
Code Snippets

Code snippets are small chunks of code that can be inserted into an application’s code base and
then customized to meet the application’s specific requirements. They are usually generic in
nature and serve one specific purpose. Code snippets do not generate full-blown applications or
whole form definitions — project and item templates are used for such purposes. Instead, code
snippets shortcut the programming task by automating frequently used code structures or obscure
program code blocks that are not easy to remember.

In this chapter you’ll see how code snippets have matured in Visual Studio 2005 to be powerful
tools that can improve coding efficiency enormously, particularly for programmers who perform
repetitive tasks with similar behaviors.

Code Snippets Revealed
Code snippet functionality has been around in many forms for a long time, but Microsoft has not
included it in their development environments natively until the release of Visual Studio 2005, pre-
ferring to let third parties create various add-ins for languages such as Visual Basic 6 and the early
versions of Visual Studio .NET.

Visual Studio 2005 marks the introduction of a proper code snippet feature built directly into the
IDE. It allows code snippets that include not only blocks of code, but also multiple sections of code
to be inserted in different locations within the module. In addition, a type of variable can be
defined that makes it clear to see what parts of the snippet are to be customized and what sections
can be left as is.

Original Code Snippets
The original code snippets from previous versions of Visual Studio were simple at best. These
snippets were used to store a block of plain text that could be then inserted into a code module
when desired. The process to create and use them was simple as well: Select a section of code and

27_598465 ch19.qxp 7/17/06 3:43 PM Page 243

drag it over to the Toolbox. This creates an entry for it in the Toolbox with a default name equal to the
first line of the code. You can rename it like any other element in the Toolbox, and to use it, simply drag
the code to the desired location in the Code view and release the left mouse button (see Figure 19-1).

Figure 19-1

Many speakers used this simple technology to more easily display large code blocks in presentations,
but in a real-world situation it was not as effective as it could have been, because often you had to
remember to use multiple items to generate code that would compile.

It was also hard to share these so-called snippets, and equally hard to modify them. Nevertheless, this
method of keeping small sections of code is still available to programmers in Visual Studio 2005, and it
can prove useful when you don’t need a permanent record of the code, but rather want to copy a series
of code blocks for use immediately or in the near future.

“Real” Code Snippets
Now, in Visual Studio 2005, code snippet technology refers to something completely different. Code
snippets are XML-based files containing sections of code that can include not only normal source code,
but references and Imports statements and replaceable parameters as well.

244

Chapter 19

27_598465 ch19.qxp 7/17/06 3:43 PM Page 244

Visual Studio 2005 ships with many predefined code snippets in the three main languages — Visual
Basic, C#, and J#. These snippets are arranged hierarchically in a logical fashion so that you can easily
locate the appropriate snippet. Rather than locate the snippet in the Toolbox, you can use menu com-
mands or keyboard shortcuts to bring up the main list of groups.

New code snippets can be created to automate almost any coding task and then stored in this code snip-
pet library. Because each snippet is stored in a special XML file, you can even share them with other
developers.

Using Snippets in Visual Basic
Code snippets are a natural addition to the Visual Basic developer’s toolset. They provide a shortcut
way to insert code that either is difficult to remember or is used often with minor tweaks. One common
problem some programmers have is remembering the correct references and Imports statements
required to get a specific section of code working properly; code snippets in Visual Basic solve this prob-
lem by including all the necessary associations as well as the actual code.

To use a code snippet you should first locate where you want the generated code to be placed in the pro-
gram listing and position the cursor at that point. You don’t have to worry about the associated refer-
ences and Imports statements, as they will be placed in the correct location.

There are three scopes under which a snippet can be inserted:

❑ CCllaassss DDeeccllaarraattiioonn:: The snippet will actually include a class declaration, so it should not be
inserted into an existing class definition.

❑ MMeemmbbeerr DDeeccllaarraattiioonn:: This snippet scope will include code that defines members, such as func-
tions and event handler routines. This means it should be inserted outside an existing member.

❑ MMeemmbbeerr BBooddyy:: This scope is for snippets that are inserted into an already defined member, such
as an event handler routine.

Once you’ve determined where the snippet is to be placed, the easiest way to bring up the Insert Snippet
dialog is to use the keyboard shortcut chord of Ctrl+K, Ctrl+X (remember that a chord is a way of string-
ing multiple keyboard shortcuts together). There are two alternative methods to start the Insert Snippet
process. The first is to right-click at the intended insertion point in the code window and select Insert
Snippet from the context menu that is displayed. The other option is to use the Edit➪IntelliSense➪Insert
Snippet menu command.

The Insert Snippet dialog is a special kind of IntelliSense (hence its location in the menu structure) that
appears inline in the code window. Initially it displays the words Insert Snippet along with a drop-down
list of code snippet groups from which to choose. Once you select the group that contains the snippet
you require, it will show you the list of snippets from which you simply double-click the one you need.

Because you can organize the snippet library into many levels, you may find that the snippet you need is
multiple levels deep in the Insert Snippet dialog. Figure 19-2 displays an Insert Snippet dialog in which
the user has navigated through two levels of groups and then located a snippet named Draw a Pie
Chart.

245

Code Snippets

27_598465 ch19.qxp 7/17/06 3:43 PM Page 245

Figure 19-2

Double-clicking this entry will tell Visual Studio 2005 that you want the snippet to be generated at the
current location. Figure 19-3 displays the result of selecting the Draw a Pie Chart snippet. This example
shows a snippet with member declaration scope because it adds the definition of two subroutines to the
code. To help you modify the code to your own requirements, the sections you would normally need to
change are highlighted (the default is a green background).

When changing the variable sections of the generated code snippet, Visual Studio helps you even fur-
ther. Select the first highlighted literal to be changed and enter the new value. Pressing the Tab key will
move to the next literal and highlight it, ready for you to override the value with your own. Shift+Tab
will navigate backward, so you have an easy way of accessing the sections of code that need changing
without needing to manually select the next piece to modify.

Some code snippets use the same variable for multiple pieces of the code snippet logic. This means
changing the value in one place will result in it changing in all other instances. A great example of this is
can be found by selecting Windows Forms Applications➪Forms➪Add a Windows Forms Control At
Run Time. The code that is generated through this snippet is shown in Figure 19-4, with all occurrences
of MyTest referring to the same variable. Changing the first instance of MyTest in the line Dim MyTest
As New TextBox() will result in the other two instances also changing automatically.

You might have noticed in Figure 19-2 that the tooltip text includes the words “Shortcut: drawPie.” This
text indicates that the selected code snippet has a text shortcut that you can use to automatically invoke
the code snippet behavior without bringing up the IntelliSense dialog.

