Weer_CHO3.gxd 3/1/05 12:13 PM Page 31 $

Chapter 3

Web Services: A Realization of SOA

People often think of Web services and Service-Oriented Architecture (SOA)
in combination, but they are distinct in an important way. As discussed in
Chapter 1, “Service-Oriented Architectures,” SOA represents an abstract archi-
tectural concept. It's an approach to building software systems that is based
on loosely coupled components (services) that have been described in a uni-
form way and that can be discovered and composed. Web services represents
one important approach to realizing an SOA.

The World Wide Web Consortium (W3C), which has managed the evolution
of the SOAP and WSDL specifications, defines Web services as follows:

A software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems inter-
act with the Web service in a manner prescribed by its description
using SOAP messages, typically conveyed using HTTP with XML serial-
ization in conjunction with other Web-related standardes.

31

Weer_CHO3.gxd 3/1/05 12:13 PM Page 32 $

32 Web Services: A Realization of SOA

Although Web services technology is not the only approach to realizing an
SOA, it is one that the IT industry as a whole has enthusiastically embraced.
With Web services, the industry is addressing yet again the fundamental chal-
lenge that distributed computing has provided for some considerable time: to
provide a uniform way of describing components or services within a network,
locating them, and accessing them. The difference between the Web services
approach and traditional approaches (for example, distributed object technolo-
gies such as the Object Management Group — Common Object Request Broker
Architecture (OMG CORBA), or Microsoft Distributed Component Object
Model (DCOM)) lies in the loose coupling aspects of the architecture. Instead
of building applications that result in tightly integrated collections of objects or
components, which are well known and understood at development time, the
whole approach is much more dynamic and adaptable to change. Another key
difference is that through Web services, the IT industry is tackling the problems
using technology and specifications that are being developed in an open way,
utilizing industry partnerships and broad consortia such as W3C and the
Organization for the Advancement of Structured Information Standards (OASIS),
and based on standards and technology that are the foundation of the Internet.

This open, standards-based approach in which every Web services specification
is eventually standardized by an industry-wide organization (such as W3C or
OASIS) introduces the possibility that the specifications described in this book
might undergo significant changes before becoming formal standards. This is a
natural consequence of the standardization process in which both technology
vendors and consumers provide input and push their requirements into the final
standard. However, the basic concepts and the design supporting each of the
specifications are unlikely to change in fundamental ways, even if the syntax is
modified or the supported set of use cases is significantly expanded. At the time
of publication, several of the specifications covered in this book have already
been submitted to standards, and significant changes may ensue in some of
them (for example, in the case of WS-Addressing, now being discussed at
W3C). Readers interested in the details of the specifications should be aware of
this fact and carefully follow the results of the standardization process. Please
refer to the Web site, www.phptr.com, “Updates and Corrections,” where you
will find the latest updates to the specifications covered in this book.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 33 $

Scope of the Architecture 33

3.1 Scope of the Architecture

The high-level schematic introduced in Chapter 1 (Figure 1-7) illustrates a lay-
ered view of the important foundational capabilities that are required of SOA.
This chapter introduces a specific rendering of this conceptual framework with
a particular collection of Web services specifications that are based on and
extend basic Internet standards that were described in Chapter 2,
“Background.” Note that specifications used in this rendering are those that IBM
has developed in a collaborative effort with other industry partners, most no-
tably Microsoft. The description in this chapter is intended to give a high-level
“fly by” only, with the express purpose of providing an overall summary per-
spective. The following chapters of this book discuss these Web services specifi-
cations in much greater detail.

Web services had its beginnings in mid to late 2000 with the introduction of the
first version of XML messaging—SOAP, WSDL 1.1, and an initial version of
UDDI as a service registry. This basic set of standards has begun to provide an
accepted industry-wide basis for interoperability among software components
(Web services) that is independent of network location, in addition to specific
implementation details of both the services and their supporting deployment
infrastructure. Several key software vendors have provided these implementa-
tions, which have already been widely used to address some important business
problems.

Although the value of Web services technology has been demonstrated in prac-
tice, there is a desire to use the approach to address more difficult problems.
Developers are looking for enhancements that raise the level and scope of inter-
operability beyond the basic message exchange, requiring support for interopera-
tion of higher-level infrastructure services. Most commercial applications today
are built assuming a specific programming model. They are deployed on plat-
forms (operating systems and middleware) that provide infrastructure services in
support of that programming model, hiding complexity, and simplifying the
problems that the solution developer has to deal with. For example, middleware
typically provides support for transactions, security, or reliable exchange of mes-
sages (such as guaranteed, once-only delivery). On the other hand, there is no
universally agreed standard middleware, which makes it difficult to construct
applications from components that are built using different programming models

Weer_CHO3.gxd 3/1/05 12:13 PM Page 34 $

34 Web Services: A Realization of SOA

(such as Microsoft COM, OMG CORBA, or Java 2 Platform, Enterprise Edition

(J2EE) Enterprise Java Beans). They bring with them different assumptions about
infrastructure services that are required, such as transactions and security. As a
consequence, interoperability across distributed heterogeneous platforms (such
as .NET and J2EE) presents a difficult problem.

The Web services community has done significant work to address this interop-
erability issue, and since the introduction of the first Web services, various orga-
nizations have introduced other Web services—related specifications. Figure 3-1
illustrates a population of the overall SOA stack shown in Figure 1-7 with cur-
rent standards and emerging Web services specifications that IBM, Microsoft,
and other significant IT companies have developed. The remainder of this chap-
ter provides a high-level introduction to these Web services specifications that
realize more concretely the capabilities that are described in the SOA framework
in Chapter 1 and that extend the earlier Web services technology of XML, SOAP,
and WSDL to provide secure, reliable, and transacted interoperability. The speci-
fications define formats and protocols that allow services to interoperate across
those vendor platforms that provide conformant implementations, either natively
or by mapping them onto existing proprietary middleware offerings.

