL
statement for the CommandText property, for example, you can specify the
name of a stored procedure. If you specify a SQL statement, you set the value of
the CommandType property to CommandType.Text. If you specify the name of
a stored procedure, you set it to CommandType.StoredProcedure.

Earlier in this chapter, you learned that you can use a data adapter to
execute command objects. In addition, you can execute a command object
directly using one of the three Execute methods shown in this figure. If the
command contains a Select statement, for example, you can execute it using
either ExecuteReader or ExecuteScalar. If you use ExecuteReader, the results
are returned as a DataReader object. If you use ExecuteScalar, only the value in
the first column and row of the query results is returned. You’re most likely to
use this method with a Select statement that returns a single summary value or
the value of an identify column for a row that was just inserted into the data-
base.

If the command contains an Insert, Update, or Delete statement, you’ll use
the ExecuteNonQuery method to execute it. This method returns an integer
value that indicates the number of rows that were affected by the command. For
example, if the command deletes a single row, the ExecuteNonQuery method
returns 1.



Chapter 2      An introduction to ADO.NET 2.0 45

Common properties and methods of the SqlConnection class
Property Description

ConnectionString Contains information that lets you connect to a SQL Server database. The connection
string includes information such as the name of the server, the name of the database, and
login information.

Method Description

Open Opens a connection to a database.

Close Closes a connection to a database.

Common properties and methods of the SqlCommand class
Property Description

Connection The SqlConnection object that’s used by the command to connect to the database.

CommandText The text of the SQL command or the name of a stored procedure.

CommandType A constant in the CommandType enumeration that indicates whether the CommandText
property contains a SQL statement (Text) or the name of a stored procedure
(StoredProcedure).

Parameters The collection of parameters used by the command.

Method Description

ExecuteReader Executes a query and returns the result as a SqlDataReader object.

ExecuteNonQuery Executes the command and returns an integer representing the number of rows affected.

ExecuteScalar Executes a query and returns the first column of the first row returned by the query.

Description
• Each command object is associated with a connection object through the command’s

Connection property. When a command is executed, the information in the
ConnectionString property of the connection object is used to connect to the database.

• When you use a data adapter to work with a database, the connection is opened and
closed automatically. If that’s not what you want, you can use the Open and Close
methods of the connection object to open and close the connection.

• You can use the three Execute methods of a command object to execute the SQL state-
ment it contains. You can also execute the SQL statement in a command object using
methods of the data adapter. See figure 2-7 for more information.

Figure 2-6 The SqlConnection and SqlCommand classes



46 Section 1      An introduction to ADO.NET programming

The SqlDataAdapter class

As you have learned, the job of a data adapter is to provide a link between a
database and a dataset. The four properties of the SqlDataAdapter class listed in
figure 2-7, for example, identify the four SQL commands that the data adapter
uses to transfer data from the database to the dataset and vice versa. The
SelectCommand property identifies the command object that’s used to retrieve
data from the database. And the DeleteCommand, InsertCommand, and
UpdateCommand properties identify the commands that are used to update the
database based on changes made to the data in the dataset.

To execute the command identified by the SelectCommand property and
place the data that’s retrieved in a dataset, you use the Fill method. Then, the
application can work with the data in the dataset without affecting the data in
the database. If the application makes changes to the data in the dataset, it can
use the data adapter’s Update method to execute the commands identified by the
DeleteCommand, InsertCommand, and UpdateCommand properties and post
the changes back to the database.

The SqlDataReader class

A data reader provides an efficient way to read the rows in a result set
returned by a database query. In fact, when you use a data adapter to retrieve
data, the data adapter uses a data reader to read through the rows in the result set
and store them in a dataset.

A data reader is similar to other types of readers you may have encountered
in the .NET Framework, such as a TextReader, a StreamReader, or an
XmlReader. Like these other readers, a data reader lets you read rows but not
modify them. In other words, a data reader is read-only. In addition, it only lets
you read rows in a forward direction. Once you read the next row, the previous
row is unavailable.

Figure 2-7 lists the most important properties and methods of the
SqlDataReader class. You use the Read method to read the next row of data in
the result set. In most cases, you’ll code the Read method in a loop that reads
and processes rows until the end of the data reader is reached.

To access a column of data from the current row of a data reader, you use
the Item property. To identify the column, you can use either its index value like
this:

drVendors.Item(0)

or its name like this:
drVendors.Item("Name")

Since Item is the default property, you can also omit it like this:
drVendors("Name")



Chapter 2      An introduction to ADO.NET 2.0 47

Common properties and methods of the SqlDataAdapter class
Property Description

SelectCommand A SqlCommand object representing the Select statement or stored procedure used to
query the database.