246

Chapter 19

27_598465 ch19.qxp 7/17/06 3:43 PM Page 246

Figure 19-3

Of course, you need to know what the shortcut is before you can use this feature, but for those that you
are aware of, all you need to do is type the shortcut into the code editor and press the Tab key. In Visual
Basic the shortcut isn’t even case sensitive, so this example can be generated by typing the term “draw-
pie” and pressing Tab.

Figure 19-4

247

Code Snippets

27_598465 ch19.qxp 7/17/06 3:43 PM Page 247

Note that in some instances the IntelliSense engine may not recognize this kind of shortcut. If this hap-
pens to you, press Ctrl+Tab to force the IntelliSense to intercept the Tab key.

Using Snippets in C# and J#
The code snippets in C# and J# are not as extensive as those available for Visual Basic but are inserted in
the same way. Only Visual Basic supports the advanced features of the code snippet functionality, such
as references and Imports statements. First, locate the position where you want to insert the generated
code and then use one of the following methods:

❑ The keyboard chord Ctrl+K, Ctrl+X

❑ Right-click and choose Insert Snippet from the context menu

❑ Run the Edit➪IntelliSense➪Insert Snippet menu command

At this point, Visual Studio will bring up the Insert Snippet list for the current language, as Figure 19-5
shows. As you scroll through the list and hover the mouse pointer over each entry, a tooltip will be dis-
played to indicate what the snippet does.

Figure 19-5

Although the predefined C# and J# snippets are limited in nature, you can create more functional and
complex snippets for them.

248

Chapter 19

27_598465 ch19.qxp 7/17/06 3:43 PM Page 248

Creating Snippets Manually
Visual Studio 2005 does not ship with a code snippet creator or editor. During the development of the
IDE, Microsoft determined that a third-party tool, simply called the Snippet Editor, performed this func-
tionality well enough that there was no reason to include a built-in editor in the IDE. Later in this chap-
ter you’ll learn how to use the Snippet Editor to create your own snippets, but it’s worth taking a look at
how code snippets are structured by looking at the manual method of creating one.

Each code snippet is simply an individual XML file with a file extension of .snippet. The contents of
the file are written in plain text and follow the standard XML structure of a hierarchy of tags containing
attributes and values. The remainder of this section deals with the structure of the code snippet XML
schema.

Every snippet file must start with the CodeSnippets tag, identifying the namespace that defines the
code snippet schema. This is written in the following form:

<CodeSnippets
xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet”>

</CodeSnippets>

Within these tags, each snippet is defined using the CodeSnippet tag, which will in turn contain the
definition of the snippet itself:

<CodeSnippet Format=”1.0.0”>
</CodeSnippet>

Similar to HTML files, each code snippet has a header area and a body area, known as the Header and
Snippet, respectively. The Header area can contain any combination of three separate tags, each defin-
ing a different attribute of the snippet:

❑ Title: The name of the snippet

❑ Description: The description of the snippet

❑ Shortcut: A shortcut term used to insert the snippet automatically

The Header layout looks like the following:

<Header>
<Title>The Name Of The Snippet</Title>
<Description>The description of the snippet. (Optional)</Description>
<Shortcut>The shortcut for the snippet. (Optional)</Shortcut>

</Header>

Within the main Snippet tag you need to define the actual code to be inserted into the module. A Code
tag is included with an attribute of Language (containing VB, C#, or J# depending on the language for
which the snippet is intended). The actual code needs to be defined within a custom data tag with the
format <![CDATA[code]]>. For example, the most basic Snippet tag looks like this:

249

Code Snippets

27_598465 ch19.qxp 7/17/06 3:43 PM Page 249

<Snippet>
<Code Language=”VB”>
<![CDATA[The Code Goes Here]]>

</Code>
</Snippet>

In addition to this code, you can define references and Imports statements in Visual Basic code snip-
pets. Rather than insert the code at the selected entry point, Visual Studio will associate the references
correctly as well as place the Imports statements at the top of the code module. These are placed at the
top of the Snippet tag before the Code tag:

<Snippet>
<References>

<Reference>
<Assembly>AssemblyName.dll</Assembly>

</Reference>
</References>
<Imports>
<Import>
<Namespace>Namespace.Name</Namespace>

</Import>
</Imports>
<Code Language=”VB”>
<![CDATA[The Code Goes Here]]>

</Code>
</Snippet>

As shown in the preceding example, code snippets can also have variable sections marked with special
aliases so that the developer using the snippet knows which bits he or she should customize. To include
such an alias, you first need to define it using a Literal tag. The Literal tag structure consists of the
following:

❑ ID: An ID tag to uniquely identify the variable

❑ Type: The type of data to be inserted in this variable. This is optional.

❑ ToolTip: If defined, the user will see a tooltip containing this text. This is optional.

❑ Default: A default value to be placed in the automatically generated code. This is optional.

Following is a sample Literal tag:

<Literal>
<ID>MyID</ID>
<Type>String</Type>
<ToolTip>The tooltip text</ToolTip>
<Default>MyVarName</Default>

</Literal>

Object variables can also be included in the same way as literals, but use the Object tab instead.

To use Object and Literal aliases in the code to be inserted, enclose the ID of the required variable
with dollar signs ($) and include it at the intended location in the code. The following code includes ref-
erences to a literal and an object called controlName and controlType, respectively:

250

Chapter 19

27_598465 ch19.qxp 7/17/06 3:43 PM Page 250

<Code Language=”VB”>
<![CDATA[

Dim $controlName$ As $controlType$
]]>

</Code>

You can use the same variable multiple times in the code. When you change the value after the code is
generated, the code snippet IntelliSense engine will automatically update any other occurrences of the
Literal or Object with the new value.

The final code snippet structure appears like this:

<CodeSnippets
xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet”>

<CodeSnippet Format=”1.0.0”>
<Header>
<Title>The Name Of The Snippet</Title>
<Description>The description of the snippet. (Optional)</Description>
<Shortcut>The shortcut for the snippet. (Optional)</Shortcut>

</Header>
<Snippet>
<References>

<Reference>
<Assembly>AssemblyName.dll</Assembly>

</Reference>
</References>
<Imports>
<Import>
<Namespace>Namespace.Name</Namespace>

</Import>
</Imports>
<Literal>
<ID>MyID</ID>
<Type>String</Type>
<ToolTip>The tooltip text</ToolTip>
<Default>MyVarName</Default>

</Literal>
<Object>
<ID>MyType</ID>
<Type>Control</Type>
<ToolTip>The tooltip text</ToolTip>
<Default>Button</Default>