BPEL WS-C,... Components
Composite Atomic
c .)
o WS-Reliable WS-Security* WS-AT, Quality
L= Messaging ty WS-BA of Service
S
@
5]
o
=l
O
m
3 -
3 WSDL WS-Policy* Description
a
P
Soap, WS-Addressing JMS,... Messaging
HTTP, SMTP, TCP/IP, RMI/IIOP,... Transport

Figure 3-1 Web services architecture.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 35 $

Scope of the Architecture

<definitions targetNamespace="...">
<!-- WSDL definitions in this document -->
<!-- referenced using “tns” prefix -->
<types>
<!-- XSD definitions for this service -->
<!-- referenced using “xsdl” prefix -->

<xsd:schema>
<xsd:import
namespace="http://www.purchase.com/xsd/svp-svc”>
</xsd:schema>
</types>

<message name="purchaseResponse”>
<part name="purchaseResponse”
element="xsdl:PurchaseStatus”/>
</message>
<message name="purchaseRequest”>
<part name="purchaseRequest”
element="xsdl:PurchaseRequest”/>
</message>
<message name="ServicePacValidationInput”>
<part name="spvDataInput”
element="xsdl:ServicePacValidationData” />
</message>
<message name="ServicePacValidationOutput”>
<part name="spvDataOutput”

element="xsdl:ServicePacValidationData” />
</message>

<portType name="spvPortType">
<operation name="purchaseServicePacs”>
<input name="purchaseInput”
message="tns:purchaseRequest”/>
<output name="purchaseOutput”

message="tns:purchaseResponse” />
</operation>

<operation name="validateServicePac”>
<input name="Input”
message="tns:ServicePacValidationInput”/>
<output name="Output”

message="tns:ServicePacValidationOutput”/>
</operation>

</portType>

<binding name="spvBinding” type="tns:spvPortType”>
<wsp:PolicyReference

URI=“http://www.purchase.com/policies/DSig”>
<soap:binding style="document”

transport="http://schemas.xmlsoap.org/soap/http”/>
<operation name="purchaseServicePacs"”>

o

35

Weer_CHO3.gxd 3/1/05 12:13 PM Page 36 :F

36 Web Services: A Realization of SOA

<wsp:PolicyReference URI=
“http://www.purchase.com/policies/Encrypt”>
<soap:operation soapAction=

“http://www.purchase.com/spvPortType/purchaseServicePacsRequest” />
</operation>
<operation name="validateServicePac”>
<soap:operation soapAction=

“http://www.purchase.com/spvPortType/validateServicePacRequest”/>
</operation>
</binding>

<service name="spv-svc”>
<port name="spv-svc-port” binding="tns:spvBinding”>
<soap:address
location="http://www.purchase.com/spv"/>
</port>
</service>
</definitions>

3.2 Transport Services

Web services is basically an interoperable messaging architecture, and message
transport technologies form the foundation of this architecture. Web services is
inherently transport neutral. Although you can transport Web services messages
by using the ubiquitous Web protocols such as HyperText Transport Protocol
(HTTP) or Secure HTTP (HTTPS) to give the widest possible coverage in terms
of support for the protocols (see Chapter 2), you can also transport them over
any communications protocol, using proprietary ones if appropriate. Although
transport protocols are fundamental to Web services and clearly are a defining
factor in the scope of interoperability, the details are generally hidden from the
design of Web services. A detailed discussion of these is not included in the
scope of this book.

3.3 Messaging Services

The messaging services component of the framework contains the most funda-
mental Web services specifications and technologies, including eXtensible
Markup Language (XML), SOAP, and WS-Addressing. Collectively, these

Weer_CHO3.gxd 3/1/05 12:13 PM Page 37 $

Messaging Services 37

specifications form the basis of interoperable messaging between Web services.
XML (discussed in Chapter 2) provides the interoperable format to describe
message content between Web services and is the basic language in which

the Web services specifications are defined.

3.3.1 SOAP

SOAP, one of the significant underpinnings of Web services, provides a simple
and relatively lightweight mechanism for exchanging structured and typed infor-
mation between services. SOAP is designed to reduce the cost and complexity
of integrating applications that are built on different platforms. SOAP has under-
gone revisions since its introduction, and the W3C has standardized the most
recent version, SOAP 1.2.

SOAP defines an extensible enveloping mechanism that scopes and structures
the message exchange between Web services. A SOAP message is an XML doc-
ument that contains three distinct elements: an envelope, a header, and a bodly.
The envelope is the root element of the SOAP message. It contains an optional
header element and a mandatory body element. The header element is a
generic mechanism for adding extensible features to SOAP. Each child element
of header is called a header block. SOAP defines several well-known attributes
that you can use to indicate who should deal with a header block and whether
processing of it is optional or mandatory. The body element is always the last
child element of the envelope, and it is the container for the payload—the ac-
tual message content that is intended for the ultimate recipient who will process
it. SOAP defines no built-in header blocks and only one payload, which is the
Fault element used for reporting errors.

SOAP is defined independently of the underlying messaging transport mecha-
nism in use. It allows the use of many alternative transports for message
exchange. You can defer selection of the appropriate mechanism until runtime,
which gives Web service applications or support infrastructure the flexibility to
determine the appropriate transport as the message is sent. In addition, the un-
derlying transport might change as the message is routed between nodes. Again,
the mechanism that is selected for each hop can vary as required. Despite this
general transport independence, most first-generation Web services communi-
cate using HTTP, because it is one of the primary bindings included within the
SOAP specification.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 38 $

38 Web Services: A Realization of SOA

SOAP messages are transmitted one way from sender to receiver. However,
multiple one-way messages can be combined into more sophisticated message
exchange patterns. For instance, a popular pattern is a synchronous request/re-
sponse pair of messages. The messaging flexibility that SOAP provides allows
services to communicate using a variety of message exchange patterns, to sat-
isfy the wide range of distributed applications. Several patterns have proven
particularly helpful in distributed systems. The use of remote procedure calls,
for example, popularized the synchronous request/response message exchange
pattern. When message delivery latencies are uncontrolled, asynchronous mes-
saging is needed. When the asynchronous request/response pattern is used,
explicit message correlation becomes mandatory.