DeleteCommand A SqlCommand object representing the Delete statement or stored procedure used to
delete a row from the database.

InsertCommand A SqlCommand object representing the Insert statement or stored procedure used to
add a row to the database.

UpdateCommand A SqlCommand object representing the Update statement or stored procedure used to
update a row in the database.

Method Description

Fill Executes the command identified by the SelectCommand property and loads the result
into a dataset object.

Update Executes the commands identified by the DeleteCommand, InsertCommand, and
UpdateCommand properties for each row in the dataset that was deleted, added, or
updated.

Common properties and methods of the SqlDataReader class
Property Description

Item Accesses the column with the specified index or name from the current row.

FieldCount The number of columns in the current row.

Method Description

Read Reads the next row. Returns True if there are more rows. Otherwise, returns False.

Close Closes the data reader.

Description
• When the Fill method of a data adapter is used to retrieve data from a database, the data

adapter uses a data reader to load the results into a dataset. If you don’t use a dataset, you
can work with a data reader directly.

• A data reader provides read-only, forward-only access to the data in a database. Because
it doesn’t require the overhead of a dataset, it’s more efficient than using a data adapter.
However, it can’t be used to update data. To do that, you have to use other techniques.

Figure 2-7 The SqlDataAdapter and SqlDataReader classes



48 Section 1      An introduction to ADO.NET programming

ADO.NET datasets

Unlike the .NET data providers that provide the connected classes for
accessing the data in a database, an ADO.NET dataset provides the discon-
nected classes for working with the data in a database. In the next two topics,
you’ll learn how a dataset is organized, and you’ll get an overview of the classes
you use to define dataset objects.

How a dataset is organized

Figure 2-8 illustrates the basic organization of an ADO.NET dataset. The
first thing you should notice in this figure is that a dataset is structured much
like a relational database. It can contain one or more tables, and each table can
contain one or more columns and rows. In addition, each table can contain one
or more constraints that can define a unique key within the table or a foreign
key of another table in the dataset. If a dataset contains two or more tables, the
dataset can also define the relationships between those tables.

Although a dataset is structured much like a relational database, it’s impor-
tant to realize that each table in a dataset corresponds to the result set that’s
returned from a Select statement, not necessarily to an actual table in a data-
base. For example, a Select statement may join data from several tables in a
database to produce a single result set. In this case, the table in the dataset
would represent data from each of the tables involved in the join.

You should also know that each group of objects in the diagram in this
figure is stored in a collection. All of the columns in a table, for example, are
stored in a collection of columns, and all of the rows are stored in a collection of
rows. You’ll learn more about these collections in the next figure and in later
chapters.



Chapter 2      An introduction to ADO.NET 2.0 49

The basic dataset object hierarchy

Figure 2-8 How a dataset is organized

Description
• A dataset object consists of a hierarchy of one or more data table and data relation

objects.

• A data table object consists of one or more data column objects and one or more data
row objects. The data column objects define the data in each column of the table, includ-
ing its name, data type, and so on, and the data row objects contain the data for each row
in the table.

• A data table can also contain one or more constraint objects that are used to maintain the
integrity of the data in the table. A unique key constraint ensures that the values in a
column, such as the primary key column, are unique. And a foreign key constraint
determines how the rows in one table are affected when corresponding rows in a related
table are updated or deleted.

• The data relation objects define how the tables in the dataset are related. They are used to
manage constraints and to simplify the navigation between related tables.

• All of the objects in a dataset are stored in collections. For example, the data table
objects are stored in a data table collection, and the data row objects are stored in a data
row collection. You can refer to these collections through the properties of the containing
objects.

Dataset

Data table

Data column

Data relation

Data row Constraint



50 Section 1      An introduction to ADO.NET programming

The dataset classes

Figure 2-9 presents some of the properties and methods of the four main
classes that you use to work with a dataset: DataSet, DataTable, DataColumn,
and DataRow. As you saw in the previous figure, the objects you create from
these classes form a hierarchy where each dataset can contain one or more
tables and each table can contain one or more rows and one or more columns.

Because of that, a dataset contains a Tables property that provides access to
the collection of tables in the dataset. Similarly, a data table contains a Columns
property and a Rows property that provide access to the collections of columns
and rows in the table. These are the properties you’re most likely to use as you
work with these objects.