</Object>
<Code Language=”VB”>
<![CDATA[

Dim $myID$ As $MyType$
]]>

</Code>
</Snippet>

</CodeSnippet>
</CodeSnippets>

The best way to illustrate how code snippets can make your life easier is to walk through the creation of
a simple example, adding it to the code snippets library and then using it in code. This next exercise

251

Code Snippets

27_598465 ch19.qxp 7/17/06 3:43 PM Page 251

does just that, creating a snippet that in turn creates three subroutines, including a helper subroutine
that is intended to show the developer using the snippet how to call the functionality properly:

1. Start Notepad and add the following stub of XML (you’re using Notepad to show that code
snippets are simply XML written in plain text):

<?xml version=”1.0”?>
<CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet”>
<CodeSnippet Format=”1.0.0”>
</CodeSnippet>

</CodeSnippets>

2. The first task is to define the header information. This is what’s used to define the name of the
snippet in the snippet library, and it also enables you to define a shortcut and a brief description
of what the code snippet does. In between the CodeSnippet tags, insert the XML to create a
Header tag that contains Title, Description, and Shortcut tags, like so:

<?xml version=”1.0”?>
<CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet”>
<CodeSnippet Format=”1.0.0”>
<Header>
<Title>CreateAButtonSample</Title>
<Description>This snippet adds code to create a button control and

hook an event handler to it.</Description>
<Shortcut>createAButton</Shortcut>

</Header>
</CodeSnippet>

</CodeSnippets>

3. Now that the header information is present, you can begin creating the snippet itself. Start by
defining the Snippet tag with a Declaration section and the main Code tag, setting attributes
to VB (for Visual Basic) and method decl for the Kind so that Visual Studio knows that the
scope of this snippet is a member declaration:

<?xml version=”1.0”?>
<CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet”>
<CodeSnippet Format=”1.0.0”>
<Header>
<Title>CreateAButtonSample</Title>
<Description>This snippet adds code to create a button control and

hook an event handler to it.</Description>
<Shortcut>createAButton</Shortcut>

</Header>
<Snippet>
<Declarations>
</Declarations>
<Code Language=”VB” Kind=”method decl”>
</Code>

</Snippet>
</CodeSnippet>

</CodeSnippets>

4. Define the Literal tags for the Name and Text properties that will be used to customize the
button’s creation. These properties will be used in the Helper subroutine so you know what
you need to change to make the other subroutines work. Literal tags need an ID to identify

252

Chapter 19

27_598465 ch19.qxp 7/17/06 3:43 PM Page 252

the alias used in the code snippet; and they can have a default value as well as an explanatory
tooltip. You’ll use all three tags to create your Literal tags, which should be included in the
Declarations section:

<Declarations>
<Literal>
<ID>controlName</ID>
<ToolTip>The name of the button.</ToolTip>
<Default>”MyButton”</Default>

</Literal>
<Literal>
<ID>controlText</ID>
<ToolTip>The Text property of the button.</ToolTip>
<Default>”Click Me!”</Default>

</Literal>
</Declarations>

5. As mentioned earlier, the code to be inserted when this snippet is activated needs to be inserted
in a custom data tag in the following form:

<![CDATA[code goes here]]>

Type the following code in between the opening and closing Code tags. It defines the three sub-
routines and is straight Visual Basic code other than the use of the aliased Literal tags. Note
that these are enclosed by dollar signs ($) to tell Visual Studio that they are aliases — to use the
Literal controlName, the alias $controlName$ is used:

<Code Language=”VB” Kind=”method decl”>
<![CDATA[Private Sub CreateButtonHelper

CreateAButton($controlName$, $controlText$, Me)
End Sub

Private Sub CreateAButton(ButtonName As String, ButtonText As String, _
Owner As Form)
Dim MyButton As New Button

MyButton.Name = ButtonName
MyButton.Text = ButtonName
Owner.Controls.Add(MyButton)

MyButton.Top = 0
MyButton.Left = 0
MyButton.Text = ButtonText
MyButton.Visible = True

AddHandler MyButton.Click, AddressOf ButtonClickHandler
End Sub

Private Sub ButtonClickHandler(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
MessageBox.Show(“The “ & sender.Name & “ button was clicked”)

End Sub
]]>

</Code>

253

Code Snippets

27_598465 ch19.qxp 7/17/06 3:43 PM Page 253

6. Save the file as CreateAButton.snippet somewhere where you can locate it easily and switch
to Visual Studio 2005. Bring up the code snippets library with the keyboard shortcut chord
Ctrl+K, Ctrl+B. Once the library is displayed, click the Import button and browse to the snippet
file you just saved.

7. Choose a suitable location for the snippet — the My Snippets group is the usual place for custom-
built snippets — and click Finish. Click OK to close the library. Your snippet is now saved and
stored in Visual Studio 2005, ready for use.

8. To test that the code snippet was properly defined and installed, create a new Windows Forms
application and switch to the Code view of Form1. Display the Code Snippet IntelliSense dialog
by using the keyboard chord Ctrl+K, Ctrl+X, and then browse to the CreateAButton snippet you
just imported and double-click it. Visual Studio should insert the Visual Basic code to define
three subroutines, with two variables highlighted.

9. Add the following code to the bottom of the Form1 class definition:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
CreateButtonHelper()

End Sub

This will execute the CreateButtonHelper subroutine when the form is first loaded, which in
turn will call the other subroutines generated by the code snippet and create a button with
default text and a default behavior. Run the application and click the button that is created, and
you should get similar results to those shown in Figure 19-6.

Figure 19-6

While this sample shows the creation of a simple code snippet, you can use the same technique to create
complex snippets that include Imports statements, code definitions, and markup for sections within the
code snippet text to be replaced by the developer using it.

Code Snippets Manager
The Code Snippets Manager is the central library for the code snippets known to Visual Studio 2005. You
can access it via the Tools➪Code Snippet Manager menu command or the keyboard shortcut chord,
Ctrl+K, Ctrl+B.

254

Chapter 19

27_598465 ch19.qxp 7/17/06 3:43 PM Page 254

When it is initially displayed, the Code Snippets Manager will show the snippets for the language you’re
currently using. Figure 19-7 shows how it will look when you’re editing a Visual Basic project. The hier-
archical folder structure follows the same set of folders on the PC by default, but as you add snippet files
from different locations and insert them into the different groups, the new snippets slip into the appro-
priate folders.

If you have an entire folder of snippets to add to the library, such as when you have a corporate setup
and need to import the company-developed snippets, you use the Add button. This brings up a dialog
that you use to browse to the required folder. Folders added in this fashion will appear at the root level
of the tree view — on the same level as the main groups of default snippets. However, you can add a
folder that contains subfolders, which will be added as child nodes in the tree view.