Messages can be routed based on the content of the headers and the data in-
side the message body. You can use tools developed for the XML data model
to inspect and construct complete messages. Note that such benefits were not
available in architectures such as DCOM, CORBA, and Java Remote Method
Invocation (RMI), where protocol headers were infrastructural details that were
opaque to the application. Any software agent that sends or receives messages
is called a SOAP node. The node that performs the initial transmission of a
message is called the original sender. The final node that consumes and
processes the message is called the ultimate receiver. Any node that processes
the message between the original sender and the ultimate receiver is called an
intermediary. Intermediaries model the distributed processing of an individual
message. The collection of intermediary nodes traversed by the message and
the ultimate receiver are collectively referred to as the message path.

To allow parts of the message path to be identified, each node participates in
one or more roles. The base SOAP specification defines two built-in roles: Next
and UltimateReceiver. Next is a universal role in that every SOAP node, other
than the sender, belongs to the Next role. UltimateReceiver is the role that the
terminal node in a message path plays, which is typically the application, or in
some cases, infrastructure that is performing work on behalf of the application.
The body of a SOAP envelope is always targeted at the UltimateReceiver. In
contrast, SOAP headers might be targeted at intermediaries or the
UltimateReceiver

SOAP is discussed in detail in Chapter 4, “SOAP.”

Weer_CHO3.gxd 3/1/05 12:13 PM Page 39 $

Messaging Services 39

3.3.2 WS-Addressing

WS-Addressing provides an interoperable, transport-independent way of identi-
fying message senders and receivers that are associated with message exchange.
WS-Addressing decouples address information from the specific transport used
by providing a mechanism to place the target, source, and other important ad-
dress information directly within the Web service message. This specification
defines XML elements to identify Web services endpoints and to secure end-to-
end endpoint identification in messages. This specification enables messaging
systems to support message transmission through networks that include process-
ing nodes such as endpoint managers, firewalls, and gateways in a transport-
neutral manner.

WS-Addressing defines two interoperable constructs that convey information
that transport protocols and messaging systems typically provide. These con-
structs normalize this underlying information into a uniform format that can be
processed independently of transport or application. These two constructs are
endpoint references and message information headers.

A Web services endpoint is a referenceable entity, processor, or resource in
which Web services messages can be targeted. Endpoint references convey the
information needed to identify/reference a Web services endpoint, and you can
use them in several different ways. Endpoint references are suitable for convey-
ing the information needed to access a Web services endpoint, but they also
provide addresses for individual messages that are sent to and from Web ser-
vices. To deal with this previous usage case, the WS-Addressing specification
defines a family of message information headers that allows uniform addressing
of messages independent of underlying transport. These message information
headers convey end-to-end message characteristics, including addressing for
source and destination endpoints and message identity.

Both of these constructs are designed to be extensible and reusable so that
other specifications can build on and leverage endpoint references and message
information headers. WS-Addressing is covered in detail in Chapter 5,
“WS-Addressing.”

Weer_CHO3.gxd 3/1/05 12:13 PM Page 40 $

40 Web Services: A Realization of SOA

3.4 Service Description

Service description defines metadata that fully describes the characteristics of
services that are deployed on a network. This metadata is important, and it is
fundamental to achieving the loose coupling that is associated with an SOA. It
provides an abstract definition of the information that is necessary to deploy
and interact with a service.

3.4.1 WSDL

Web Services Description Language (WSDL) is perhaps the most mature of meta-
data describing Web services. It allows developers to describe the “functional”
characteristics of a Web service—what actions or functions the service performs
in terms of the messages it receives and sends. WSDL offers a standard,
language-agnostic view of services it offers to clients. It also provides noninvasive
future-proofing for existing applications and services and allows interoperability
across the various programming paradigms, including CORBA, J2EE, and .NET.

WSDL is an XML format for describing (network) services as a set of endpoints
that operate on messages containing either document-oriented or procedure-
oriented information. The operations and messages are described abstractly and
then bound to a concrete network protocol and message format to define an end-
point. Related concrete endpoints are combined into abstract endpoints (services).
WSDL is extensible to allow description of endpoints and their messages regard-
less of what message formats or network protocols are used to communicate.

A WSDL document has two parts: abstract definitions and concrete
descriptions. The abstract section defines SOAP messages in a language- and
platform-independent manner. In contrast, the concrete descriptions define site-
specific matters such as serialization.

WSDL provides support for a range of message interaction patterns. It supports
one-way input messages that have no response, request/response, and one-way
sends with or without a response. The last two patterns enable a service to
specify other services that it needs. WSDL is discussed in detail in Chapter 6,
“Web Services Description Language.”

Weer_CHO3.gxd 3/1/05 12:13 PM Page 41 $

Service Description 41

3.4.2 Policy

Although WSDL and XML Schema describe what a service can do by providing
a definition of the business interface (including business operations such as
open/close account, debit/credit/transfer, and so on), they do not provide infor-
mation about how the service delivers its interface or what the service expects
of the caller when it uses the service. How the service implements the business
interface, the sort of permissions or constraints it expects of or provides to re-
questers, and what is expected or provided in a hosting environment is incredi-
bly important in ensuring the correct interaction with and execution of the
service. For example, does the service require security, and if so, what specific
scope and type? Does it support transactions? What outcome protocols are sup-
ported? To achieve the promise of an SOA, it is important to extend the current
Web service interface and message definitions to include the expression of the
constraints and conditions that are associated with the use of a Web service.