Although they’re not shown in this figure, the collections you refer to
through the Tables property of a dataset and the Columns and Rows properties
of a data table have properties and methods of their own. For instance, each
collection has a Count property that you can use to determine how many items
are in the collection. To get the number of tables in a dataset named
payablesDataSet, for example, you can use code like this:

payablesDataSet.Tables.Count()

To access a specific item in a collection, you use the Item property. On that
property, you specify the index value or name of the item you want to access. To
access the Vendors table in payablesDataSet, for example, you can use code like
this:

payablesDataSet.Tables.Item("Vendors")

Since Item is the default property of the collection class, however, you typically
omit it like this:

payablesDataSet.Tables("Vendors")

The code in this figure shows how you can use a For Each…Next statement
to loop through the items in a collection. Here, the statement loops through the
rows in the Vendors table. To do that, it uses a variable that’s declared as a
DataRow object. Then, the For Each…Next statement uses this variable to
retrieve the value of the Name column in each row. You can use similar code to
loop through the columns in a table or the tables in a dataset.



Chapter 2      An introduction to ADO.NET 2.0 51

Common properties of the DataSet class
Property Description

DataSetName The name of the dataset.

Tables A collection of the DataTable objects contained in the dataset.

Relations A collection of the DataRelation objects contained in the dataset.

Common properties and methods of the DataTable class
Property Description

TableName The name of the table.

Columns A collection of the DataColumn objects contained in the data table.

Rows A collection of the DataRow objects contained in the data table.

Constraints A collection of the Constraint objects contained in the data table.

Method Description

NewRow Creates a new row in the table.

Common properties of the DataColumn class
Property Description

ColumnName The name of the column.

AllowDBNull Indicates whether the column allows null values.

AutoIncrement Indicates whether the column is an auto-increment column, which is similar to an identity
column in SQL Server.

Common properties and methods of the DataRow class
Property Description

Item Accesses the specified column of the row.

IsNull Indicates whether the specified column contains a null value.

Method Description

Delete Deletes a row.

Code that refers to the rows collection in the tables collection of a dataset
Dim message As String
For Each dr As DataRow In vendorsDataSet.Tables("Vendors").Rows
    message &= dr.Item("Name") & vbCrLf
Next
MessageBox.Show(message)

Description
• You’ll use the properties and methods of the dataset classes most often when you work

with ADO.NET objects through code. You’ll learn more about this in section 4.

• Each collection of objects has properties and methods that you can use to work with the
collection.

Figure 2-9 The DataSet, DataTable, DataColumn, and DataRow classes



52 Section 1      An introduction to ADO.NET programming

How ADO.NET applications are
structured

As you saw earlier in this chapter, you can use two basic techniques to
retrieve and work with the data in a database. With the first technique, you use a
data adapter to retrieve the data and store it in a dataset and to update the
database with changes made to the dataset. With the second technique, you
work with the database by executing command objects directly, and you work
with result sets using a data reader. In the next two topics, you’ll see how the
structures of applications that use these two techniques differ.

How an application that uses datasets is
structured

When you develop an application that uses datasets, it typically consists of
the two layers shown in figure 2-10. The first layer, called the presentation
layer, consists of the form classes that display the user interface, plus the dataset
classes used by the application. When you use a data source as shown in figure
2-2, for example, the application includes a dataset class that defines the tables
and columns in the data source. Then, you can use the objects that are created
when you drag the data source to a form for working with the data in the dataset
that’s created.

The second layer, called the database layer, always includes the database
itself. In addition, this layer can include database classes that provide the data
access required by the application. These classes typically include methods that
connect to the database and retrieve, insert, add, and delete information from the
database. Then, the presentation layer can call these methods to access the
database, leaving the details of database access to the database classes.

Please note, however, that you can’t use database classes when you develop
an application by using a data source. That’s because the table adapter object
that you use to work with the database is generated for you as part of the
presentation layer. As a result, all of the code in an application like this is
typically stored in the presentation layer.

The primary benefit of using data sources and datasets is rapid application
development. This is especially useful for developing small, relatively simple
applications and for prototyping larger applications. As an application gets more
complicated, though, so does the use of data sources and datasets. So at some
point, it often makes sense to use a three-layer architecture as shown in the next
figure.

In case you aren’t familiar with the term prototyping, it refers to quickly
developing a working model of an application that can be reviewed by the
intended users. Then, the users can point out what’s wrong with the prototype or
what they want changed, and the prototype can be changed accordingly. When
the users agree that the prototype does or will do everything that they want, the
application can be completely rewritten, often with a three-layer architecture.



Chapter 2      An introduction to ADO.NET 2.0 53

The architecture of an application that uses datasets

Figure 2-10 How an application that uses datasets is structured

Description
• When you use a dataset to store the data that’s retrieved from a database, the application

is typically separated into two layers: the presentation layer and the database layer.

• The presentation layer consists of the forms that provide the application’s user interface.
In addition, this layer contains the dataset classes that define the data that the forms can
use.

• The database layer consists of the database itself, and it can also include database
classes that provide the methods for retrieving and updating the database for the
application.