Figure 19-7

Removing a folder is just as easy — in fact, it’s dangerously easy. Select the root node that you want to
remove and click the Remove button. Instantly the node and all child nodes and snippets will be
removed from the Snippets Manager without a confirmation window. You can add them back by follow-
ing the steps explained in the previous walkthrough, but it can be frustrating trying to locate a default
snippet folder that you inadvertently deleted from the list.

The location for the code snippets that are installed with Visual Studio 2005 is deep within the installa-
tion folder. By default, the code snippet library will be installed in C:\Program Files\Microsoft
Visual Studio 8\VB\Snippets\1033.

Individual snippet files can be imported into the library using the Import button. The advantage of this
method over the Add button is that you get the opportunity to specify the location of each snippet in the
library structure.

Figure 19-8 shows the Import Code Snippet dialog for a sample snippet file HelloPersonName
.snippet. By default, Visual Studio 2005 suggests that snippets added in this fashion be inserted into
the custom My Code Snippets folder, but you can put the snippet in any folder that seems appropriate
by finding it in the Location list.

255

Code Snippets

27_598465 ch19.qxp 7/17/06 3:43 PM Page 255

Figure 19-8

Creating Snippets with VB Snippet Editor
Creating code snippets by manually editing XML files can be tedious. It can also result in errors that are
hard to track down. Fortunately, a third-party tool called Snippet Editor can make your life a lot easier.
You’ll find the Snippet Editor at http://msdn.microsoft.com/vbasic/downloads/tools/
snippeteditor/. Download it and install it in a location that you can locate easily, as it doesn’t create
an entry in the Start menu. The default location is C:\Documents and Settings\username\My
Documents\MSDN\Code Snippet Editor.

You may also want to create a desktop shortcut to the program if you’ll be using it frequently.

When you start the Snippet Editor, it will display a welcome screen showing you how to browse and cre-
ate new snippets. The left side of the screen is populated with a tree view containing all the Visual Basic
snippets defined in your system known to Visual Studio 2005. Initially the tree view is collapsed, but by
expanding it you’ll see a set of folders similar to those in the code snippet library (see Figure 19-9).

Reviewing Existing Snippets
An excellent feature of the Snippet Editor is the view it offers of the structure of any snippet file in the
system. This means you can browse the default snippets installed with Visual Studio, which can provide
insight into how to better build your own snippets.

Browse to the snippet you’re interested in and double-click its entry to display it in the Editor window.
Figure 19-9 shows a simple Hello World snippet. You’ll notice two tabs at the top of the editing side of
the form — Editor and Preview. Editor is where you’ll do most of your work, while switching over to
Preview shows how the snippet will look when you insert it into your application code.

256

Chapter 19

27_598465 ch19.qxp 7/17/06 3:43 PM Page 256

Figure 19-9

The lower area of the Editor pane contains all of the associated information about the snippet. From left
to right, these tabs contain the following:

TTaabb FFuunnccttiioonn

Properties The main properties for the snippet, including title, shortcut, and description

Replacements All Literal and Object aliases are defined in this tab.

References If your snippet will require system framework references, this tab allows you
to define them.

Imports Similar to the References tab, this tab enables you to define any Imports
statements that are required in order for your snippet to function correctly.

Test This tab attempts to analyze your snippet to confirm that it will work properly
as is.

Browsing through these tabs enables you to analyze an existing snippet for its properties and replacement
variables. In the example shown in Figure 19-9, the Replacements tab is displayed, showing that one
replacement is defined as a Literal with an ID of PersonName and a default value of “Person Name”.

257

Code Snippets

27_598465 ch19.qxp 7/17/06 3:43 PM Page 257

Be aware that the results shown in the Test tab are not always accurate. As shown in Figure 19-10, even
the predefined snippet templates produce compilation errors when tested. This is because the Snippet
Editor is not aware of the full context for which this snippet is intended. However, it’s still a handy step
to perform, as it will show you real errors in your code snippet as well.

Figure 19-10

Both Figure 19-9 and Figure 19-10 show that editing snippets using the Snippet Editor is a much more
pleasant process than editing the raw XML. The code to be inserted in the snippet is color-coded and for-
matted in a similar fashion to the Visual Basic editor in Visual Studio, giving you a familiar environment
in which to write.

Replacements Explained
When defining Literal and Object aliases, you would normally define them in the XML using
Literal and Object tags, and then refer to them in the code with special alias formatting. The Snippet
Editor operates on a similar paradigm; use the Replacements tab to first define the replacement’s proper-
ties. When the Add button is clicked in the Replacements tab, it will insert the default ID into the Editor
window and populate the properties in the lower half.

You need to change the ID in the lower section, not in the Editor window.

258

Chapter 19

27_598465 ch19.qxp 7/17/06 3:43 PM Page 258

To demonstrate how the Snippet Editor makes creating your own snippets a lot more straightforward,
follow this next exercise in which you will create the same snippet you created earlier in this chapter, but
this time taking advantage of the Snippet Editor’s features:

1. Start the Snippet Editor and create a new snippet. To do this, locate the My Snippets folder in
the tree view (or any other folder of your choice), right-click, and select Add New Snippet from
the context menu that is displayed.

2. When prompted, name the snippet CreateAButtonSample2 and click OK. Double-click the new
entry to open it in the Editor pane.

Note that creating the snippet will not automatically open the new snippet in the Editor — don’t over-
write the properties of another snippet by mistake!

3. The first thing you need to do is edit the Title, Description and Shortcut fields so they match the
previous sample (see Figure 19-11):

❑ Title: CreateAButtonSample2

❑ Description: This snippet adds code to create a button control and hook an event han-
dler to it.

❑ Shortcut: createAButton

Figure 19-11

259

Code Snippets

27_598465 ch19.qxp 7/17/06 3:43 PM Page 259

4. Because this snippet contains member definitions, set the Scope to Member declaration.

5. In the Editor window, insert the code necessary to create the three subroutines as before. Note
that you don’t have to include the custom data tag CDATA, as the Snippet Editor will do that for
you in the background:

Private Sub CreateButtonHelper
CreateAButton(, , Me)

End Sub

Private Sub CreateAButton(ButtonName As String, ButtonText As String, Owner As
Form)

Dim MyButton As New Button

MyButton.Name = ButtonName
MyButton.Text = ButtonName
Owner.Controls.Add(MyButton)

MyButton.Top = 0
MyButton.Left = 0
MyButton.Text = ButtonText
MyButton.Visible = True

AddHandler MyButton.Click, AddressOf ButtonClickHandler
End Sub

Private Sub ButtonClickHandler(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
MessageBox.Show(“The “ & sender.Name & “ button was clicked”)

End Sub

6. You’ll notice that the call to CreateAButton is incomplete, because you haven’t defined the
Literal aliases yet, so switch over to the Replacements tab. Position the cursor immediately
after the opening parenthesis on the CreateAButton function call and click the Add button to
create a new replacement.