Although you can use inherent extensibility of XML and WSDL to achieve
some of these requirements, a much better approach is to define a common
framework for Web services constraints and conditions that allows a clear and
uniform articulation of the available options. Such a framework must enable
those constraints and conditions associated with various domains (such as se-
curity, transactions, and reliable messaging) to be composeable, so that Web
service providers and consumers are not burdened with multiple domain-spe-
cific mechanisms. Also, such a framework can provide support for determining
valid intersections of constraints and conditions, where multiple choices are
possible. Although the programming that is implementing the business logic of
the Web service can deal explicitly with the conditions and constraints, provid-
ing a declarative model for this factors such issues out of business logic,
thereby providing an important separation of concerns. This allows for more
automated implementation by middleware and operating systems, resulting in
significantly better reuse of application code by the organizations that provide,
deploy, and support Web services. The WS-Policy family of Web services spec-
ifications provides an extensible framework that is intended to specifically deal
with the definition of these constraints and conditions.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 42 $

42 Web Services: A Realization of SOA

The WS-PolicyAttachments specification offers a flexible way to associate pol-
icy expressions with Web services. The WS-Policy specification defines a com-
mon framework for services to annotate their interface definitions to describe
their service assurance qualities and requirements in the form of a machine-
readable expression containing combinations of individual assertions. The WS-
Policy framework also allows the use of algorithms to determine which
concrete policies to apply when the requester, provider, and container support
multiple options. WS-Policy is critical to achieving interoperability at the
higher-level functional operation of the service. Security, transactions, reliable
messaging, and other specifications require concrete WS-Policy schema. This
allows services to describe the functional assurance that they expect from and
provide to callers.

The WS-Policy specifications are discussed in detail in Chapter 7, “Web
Services Policy.”

3.5 Discovery Services

The transport, description, and messaging layer are fundamental to allowing
Web services to communicate in an interoperable way using messages.
However, to facilitate this, it is necessary to collect and store the important
metadata that describes these services. The metadata must be in a form that is
discoverable and searchable by users who are looking for appropriate services
they require to solve some particular business problem. Also, such metadata
aggregation and discovery services are a useful repository/registry in which
many different organizations might want to publish the services that they host,
describe the interfaces to their services, and enable domain-specific taxonomies
of services.

3.5.1 UDDI

The Universal Description and Discovery Interface (UDDI) is a widely acknowl-
edged specification of a Web service registry. It defines a metadata aggregation

service and specifies protocols for querying and updating a common repository
of Web services information. Solutions developers can query UDDI repositories
at well-known locations at design time to ascertain those services that might be

Weer_CHO3.gxd 3/1/05 12:13 PM Page 43 $

Discovery Services 43

compatible with their requirements. After they locate a directory, they can send
a series of query requests against the registry to acquire detailed information
about Web services (such as who provides them and where they are hosted)
and bindings to the implementation. They can then feed this information into
an assortment of development time tools to generate the appropriate runtime
software and messages required to invoke the required service. Solutions can
also query UDDI repositories dynamically at runtime. In this scenario, the soft-
ware that needs to use a service is told at execution time the type of service or
interface it requires. Then it searches a UDDI repository for a service that meets
its functional requirements, or a well-known partner provides it. The software
then uses this information to dynamically access the service.

UDDI repositories can be provided in one of three ways:

m Public UDDI—These are UDDI repositories that can serve as a resource
for Internet-based Web services. An example of this is the UDDI Business
Registry [UBR]—hosted by a group of vendors led by IBM, Microsoft,
and SAP—that is replicated across multiple hosting organizations.

m Intra Enterprise UDDI—An enterprise has a private internal UDDI repos-
itory that provides much more control over which service descriptions
are allowed to be placed there and used by application developers
within that specific enterprise.

m Inter Enterprise UDDI—This basically scopes the content of the UDDI to
services that are shareable between specific business partners.

As discussed in Chapter 1, service discovery (publish/find) plays an important
role in an SOA. You can achieve this in other ways, but within a Web services
world, UDDI provides a highly functional and flexible standard approach to
Web services discovery.

UDDI is covered in detail in Chapter 8, “UDDI.”

3.5.2 MetaData Exchange

WS-Policy proposes a framework that extends the service description features
that WSDL provides. Having more refined service descriptions, qualified by
specific WS-policies, supports much more accurate discovery of services that

Weer_CHO3.gxd 3/1/05 12:13 PM Page 44 $

44 Web Services: A Realization of SOA

are compatible with the business application that is to be deployed. In a service
registry (such as a UDDI registry), queries of WS-Policy-decorated services en-
able the retrieval of services that support appropriate policies in addition to the
required business interface. For example, a query might request all services that
support the creditAuthorization WSDL interface (port type), use Kerberos for
authentication, and have an explicitly stated privacy policy. This allows a ser-
vice requester to select a service provider based on the quality of the interaction
that delivers its business contracts.

Although service registries are important components of some Web services
environments, it is often necessary to address the request of service informa-
tion directly to the service itself. The WS-MetaDataFxchange specification
defines protocols that support the dynamic exchange of WS-Policy and other
metadata that is relevant to the service interaction (such as XML Schema

and WSDL descriptions) between interacting Web services endpoints.
WS-MetadataExchange allows a service requester to ask a service provider
directly for all or part of its metadata, without the involvement of a third-party
registry. Using the WS-MetadataExchange protocol service, endpoints can
exchange policies at runtime and use them to bootstrap their interaction from
information about the settings and protocols to be applied. This is especially
useful when not all policy information is in a repository or when a requester
receives a reference to a service through some mechanism other than a direct
query on a registry. This direct dynamic exchange of policies also supports the
customization of each interaction based, for example, on the identity of the
other endpoint or any other aspect of the context under which the interaction
takes place. This flexibility allows Web services to be designed to offer differ-
ent qualities of service for different targeted audiences.

WS-MetadataExchange is discussed in detail in Chapter 9, “Web Services
Metadata Exchange.”

3.6 Quality of Service

Specifications in this domain are related to the quality of the experience associ-
ated with interaction with a Web service. The services in this layer specify the
requirements that are associated with the overall reliability of Web services. The

Weer_CHO3.gxd 3/1/05 12:13 PM Page 45 $

Quality of Service 45

specific issues involving this layer include security, reliability of message deliv-
ery, and support for transactions (guaranteeing and agreeing on the outcome of
a business application).

3.6.1 WS-Security

Security is of fundamental concern in enterprise computing. WS-Security is the
basic building block for secure Web services. Today, most distributed Web ser-
vices rely on transport-level support for security functions (for example, HTTPS
and BASIC-Auth authentication). These approaches to security provide a basic
minimum for secure communication, and the level of function they provide is
significantly less than that provided by existing middleware and distributed
environments. WS-Security uses existing security models (such as Kerberos and
X509). The specifications concretely define how to use the existing models in
an interoperable way. Multihop, multiparty Web service computations cannot
be secure without WS-Security.