• If you create ADO.NET objects using a data source, you won’t be able to use database
classes in the database layer. If you create ADO.NET objects through code, you will be
able to use database classes in the database layer, although that isn’t a common practice.

Main Windows
form class

Presentation
layer

Other form
classes

Database
classes

(optional)
Database layer Database

Dataset
classes



54 Section 1      An introduction to ADO.NET programming

How an application that uses business classes is
structured

If you use commands and data readers to work with the data in a database
instead of using data sources and datasets, you can structure a database applica-
tion as shown in figure 2-11. This three-layer architecture includes a middle
layer that acts as an interface between the presentation and database layers. The
middle layer typically includes classes that correspond to business entities (for
example, vendors and invoices). When the classes represent business objects,
they are commonly called business classes.

When you use a three-layer architecture like this, all of the code that’s
related to database access is stored in classes in the database layer. Then, a form
class in the presentation layer can (1) call the methods of the database classes to
retrieve data from the database, (2) store the retrieved data in the related busi-
ness objects in the middle layer, and (3) display the data in these business
objects on the form. Similarly, when the user adds, updates, or deletes data in a
form, the form class in the presentation layer can (1) change the data in the
related business objects, and (2) call the methods of a database class to save the
changes to the database.

Although this approach to application development may seem complicated,
using an architecture like this has some distinct advantages. First, it is usually
easier to debug and maintain a three-layer application because you have com-
plete control over the code. In contrast, you are forced to rely on a large amount
of generated code when you use data sources and data sets.

Second, a three-layer architecture allows classes to be shared among
applications. In particular, the classes that make up the database and middle
layers can be placed in class libraries that can be used by more than on project.

Third, a three-layer architecture allows application development to be
spread among members of a development team. For instance, one group of
developers can work on the database layer, another group on the middle layer,
and a third group on the presentation layer.

Fourth, you can run different layers of an application on different servers to
improve performance. In that case, a three-layer architecture is often referred to
as a three-tier architecture. But often, these terms are used interchangeably
without implying how the layers are implemented in terms of hardware.

Finally, using a three-layer architecture makes it possible to use object data
sources. As you will see in chapter 9, object data sources are a new feature of
Visual Studio 2005 that lets you use database classes to get the data you need
for an application, store that data in business objects, and still get some of the
benefits that are associated with the use of data sources.



Chapter 2      An introduction to ADO.NET 2.0 55

The architecture of an application that uses business classes

Figure 2-11 How an application that uses business classes is structured

Description
• To simplify development and maintenance, many applications use a three-layer architec-

ture that includes a middle layer.

• The classes in the middle layer, sometimes called the business rules layer, act as an
interface between the classes in the presentation and database layers. These classes can
represent business entities, such as vendors or invoices, or they can implement business
rules, such as discount or credit policies.

• When the classes in the middle layer represent business entities, the classes can be
referred to as business classes, and the objects that are created from these classes can be
referred to as business objects.

• When you use business classes, you don’t use datasets. Instead, you use commands and
data readers to work directly with the database, and the data you retrieve from the
database is stored in business objects.

• Often, the classes that make up the database layer and the middle layer are implemented
in class libraries that can be shared among applications.

Main Windows
form class

Presentation
layer

Other form
classes

Business
classesMiddle layer

Database
classesDatabase layer Database



56 Section 1      An introduction to ADO.NET programming

Perspective

One of the goals of this chapter was to introduce you to the two ways that you
can develop ADO.NET applications: with datasets and without datasets. The other
goal was to introduce you to some of the classes that you’ll be using as you
develop ADO.NET applications.

With that as background, the next three chapters in this section will show you
how to build significant database applications by using data sources and datasets.
As you will see, this approach is especially useful for developing simple applica-
tions or prototyping larger applications. By chapter 5, though, you’ll start to see
some of the limitations of this approach.

Then, the five chapters in section 2 will show you how to build database
applications without using datasets. This approach lets you use the three-layer
architecture, which makes it easier to debug and maintain a complicated applica-
tion and also lets you reuse the code in the business and database classes. By the
time you finish section 2, you’ll know how to use both approaches to application
development, and you’ll have a good feel for when you should use each approach.

Terms

ADO.NET
ActiveX Data Objects
dataset
data table
data adapter
command
connection
disconnected data architecture
data source
Data Sources window
Component Designer tray
table adapter
data reader
concurrency
concurrency control
optimistic concurrency
concurrency exception
“last in wins”

.NET data provider
connected classes
connection string
disconnected class
data relation
data column
data row
constraint
presentation layer
database layer
prototyping
three-layer architecture
middle layer
business rules layer
business class
business object
class library
three-tier architecture