The Snippet Editor will immediately insert the default name for the new replacement in the code, but
don’t worry: It will be changed when you set the ID.

7. Change the replacement properties like so (note that the default values should include the
quotes (“) so they are generated in the snippet:

❑ ID: controlName

❑ Defaults to: “MyButton”

❑ Tooltip: The name of the button

8. Notice that the code window changed the alias to the new ID. Position the cursor after the first
comma and repeat the process of creating a new replacement. Set the properties of the new
replacement as follows:

❑ ID: controlText

❑ Defaults to: “Click Me!”

❑ Tooltip: The text property of the button

260

Chapter 19

27_598465 ch19.qxp 7/17/06 3:43 PM Page 260

Your snippet is now done and ready to be used (compare it to Figure 19-12). You can use the Preview tab
to check it against the code generated by the previous code snippet exercise or use Visual Studio 2005 to
insert the snippet into a code window.

Figure 19-12

Note that if you added your snippet to a known folder, Visual Studio 2005 will automatically find it and
recognize its shortcut without you needing to import it manually.

Summary
Code snippets are a valuable inclusion in the Visual Studio 2005 feature set. You learned in this chapter
how to use them, and, more important, how to create your own, including variable substitution and
Imports and reference associations for Visual Basic snippets. With this information you’ll be able to cre-
ate your own library of code snippets from functionality that you use frequently, saving you time in cod-
ing similar constructs later.

261

Code Snippets

27_598465 ch19.qxp 7/17/06 3:43 PM Page 261

27_598465 ch19.qxp 7/17/06 3:43 PM Page 262

Contents

Acknowledgments ix

Introduction xxxv

Who This Book Is For xxxv
What This Book Covers xxxv

A Brief History of Visual Studio xxxvi
One Comprehensive Environment xxxvi

How This Book Is Structured xxxviii
What You Need to Use This Book xxxix
Conventions xxxix
Source Code xl
Errata xl
p2p.wrox.com xli

Part I: The Integrated Development Environment 1

Chapter 1: A Quick Tour of the IDE 3

Where to First? 3
IDE Structure 5

Getting Familiar with the IDE Structure 6
Basic Layout 6
Additional Windows 13

Summary 14

Chapter 2: Options 15

One with the Lot 15
Environment Options 16
Projects and Solutions 21
Text Editor 23
Debugging 25

Summary 27

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xi

xii

Contents

Chapter 3: The Toolbox 29

Describing the Toolbox 29
Arranging Components 31
Adding Components 33
Commonly Used Elements 35
Summary 37

Chapter 4: The Solution Explorer 39

Solution Explorer Structure 39
Showing Hidden Items 40
Temporary Solutions 41
Web Solutions 42
Common Project and Solution Tasks 43

Adding Windows References 45
Adding Web References 46
Setting Solution Properties 46

Summary 47

Chapter 5: Customizing the IDE 49

Tool Window Customization 49
Working with Tool Windows 49
Moving Tool Windows 52

Importing and Exporting IDE Settings 55
Splitting Up the Workspace 57
Summary 58

Chapter 6: Form Design 59

The Form Itself 59
Form Design Preferences 63
Adding Controls to Your Form 64

Guidelines for Controls 65
Vertically Aligning Text Controls 66
Automatic Formatting of Multiple Controls 67
Setting Control Properties 69
Service-Based Components 71
Smart Tag Tasks 71
Additional Commands 72

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xii

xiii

Contents

Container Controls 73
Panel and SplitContainer 73
FlowLayoutPanel 74
TableLayoutPanel 75

Summary 76

Part II: Project and Solution Design 77

Chapter 7: Projects and Solutions 79

Solution Structure 79
Solution File Format 81
Solution Properties 81

Common Properties 82
Configuration Properties 82

Project Types 84
Project File Format 84
Project Properties 84

Application 85
Compile 88
Debug 89
References 90
Resources 91
Settings 91
Signing 92
Security 93
Publish 94
Code Analysis 94

Creating a Custom Settings Provider 95
Summary 96

Chapter 8: Source Control 97

Selecting a Source Control Repository 98
Environment Settings 99
Plug-In Settings 99

Accessing Source Control 99
Creating the Repository 100
Adding the Solution 101
Solution Explorer 101
Checking In and Out 102

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xiii

xiv

Contents

Pending Changes 102
Merging Changes 103
History 104
Pinning 104

Source Control with Team Foundation 105
Source Control Explorer 105
Pending Changes 106
Shelving 108

Summary 109

Chapter 9: Application Configuration Files 111

Config Files 111
Machine.config 111
Web.config 111
App.config 112
Security.config 112

Configuration Schema 112
Configuration Attributes 113
Section: startup 114
Section: runtime 114
Section: system.runtime.remoting 115
Section: system.net 115
Section: cryptographySettings 116
Section: configurationSections 116
Section: system.diagnostics 116
Section: system.web 117
Section: webserver 117
Section: compiler 118

Application Settings 118
Using appSettings 118
Dynamic Properties 118
Custom Configuration Sections 119

Automation Using SCDL 122
IntelliSense 122

Summary 123

Chapter 10: XML Resource Files 125

Resourcing Your Application 125
What Are Resources? 127

Text File Resources 127
ResxResource Files 128

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xiv

xv

Contents

Adding Resources 129
Embedding Files as Resources 130
Accessing Resources 130
Resource Naming 130

Satellite Resources 130
Cultures 131
Creating Culture Resources 131
Loading Culture Resource Files 132
Satellite Culture Resources 132

Accessing Specifics 133
My Namespace 133
Bitmap and Icon Loading 133
ComponentResourceManager 133

Coding Resource Files 134
ResourceReader and ResourceWriter 135
ResxResourceReader and ResxResourceWriter 135

Custom Resources 136
Designer Files 140

Summary 140

Part III: Documentation and Research 141

Chapter 11: Help and Research 143

Accessing Help 143
Document Explorer 145
Dynamic Help 147

The Search Window 148
Sorting Results 149
Filtering Results 150

Keeping Favorites 151
Customizing Help 151
Ask a Question 152
Summary 153

Chapter 12: XML Comments 155

What Are XML Comments? 155
How to Add XML Comments 156
XML Comment Tags 156

The <c> Tag 157
The <code> Tag 157
The <example> Tag 158

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xv

xvi

Contents

The <exception> Tag 159
The <include> Tag 160
The <list> Tag 162
The <para> Tag 163
The <param> Tag 163
The <paramref> Tag 164
The <permission> Tag 165
The <remarks> Tag 165
The <returns> Tag 165
The <see> Tag 166
The <seealso> Tag 166
The <summary> Tag 168
The <typeparam> Tag 168
The <value> Tag 168