Security relies on predefined trust relationships. Kerberos works because partic-
ipants trust the Kerberos Key Distribution Center. Public Key Infrastructure (PKI)
works because participants trust the root certificate authorities. WS-Trust de-
fines an extensible model for setting up and verifying trust relationships. The
key concept in WS-Trust is a Security Token Service (STS). An STS is a distin-
guished Web service that issues, exchanges, and validates security tokens. WS-
Trust allows Web services to set up and agree on which security servers they
trust, and to rely on these servers.

Some Web service scenarios involve a short sporadic exchange of a few mes-
sages. WS-Security readily supports this model. Other scenarios involve long,
multimessage conversations between the Web services. WS-Security also sup-
ports this model, but the solution is not optimal.

Protocols such as HTTP/S use public keys to perform a simple negotiation that
defines conversation-specific keys. This key exchange allows more efficient
security implementations and decreases the amount of information encrypted
with a specific set of keys. WS-SecureConversation provides similar support for
WS-Security. Participants often use WS-Security with public keys to start a con-
versation or session, and they use WS-SecureConversation to agree on session
specific keys for signing and encrypting information.

o

Weer_CHO3.gxd 3/1/05 12:13 PM Page 46 $

46 Web Services: A Realization of SOA

WS-Federation allows a set of organizations to establish a single, virtual security
domain. For example, a travel agent, an airline, and a hotel chain might set up
such a federation. An end user who logs into any member of the federation has
effectively logged into all of the members. WS-Federation defines several mod-
els for providing federated security through protocols between WS-Trust and
WS-SecureConversation topologies. In addition, customers often have “proper-
ties” when they deal with an enterprise, and WS-Federation allows the setting
up of a federated property space. This allows each participant to have secure
controlled access to each member’s property information about the end users.

The WS-Security family of specifications is discussed in detail in Chapters 12,
“Security,” and 13, “Advanced Security.”

3.6.2 Reliable Messaging

In the Internet world, communication channels are typically unreliable.
Connections break, messages fail to be delivered or are delivered more than
once, and perhaps in a different sequence to that in which they were sent.
Communication can become even more of an issue when the exchange of mes-
sages spans multiple transport layer connections. Although techniques for ensur-
ing reliable delivery of messages are reasonably well understood and available
in some messaging middleware products today (such as IBM WebsphereMQ),
messaging reliability is still a problem. If messaging reliability is addressed by
Web service developers who are incorporating techniques to deal with this di-
rectly into the services they develop, there is no guarantee that developers of
different Web services will make the consistent choices about the approach to
adopt. The outcome might not guarantee end-to-end reliable interoperable mes-
saging. Even in cases in which the application developers defer dealing with the
reliable messaging to messaging middleware, different middleware products
from different suppliers do not necessarily offer a consistent approach to dealing
with the problem. Again, this might preclude reliable message exchange be-
tween applications that are using different message-oriented middleware.

WS-ReliableMessaging addresses these issues and defines protocols that enable
Web services to ensure reliable, interoperable exchange of messages with speci-
fied delivery assurances. The specification defines three basic assurances:

Weer_CHO3.gxd 3/1/05 12:13 PM Page 47 $

Quality of Service 47

m In-order delivery—The messages are delivered in the same order in
which they were sent.

m At least once delivery—Each message that is sent is delivered at least
one time.

m At most once delivery—No duplicate messages are delivered.

You can combine these assurances to give additional ones. For example, com-
bining at least once and at most once gives exactly one delivery of a message.
The protocol enables messaging middleware vendors to ease application devel-
opment and deployment for Web services by providing services that implement
these protocols, possibly layered over their existing proprietary message
exchange protocols. WS-Reliable Messaging protocols allow different operating
and middleware systems to reliably exchange messages, thereby bridging differ-
ent infrastructures into a single, logically complete, end-to-end model for Web
services reliable messaging.

WS-ReliableMessaging is discussed in detail in Chapter 10, “Reliable
Messaging.”

3.6.3 Transactions

Dealing with many of today’s business scenarios necessitates the development
of applications that consist of multiple Web services exchanging many mes-
sages. An example might be a group of financial institutions setting up a finan-
cial offering that involves insurance policies, annuities, checking accounts, and
brokerage accounts. Such applications can be complex, executing across het-
erogeneous, loosely coupled distributed systems that are prone to failure, and
introducing significant reliability problems. For such applications, you must
deal with the failure of any component Web service of the application within
the context of the whole application. A coordinated orchestration of the out-
come of the participating services that make up the business application is es-
sential so that a coherent outcome of the whole business application can be
agreed upon and guaranteed. Therefore, it is important that the Web services
involved are able to do the following:

m Start new tasks, the execution and disposition of which are coordinated
with other tasks.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 48 $

48 Web Services: A Realization of SOA

m Agree on the outcome of the computation. For example, does everyone
agree that the financial packages were set up?

WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity define pro-
tocols that are designed specifically to address these requirements.

WS-Coordination is a general mechanism for initiating and agreeing on the
outcome of multiparty, multimessage Web service tasks. WS-Coordination has
three key elements:

m A coordination context—This is a message element that is associated
with exchanges during the interaction of Web services. This coordination
context contains the WS-Addressing endpoint reference of a coordination
service, in addition to the information that identifies the specific task
being coordinated.

m A coordinator service—This provides a service to start a coordinated
task, terminate a coordinated task, allow participants to register in a task,
and produce a coordination context that is part of all messages
exchanged within a group of participants.

m An interface—Participating services can use the interface to inform them
of an outcome that all of the participants have agreed upon.

Although WS-Coordination is a general framework and capability, WS-
AtomicTransaction and WS-BusinessActivity are two particular protocols that
compose with and extend the WS-Coordination protocol to define specific ways
to reach overall outcome agreement. They extend this framework to allow the
participants in the distributed computation to determine outcome robustly .