Using XML Comments 168
IntelliSense Information 169

Summary 170

Chapter 13: Control and Document Outline 171

Document Outline 171
Control Outline 173
Extra Commands in Control Outline Mode 174
Summary 175

Part IV: Security and Modeling 177

Chapter 14: Code Generation 179

Class Designer 179
Design Surface 180
Toolbox 181
Class Details 182
Properties Window 183
Layout 184
Exporting 184

Other Code-Generation Techniques 185
Snippets 185
Refactoring 185
Project and Item Templates 186
Strongly Typed Datasets 186
Forms 187
My Namespace 188

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xvi

xvii

Contents

Taking Charge of the Class Designer 189
Class Diagram Schema 190
IntelliSense Code Generation 191

Object Test Bench 191
Invoking Static Methods 191
Instantiating Entities 192
Accessing Fields and Properties 193
Invoking Instance Methods 193

Summary 194

Chapter 15: Security Concepts 195

Application Security 195
Code-Based Security 196
Role-Based Security 197

Summary 199

Chapter 16: Cryptography 201

General Principles 201
Techniques 202

Hashing 202
Symmetric (Secret) Keys 202
Asymmetric (Public/Private) Keys 203
Signing 203
Summary of Goals 204

Applying Cryptography 204
Creating Asymmetric Key Pairs 204
Creating a Symmetric Key 206
Encrypting and Signing the Key 207
Verifying Key and Signature 209
Decrypting the Symmetric Key 210
Sending a Message 212
Receiving a Message 214

Miscellaneous 215
SecureString 216
Key Containers 217

Summary 218

Chapter 17: Obfuscation 219

MSIL Disassembler 219
Decompilers 221

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xvii

Contents

Obfuscating Your Code 222
Dotfuscator 222
Words of Caution 225

Attributes 227
ObfuscationAssembly 227
Obfuscation 228

Summary 229

Part V: Coding 231

Chapter 18: IntelliSense 233

IntelliSense Explained 233
General IntelliSense 234
Completing Words and Phrases 235
Parameter Information 238
Quick Info 238

IntelliSense Options 238
General Options 238
C#- and J#-Specific Options 240

Extended IntelliSense 241
Code Snippets 241
XML Comments 242
Adding Your Own IntelliSense 242

Summary 242

Chapter 19: Code Snippets 243

Code Snippets Revealed 243
Original Code Snippets 243
“Real” Code Snippets 244
Using Snippets in Visual Basic 245
Using Snippets in C# and J# 248
Creating Snippets Manually 249
Code Snippets Manager 254
Creating Snippets with VB Snippet Editor 256

Summary 261

Chapter 20: Regions and Bookmarks 263

Regions 263
Creating Regions 264
Using Regions 265
Introducing Outlining Commands 266

xviii

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xviii

xix

Contents

Visual Indicators 267
Color Coding 267
Margin Icons 268

Bookmarks and the Bookmark Window 269
Summary 271

Chapter 21: Refactoring 273

Accessing Refactoring Support 274
C# — Visual Studio 2005 274
VB.NET — Refactor! 274

Refactoring Actions 275
Extract Method 275
Encapsulate Field 277
Extract Interface 279
Reorder Parameters 280
Remove Parameters 281
Rename 282
Promote to Paramet4er 282
Generate Method Stub 283
Surround with Snippet 283

Summary 284

Chapter 22: Generics, Nullable Types, and Partial Types 285

Generics 285
Consumption 286
Creation 287
Constraints 288

Nullable Types 289
Partial Types 291

Form Designers 292
Operator Overloading 292

Operators 292
Type Conversions 293
Why Static Methods Are Bad 294

Predefined Delegates 295
Action 296
Comparison 296
Converter 297
Predicate 297
EventHandler 298

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xix

xx

Contents

Property Accessibility 299
Custom Events 300
Summary 301

Chapter 23: Language-Specific Features 303

C# 303
Anonymous Methods 303
Iterators 304
Static Classes 305

Naming Conflicts 306
Namespace Alias Qualifier 307
Global 307
Extern Aliases 308

Pragma 309
VB.NET 309

Continue 310
IsNot 310
Global 311
TryCast 311

Summary 312

Chapter 24: The My Namespace 313

What Is the My Namespace? 314
The Main Components 315
Using My in Code 316

Using My in C# 316
Contextual My 317
Default Instances 320

My.Application 320
My.Computer 321

My.Computer.Audio 322
My.Computer.Clipboard 322
My.Computer.Clock 322
My.Computer.FileSystem 323
My.Computer.Info 323
My.Computer.Keyboard and My.Computer.Mouse 323
My.Computer.Network 324
My.Computer.Ports 324
My.Computer.Registry 324

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xx

xxi

Contents

My.Forms and My.WebServices 325
My For the Web 325
My.Resources 325
Other My Classes 327
Summary 327

Part VI: Automation 329

Chapter 25: Code Generation Templates 331

Creating Templates 331
Item Template 331
Project Template 335
Template Structure 335

Extending Templates 337
Template Project Setup 337
IWizard 339
Starter Template 342

Summary 344

Chapter 26: Macros 345

The Macro Explorer 345
Running Macros 346

Creating Macros 347
Recording Temporary Macros 348
Recording Issues 348

The Visual Studio Macros Editor 349
The DTE Object 351

Sample Macros 353
Building and Deploying 354
Summary 355

Chapter 27: Connection Strings 357

Data Source Connection Wizard 357
SQL Server Format 362
In-Code Construction 363
Encrypting Connection Strings 364
Summary 366

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxi

xxii

Contents

Chapter 28: Assembly Signing 367

Strong-Named Assemblies 367
The Global Assembly Cache 368
Signing an Assembly in VS 2005 368
Summary 369

Chapter 29: Preemptive Error Correction 371

Smart Compile Auto Correction 371
Customizing Warnings in Visual Basic 374

Warnings Not Displayed by Default 376
Other Customizable Warnings 377

Customizing Warnings in C# 380
Summary 381

Chapter 30: Strongly Typed DataSets 383

DataSet Overview 383
Adding a Data Source 384
DataSet Designer 387
Working with Data Sources 390

Web Service Data Source 391
Browsing Data 392

Summary 394

Chapter 31: Data Binding and Object Data Sources 395

Data Binding 395
BindingSource 397
BindingNavigator 398
Data Source Selections 400
BindingSource Chains 401
Saving Changes 407
Inserting New Items 409
Validation 410
DataGridView 417