WS-AtomicTransaction defines a specific set of protocols that plug into
WS-Coordination to implement the traditional two-phase atomic ACID
transaction protocols. However, traditional atomic transactions and the
WS-AtomicTransaction protocol are not always suitable. For example, this
protocol is generally not appropriate for use with many types of business trans-
actions. Transaction protocols for business transactions have to deal with long-
lived activities. These differ from atomic transactions in that such activities can

Weer_CHO3.gxd 3/1/05 12:13 PM Page 49 $

Service Components 49

take much longer to complete. Therefore, to minimize latency of access by
other potential users of the resources being used by Web services participating
in the activity, you need to make the results of interim operations visible to oth-
ers before the overall activity has completed. In light of this, you can introduce
mechanisms for fault and compensation handling to reverse the effects of tasks
that were completed previously within a business activity (such as compensa-
tion or reconciliation). WS-BusinessActivity defines a specific set of protocols
that plug into the WS-Coordination model to provide such long-running, com-
pensation-based transaction protocols. For example, although WS-BPEL defines
a transaction model for business processes, it is WS-BusinessActivity that speci-
fies the corresponding protocol rendering. This, again, is an example for the
composeability of the Web services specifications.

WS-Coordination and Transaction specifications are covered in detail in
Chapter 11, “Transactions.”

3.7 Service Components

The existing Web services standards do not provide for the definition of the
business semantics of Web services. Today’s Web services are isolated and
opaque. Overcoming this isolation means connecting Web services and specify-
ing how to jointly use collections (compositions) of Web services to realize
much more comprehensive and complex functionality—typically referred to as
a business process. A business process specifies the potential execution order of
operations from a collection of Web services, the data that is shared between
these composed Web services, which partners are involved, and how they are
involved in the business process, joint exception handling for collections of
Web services, and so on. This composition especially allows the specification of
long-running transactions between composed Web services. Consistency and
reliability are increased for Web services applications. Breaking this opaqueness
of Web services means specifying usage constraints of operations of a collection
of Web services and their joint behavior. This, too, is similar to specifying
business processes.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 50 $

50 Web Services: A Realization of SOA

3.7.1 Composition of Web Services

Business Process Execution Language for Web services (WS-BPEL, often short-
ened to BPEL) provides a language to specify business processes and process
states and how they relate to Web services. This includes specifying how a busi-
ness process uses Web services to achieve its goal, and it includes specifying
Web services that a business process provides. Business processes specified in
BPEL are fully executable and are portable between BPEL-conformant tools and
environments. A BPEL business process interoperates with the Web services of
its partners, whether these Web services are realized based on BPEL or not.
Finally, BPEL supports the specification of business protocols between partners
and views on complex internal business processes.

BPEL supports the specification of a broad spectrum of business processes, from
fully executable, complex business processes over more simple business proto-
cols to usage constraints of Web services. It provides a long-running transaction
model that allows increasing consistency and reliability of Web services appli-
cations. Correlation mechanisms are supported that allow identifying statefull
instances of business processes based on business properties. Partners and Web
services can be dynamically bound based on service references.

WS-BPEL is discussed in detail in Chapter 14, “Modeling Business Processes:
BPEL.”

3.8 Composeability

One of the key guiding principles that has governed the specification of the Web
services discussed in this book is that of composeability. Each of the Web service
specifications addresses one specific concern and has a value in its own right,
independently of any other specification. For example, developers of applica-
tions can adopt reliable messaging to simplify development of their business
application, use transactions as a method of guaranteeing a reliable outcome

of their business application, or use BPEL to define their complex business
applications. However, although each of these specifications stands on its own,
all the specifications are designed to work seamlessly in conjunction with each
other. The term composeable describes independent Web service specifications

Weer_CHO3.gxd 3/1/05 12:13 PM Page 51 $

Composeability 51

that you can readily combine to develop much more powerful capabilities.
Composeability facilitates the incremental discovery and use of new services;
consequently, developers must implement only that which is necessary at any
given point in time. The complexity of a solution is a direct consequence of the
specific problem that is being addressed.

The basic Web service specifications, WSDL and SOAP in particular, have been
designed to support composition inherently. An important characteristic of a
Web service is the multipart message structure. Such a structure facilitates the
easy composition of new functionality. You can add extra message elements in
support of new services in such a way that does not directly alter the process-
ing of and pre-existing functionality. For example, you can add transaction pro-
tocol information to a message that already includes reliable messaging
protocol information and vice versa without the protocols conflicting with each
other, and in a way that is compatible with the pre-existing message structure.

1 <S:Envelope...>
2 <S:Header>

3 <wsa:ReplyTo>
4 <wsa:Address>http://business456.com/User12</wsa:Address>
5 </wsa:ReplyTo> WS-Addressing
6 <wsa:TO>HTTP://Fabrikam123.com/Traffic</wsa:To>
7 <wsa:Action>http://Fabrikam123.com/Traffic/Status</wsa:Action>
8 <wssec:security>
9 <wssec:BinarySecurityToken
10 ValueType="wssec:x509v3”
11 EncodingType="wssec:Base64Binary” & WS-Security
12 dXJcY3TnYHB....Ujmi8eMTaW
13 </wssec:BinarySecurity Token
14 </wssec:Security
15 <wsrm:Sequence>
16 <wsu:ldentifier>http://Fabrikam123.com/seq1234</wsu:ldentifier> + WS-Reliable Messaging
17 <wsrm:MessageNumber>10</wsrm:MessageNumber>
18 </wsrm:Sequence>
19 </S:Header>
20 </S:Body
* <app:TrafficStatus
. xmins:env="http//highwaymon.org/payloads”>
23 <road>520W</road>
24 <speed>3mph</speed>

25 </app:TrafficStatus>
26 </S:Body>
27 </S:Envelope>

Figure 3-2 Web service message composeability.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 52 $

52 Web Services: A Realization of SOA

Figure 3.2 illustrates this by way of a simple Web service message that contains
elements associated with three different Web services specifications. Lines 3-7
are associated with WS-Addressing, lines 8—-14 with WS-Security, and lines
15-18 with WS-ReliableMessaging. Each of these elements is independent and
can be incorporated and used independently without affecting the processing of
other elements present. This enables transactions, security, and reliability of
Web services to be defined in terms of composeable message elements.

A good example of the power of composeable Web services in practice is the
requirement for service consumers to determine the assurances that are pro-
vided by a particular service that they might want to use. This enables the con-
sumer to ascertain whether a particular service meets desired expectations, and
if so, in what way. The services must document their requirements in terms of
their specific support for transactions, security and reliable messaging, and so
on. WS-Policy enables Web services to incrementally augment their WSDL in
an independent way to provide a more complete and flexible description of
elements that have to be added to the SOAP message to interact with the
service successfully.

3.9 Interoperability

SOA and Web services promise significant benefits: reduced cost and complex-
ity of connecting systems and businesses, increased choice of technology sup-
pliers leading to reduced cost of technology ownership, and increased
opportunities for businesses to interact both with customers and suppliers in
new and profitable ways. The fundamental premise of Web services is that stan-
dardization, predicated on the promise of easy interoperability, resolves many
of the long-standing issues facing businesses today. However, Web services and
the SOAs that are based upon them are an emergent market. As such, the tech-
nologies and specifications that various organizations are defining for Web ser-
vices are in flux. Issues relate to ambiguity of interpretation of specifications or
standards, in addition to differences and insufficient understanding of interac-
tions between them. For Web services to be successful, these specifications
must be able to truly provide interoperability in a manner that is conducive to

Weer_CHO3.gxd 3/1/05 12:13 PM Page 53 $

Interoperability 53

running a business or producing products that can effectively leverage Web
services technology. The IT leaders behind the Web services specifications real-
ize that interoperability is in the best interests of all industry participants. In
2002, they created the Web Services Interoperability Organization (WS-I).

3.9.1 WS-I

WS-I [WSI] is an open industry organization that is chartered to promote Web
services interoperability across differing platforms, operating systems/middle-
ware, programming languages, and tools. It works across the varied existing
industry and standards organizations to respond to customer needs by
providing guidance and best practices to help develop Web service solutions.
Membership of WS-I is open to software vendors of all sizes, to their customers,
and to any others who have interests in Web services. The work of WS-l is car-
ried out by the members in WS-l working groups, generally consisting of indi-
viduals who have a diverse set of skills (developers, testers, business analysts,
and so on). Members can actively participate in one or more WS-I working
groups, based on their specific interest or expertise.

WS-I was formed specifically for the creation, promotion, and support of
generic protocols for interoperable exchange of messages between Web ser-
vices. Generic protocols are protocols that are independent of any actions nec-
essary for secure, reliable, and efficient delivery. Interoperable in this context
means suitable for and capable of being implemented and deployed onto multi-
ple platforms. Among the deliverables that WS-I is creating are profiles, testing
tools, use case scenarios, and sample applications.

A profile consists of a list of Web services specifications at specified version
levels, along with recommended guidelines for use, or the exclusion of inade-
quately specified features. WS- is developing a set of profiles that support inter-
operability. Profiles facilitate the discussion of Web service interoperability at a
level of granularity for those people who have to make investment decisions
about Web services and in particular Web services products. WS-I focuses on
compatibility at the profile level. To avoid confusion, it is likely that only a few
profiles will be defined. There is already a consensus on those standards that

Weer_CHO3.gxd 3/1/05 12:13 PM Page 54 $

54 Web Services: A Realization of SOA

form the most basic Web services profile, and it is likely—although not manda-
tory—that as additional profiles emerge, they will indeed be based on this basic
profile. In addition to references to industry standards and emerging specifica-
tions, a profile might contain interoperability guidelines that can resolve ambi-
guities. Such guidelines constrain some of the specifications or standard MAYs
and SHOULD:s, often the source of interoperability problems, such that they
become MUSTs or MUST NOTs to satisfy the requirements of the use cases and
usage scenarios. The first, or Basic, WS- profile pertains to the most basic Web
services, such as XML Schema 1.0, SOAP 1.1, WSDL 1.1, and UDDI 2.0.

The testing tools monitor and analyze interactions with and between Web ser-
vices to ensure that exchanged messages conform to the WS-I profile guide-
lines. Sample applications are being developed to demonstrate the
implementation of applications that are built from Web Services Usage
Scenarios, which conform to a given set of profiles. Implementations of the
same sample application on multiple platforms, using different languages and
development tools, allow WS-I to show interoperability and provide readily
usable resources for Web services developers and users.

WS-l is committed to building strong relationships and adopting specifications
developed by a wide array of organizations, such as the Internet Engineering
Task Force (IETF), Open Applications Group (OAGi), OASIS, OMG, UDDI,
W3C, and many others. These organizations serve the needs of a vast range of
communities and customer bases. It is the plan of WS-I to engage these groups
and work together to meet the needs of Web services developers and customers.

3.10 REST

Despite the name, Web service technology offers several advantages in non-
Web environments. For example, Web service technology facilitates the integra-
tion of J2EE components with .NET components within an enterprise or
department in a straightforward manner. But as shown, Web services can be
implemented in Web environments, too, on top of basic Web technologies such
as HTTP, Simple Mail Transfer Protocol (SMTP), and so on. Representational
State Transfer (REST) is a specific architectural style introduced in [FOO]. Simply
put, it is the architecture of the Web.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 55 $

REST 55

Consequently, the question arises about how Web services compare to the
Web, or how the corresponding underlying architectural styles SOA and REST
compare.

3.10.1 “Representational” in REST

The basic concept of the REST architecture is that of a resource. A resource is
any piece of information that you can identify uniquely. In REST, requesters and
services exchange messages that typically contain both data and metadata. The
data part of a message corresponds to the resource in a particular representation
as described by the accompanying metadata (format), which might also contain
additional processing directives. You can exchange a resource in multiple repre-
sentations. Both communication partners might agree to a particular representa-
tion in advance.