Object Data Source 419
IDataErrorInfo 423

Application Settings 423
Summary 424

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxii

xxiii

Contents

Chapter 32: Add-Ins 425

The Add-In Manager 425
Types of Add-Ins 426
Creating a Simple Add-In with the Wizard 427
Common Classes, Objects, and Methods 432

IDTExtensibility2 432
IDTCommandTarget 433
AddNamedCommand2 435
CreateToolWindow2 436
Debugging 436
Registration and Deployment 436

Summary 437

Chapter 33: Third-Party Extensions 439

Development Environment Enhancements 439
CoolCommands for VS2005 439
MZ-Tools 440

Code Aids 442
Imports Sorter 443
CodeKeep 443

Documentation 445
Testing and Debugging 446

Regex Visualizer 446
TestDriven.NET 446

Summary 447

Chapter 34: Starter Kits 449

The Card Game Starter Kit 450
The Screensaver Starter Kit 451
The Movie Collection Starter Kit 452
The Personal Web Site Starter Kit 453
Creating Your Own Starter Kit 454
Summary 454

Part VII: Other Time Savers 455

Chapter 35: Workspace Control 457

Visual Studio 2005 Windows 457
Start Page 457
Code/Designer 458

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxiii

xxiv

Contents

Solution Explorer 458
Properties 459
Toolbox 459
Server Explorer 460
Error List 460
Object Browser 461
Task List 461
Class View 462
Code Definition 462
Output 463
Find Results 463
Call Browser 463
Command Window 464
Document Outline 464
Object Test Bench 465
Performance Explorer 465
Property Manager 465
Resource View 466
History 466
Source Control Explorer 467
Pending Changes 467
Macro Explorer 468
Web Browser 468
Team Explorer 469
Breakpoints 469
Immediate 470
Script Explorer 470
Registers 470
Disassembly 471
Memory 471
Processes 471
Modules 472
Threads 472
Call Stack 472
Autos, Locals, and Watch 473
Code Coverage 473
Test Results 473
Test Manager 474
Test View 474
Team Builds 474
Test Runs 475
Bookmarks 475
Data Sources 475

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxiv

xxv

Contents

Workspace Navigation 476
Full Screen Mode 476
Navigation Keys 476

Summary 478

Chapter 36: Find and Replace 479

Introducing Find and Replace 479
Quick Find 480
Quick Replace 481
Quick Find and Replace Dialog Options 481

Find in Files 484
Find Dialog Options 484
Results Window 485

Replace in Files 486
Incremental Search 488
Find Symbol 489
Find and Replace Options 489
Summary 490

Chapter 37: Server Explorer 491

The Servers Node 492
Event Logs 492
Management Classes 494
Management Events 496
Message Queues 499
Performance Counters 501
Services 504

Summary 505

Chapter 38: Visual Database Tools 507

Database Windows in Visual Studio 2005 507
Server Explorer 508
Table Editing 510
Relationship Editing 512
Views 512
Stored Procedures and Functions 513
Database Diagrams 514
Data Sources Window 515

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxv

xxvi

Contents

Using Databases 518
Editing Data Source Schema 518
Data Binding Controls 520
Data Controls 522

Managing Test Data 524
Previewing Data 525
Database Projects 526

Script-Based Database Projects 526
Managed Code Language-Based Database Projects 527

Summary 528

Chapter 39: Regular Expressions 529

Where Can Regular Expressions Be Used? 530
Regular Expression Programming 530
Find and Replace 530
Visual Studio Tools for Office Smart Tags 531

What Are Regular Expressions? 532
Using Regular Expressions to Replace Data 533

Regular Expression Syntax 534
Regular Expressions in .NET Programming 536

Regex 536
Match 537
MatchCollection 537
Replacing Substrings 538

Summary 538

Chapter 40: Tips, Hacks, and Tweaks 539

IDE Shortcuts 539
The Open With Dialog 539
Accessing the Active Files List 540
Changing Font Size 541
Making Rectangular Selections 542
Go To Find Combo 543
Forced Reformat 544
Word Wrapping 544

Registry Hacks 544
Vertical Guidelines 544
Right-Click New Solution 545
Keyword Color-Coding 547

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxvi

xxvii

Contents

Other Tips 548
Disable Add-Ins Loading on Startup 548
Multi-Monitor Layouts 548

Summary 549

Chapter 41: Creating Web Applications 551

Creating Web Projects 551
Dynamic Compilation 554
Web Services 555
Personal Web Site Starter Kit 555

Web Development Options 556
HTML Text Editor Options 556
HTML Designer Options 557

Website Menu 558
Web Controls 558

General Property Settings 559
The Controls 560
Master/Detail Content Pages 568

Finalizing and Deployment 569
Deploying the Site 570

Site Administration 571
Security 572
Application Settings 574
ASP.NET 2.0 Configuration Settings 574

Summary 575

Chapter 42: Additional Web Techniques 577

Web Development Revisited 577
The Sitemap 579

web.sitemap 579
The SiteMapPath Control 581
The SiteMapResolve Event 582
The Web Menu Control 584

Web Parts 585
WebPartManager 586
EditorZone 588
CatalogZone 590

Summary 592

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxvii

Contents

Chapter 43: Building Device Applications 593

Getting Started 593
.NET Compact Framework Versions 594

Solution Explorer 595
Design Skin 596

Orientation 596
Buttons 597

Toolbox 598
Common Controls 598
Mobile Controls 599

Debugging 605
Emulator 605
Device 606

Device Emulator Manager 607
Connecting 608
Cradling 608

Project Settings 609
Device Options 610
Summary 611

Chapter 44: Advanced Device Application Programming 613

Data Source 613
DataSet 615
ResultSet 623

Windows Mobile 5.0 623
SDK Download 623
Managed APIs 624
Notification Broker 626

Deployment 627
CAB Files 628
MSI Installer 629

OpenNetCF Smart Devices Framework 632
Summary 633

Part VIII: Build and Deployment 635

Chapter 45: Upgrading to Visual Studio 2005 637

The Upgrade Process 638
Getting Ready to Upgrade 638
Using the Upgrade Project Wizard 640
Checking the Upgrade Output 643

xxviii

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxviii

xxix

Contents

The Upgrade Visual Basic 6 Tool 647
Summary 648

Chapter 46: Build Customization 649

General Build Options 649
Batch Building 652
Manual Dependencies 652

Visual Basic Compile Page 654
Advanced Compiler Settings 654
Build Events 656

C# Build Pages 657
Advanced 658

MSBuild 660
How Visual Studio Uses MSBuild 660
MSBuild Schema 663

Summary 664

Chapter 47: Deployment: ClickOnce and Other Methods 665

Installers 665
Building an Installer 665
Customizing the Installer 669
Adding Custom Actions 673
Web Project Installers 675
Service Installer 676

ClickOnce 677
Click to Deploy 678
Click to Update 683

Other Techniques 684
XCopy 684
Publish Website 684
Copy Web Project 684

Summary 685

Part IX: Debugging and Testing 687

Chapter 48: Using the Debugging Windows 689

Code Window 689
Breakpoints 689
DataTips 690

Breakpoint Window 690

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxix

xxx

Contents

Output Window 691
Immediate Window 692
Script Explorer 692
Watch Windows 693

QuickWatch 693
Watch Windows 1–4 694
Autos and Locals 694

Call Stack 694
Threads 695
Modules 695
Processes 696
Memory Windows 696

Memory Windows 1–4 696
Disassembly 697
Registers 697

Exceptions 698
Customizing the Exception Assistant 699

Unwinding an Exception 700
Summary 701

Chapter 49: Debugging Breakpoints 703

Breakpoints 703
Setting a Breakpoint 703
Adding Break Conditions 706
Working with Breakpoints 708

Tracepoints 709
Creating a Tracepoint 709
Tracepoint Actions 710

Execution Point 710
Stepping Through Code 711
Moving the Execution Point 712

Edit and Continue 712
Rude Edits 712
Stop Applying Changes 712

Summary 713

Chapter 50: Debugging Proxies and Visualizers 715

Attributes 715
DebuggerBrowsable 715
DebuggerDisplay 716
DebuggerHidden 717

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxx

xxxi

Contents

DebuggerStepThrough 717
DebuggerNonUserCode 718

Type Proxies 718
The Full Picture 720

Visualizers 720
Advanced Techniques 723

Saving Changes to Your Object 723
Summary 723

Chapter 51: Maintaining Web Applications 725

Debugging 725
Breaking on Errors Automatically 727
Debugging an Executing Web Application 727
Error Handling 728

Tracing 729
Page-Level Tracing 729
Application-Level Tracing 731
Trace Output 731
Trace Viewer 732
Custom Trace Output 732

Summary 733

Chapter 52: Other Debugging Techniques 735

Debugging Options Pages 735
General Options 735

Debug Page in My Project 738
Exception Assistant 739
Debugging Macros 741
Debugging Database Stored Procedures 742
Summary 742

Chapter 53: Unit Testing 743

Your First Test Case 743
Test Attributes 748
Test Attributes 749

Asserting the Facts 750
Assert 751
StringAssert 751
CollectionAssert 752
ExpectedException Attribute 752

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxxi

xxxii

Contents

Initializing and Cleaning Up 753
More Attributes 753

Testing Context 753
Data 754
Writing Test Output 755

Advanced 756
Custom Properties 756
Testing Private Members 758

Summary 760

Part X: Extensions for Visual Studio 2005 761

Chapter 54: InfoPath 2003 Toolkit 763

Creating Managed InfoPath Solutions 763
The Generated Solution 765
Switching Between Visual Studio and InfoPath 767

Adding Code to InfoPath Forms 768
Form-Related Events 768
Field Events 773
The Button Click Event 774

Other Considerations 776
Summary 776

Chapter 55: Visual Studio Tools for Office 777

The New Visual Studio Tools for Office 778
The Visual Designer 780

Control Design 781
Writing Code 782

The Actions Pane 784
Smart Tags 785
Microsoft Outlook Add-Ins 787
The VSTO 2005 Sample Project 788
Summary 800

Chapter 56: Visual Studio Team System 801

Team System Editions 801
For Everyone 801
For Software Architects 807
For Software Developers 811
For Software Testers 818

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxxii

xxxiii

Contents

Advanced 825
Writing Custom Code Analysis Rules 825
Customizing the Process Templates 828

Summary 830

Index 831

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxxiii

02_598465 ftoc.qxp 7/17/06 3:35 PM Page xxxiv

Professional Visual Studio® 2005
Published by
WWiilleeyy PPuubblliisshhiinngg,, IInncc..
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN-13: 978-0-7645-9846-3
ISBN-10: 0-7645-9846-5
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1
1MA/QT/QY/QW/IN
LLiibbrraarryy ooff CCoonnggrreessss CCaattaallooggiinngg--iinn--PPuubblliiccaattiioonn DDaattaa
Parsons, Andrew, 1970-

Visual studio 2005 / Andrew Parsons and Nick Randolph.
p. cm.

Includes index.
ISBN-13: 978-0-7645-9846-3 (paper/website)
ISBN-10: 0-7645-9846-5 (paper/website)
1. Microsoft Visual studio. 2. Microsoft .NET Framework. 3. Web site development—Computer programs.

4. Application software—Development—Computer programs. I. Randolph, Nick. 1978- II. Title.
TK5105.8885.M57P38 2006
006.7'86—dc22
2006014685

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRE-
SENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFES-
SIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DIS-
APPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.
TTrraaddeemmaarrkkss:: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Visual Studio is a registered trademark of Microsoft
Corporation in the United States and/or other countries. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

01_598465 ffirs.qxp 7/17/06 3:34 PM Page iv

About the Authors

Andrew Parsons
Andrew Parsons is an accomplished programmer, journalist, and author. He created, launched, and
served as chief editor for Australian Developer magazine, which was so successful that it expanded glob-
ally and is now known as International Developer. Subsequent to that success, Parsons launched the local
Australian and New Zealand edition of MSDN magazine. In addition, he has written a variety of techni-
cal books, including topics as diverse as HTML and CSS, Photoshop, and Visual Basic Express. When not
writing, Parsons consults on .NET programming implementations for a number of clients, and currently
serves as a senior consultant at Readify Pty, Ltd (www.readify.net), as well as running his own busi-
ness, Parsons Designs (www.parsonsdesigns.com), and GAMEparents (www.gameparents.com), a
website dedicated to helping parents understand and enjoy computer and video games.

Nick Randolph
Nick Randolph is an experienced .NET developer and solution architect. During his time with Software
Engineering Australia, a not-for-profit industry body, Nick founded the Perth .NET Community of Practice
and has been integrally involved in the local .NET community since. When Nick joined AutumnCare
(www.autumncare.com.au) as Development Manager, he was responsible for their product architecture,
which incorporated best practices around building smart client applications using the .NET Framework.
Nick is currently a solutions architect with SoftTeq (http://softteq.com), which provides consulting,
training, and mentoring services. Outside of his consulting role, Nick takes a proactive approach toward
technology, ever seeking to learn, use, and present on beta products. As a Microsoft MVP, Nick has been
invited to present at IT conferences such as TechEd, MEDC, and Code Camp, and has been a worldwide
finalist judge for the Microsoft Imagine Cup for the last two years.

01_598465 ffirs.qxp 7/17/06 3:34 PM Page vii