For example, the data of a message might be information about the current
weather in New York City (the resource). The data might be rendered as an
HTML document, and the language in which this document is encoded might
be German. This makes up the representation of the resource “current weather
in New York City.” The processing directives might indicate that the data should
not be cached because it changes frequently.

3.10.2 “State Transfer” in REST

Services in REST do not maintain the state of an interaction with a requester;
that is, if an interaction requires a state, all states must be part of the messages
exchanged. By being stateless, services increase their reliability by simplifying
recovery processing. (A failed service can recover quickly.) Furthermore, scala-
bility of such services is improved because the services do not need to persist
state and do not consume memory, representing active interactions. Both relia-
bility and scalability are required properties of the Web. By following the REST
architectural style, you can meet these requirements.

3.10.3 REST Interface Structure

REST assumes a simple interface to manipulate resources in a generic manner.
This interface basically supports the create, retrieve, update, and delete (CRUD)
method. The metadata of the corresponding messages contains the method

Weer_CHO3.gxd 3/1/05 12:13 PM Page 56 $

56 Web Services: A Realization of SOA

name and the identifier of the resource that the method targets. Except for the
retrieval method, the message includes a representation of the resource.
Therefore, messages are self-describing.

Identifiers being included in the messages is fundamental in REST. It implies
further benefits of this architectural style. For example, by making the identifier
of the resource explicit, REST furnishes caching strategies at various levels and
at proper intermediaries along the message path. An intermediary might deter-
mine that it has a valid copy of the target resource available at its side and can
satisfy a retrieval request without passing the request further on. This contributes
to the scalability of the overall environment.

If you are familiar with HTTP and URIs, you will certainly recognize how REST
maps onto these technologies.

3.10.4 REST and Web Services

At its heart, the discussion of REST versus Web services revolves around the
advantage and disadvantages of generic CRUD interfaces and custom-defined
interfaces.

Proponents of REST argue against Web service technology because custom-
defined Web service interfaces do not automatically result in reliability and
scalability of the implementing Web services or cacheability of results, as
discussed earlier. For example, caching is prohibited mainly because neither
identifiers of resources nor the semantics of operations are made explicit in
messages that represent Web service operations. Consequently, an intermediary
cannot determine the target resource of a request message and whether a re-
quest represents a retrieval or an update of a resource. Thus, an intermediary
cannot maintain its cache accordingly.

Proponents of Web service technology argue against REST because quality of
service is only rudimentally addressed in REST. Scenarios in which SOA is ap-
plied require qualities of services such as reliable transport of messages, trans-
actional interactions, and selective encryption of parts of the data exchanged.
Furthermore, a particular message exchange between a requester and a service
might be carried out in SOA over many different transport protocols along its

Weer_CHO3.gxd 3/1/05 12:13 PM Page 57 $

Scope of Applicability of SOA and Web Service 57

message path—with transport protocols not even supported by the Web. Thus,
the tight coupling of the Web architecture to HTTP (and a few other transport
protocols) prohibits meeting this kind of end-to-end qualities of service require-
ment. Metadata that corresponds to qualities of services cannot—in contrast to
what REST assumes—be expected as metadata of the transport protocols along
the whole message path. Therefore, this metadata must be part of the payload
of the messages. This is exactly what Web service technology addresses from
the outset, especially via the header architecture of SOAP.

From an architectural perspective, it is not “either REST or Web services.” Both
technologies have areas of applicability. As a rule of thumb, REST is preferable
in problem domains that are query intense or that require exchange of large
grain chunks of data. SOA in general and Web service technology as described
in this book in particular is preferable in areas that require asynchrony and vari-
ous qualities of services. Finally, SOA-based custom interfaces enable straight-
forward creation of new services based on choreography.

You can even mix both architectural styles in a pure Web environment. For ex-
ample, you can use a regular HTTP GET request to solicit a SOAP representation
of a resource that the URL identifies and specifies in the HTTP message. In that
manner, benefits from both approaches are combined. The combination allows
use of the SOAP header architecture in the response message to built-in quality of
service that HTTP does not support (such as partial encryption of the response). It
also supports the benefits of REST, such as caching the SOAP response.

3.11 Scope of Applicability of SOA and Web Service

As indicated throughout the first three chapters of this book, Web service tech-
nology provides a uniform usage model for components/services, especially
within the context of heterogeneous distributed environments. Web service
technology also virtualizes resources (that is, components that are software arti-
facts or hardware artifacts). Both are achieved by shielding idiosyncrasies of the
different environments that host those components. This shielding can occur by
dynamically selecting and binding those components and by hiding the com-
munication details to properly access those components.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 58 $

58 Web Services: A Realization of SOA

Furthermore, interactions between a requester and a service might show config-
urable qualities of service, such as reliable message transport, transaction pro-
tection, message-level security, and so on. These qualities of services are not
just ensured between two participants but between any number of participants
in heterogeneous environments.

Given this focus, the question about the scope of applicability of SOA in gen-
eral and Web service technology in particular is justified. As with most architec-
tural questions, there is no crisp answer, no hard or fast rule to apply. Given
this, common sense should prevail. For example:

m SOA is not cost effective for organizations that have small application
portfolios or those whose new interface requirements are not enough to
benefit from SOA.

m SOA does not benefit organizations that have relatively static application
portfolios that are already fully interfaced.

m If integration of components within heterogeneous environments or
dynamically changing component configurations is at the core of the
problem being addressed, consider SOA and Web service technology.
SOA offers potentially significant benefits to organizations with large
application portfolios that undergo frequent change (lots of mergers
and acquisitions or frequent switching of service providers).

m If reusability of a function (in the sense of making it available to all kinds
of requesters) is important, providing the function as a Web service is a
good approach.

m Currently, the XML footprint and parsing cost at both ends of a message
exchange does take up time and resources. If high performance is the
most important criterion for primary implementation, consider the use of
Web service technology with care. Use of binary XML for interchange
might help this, but currently there are no agreed-upon standards for this.

m Similarly, if the problem in hand is within a homogeneous environment,
and interoperation with other external environments is not an issue, Web
service technology might not have significant benefit.

Weer_CHO3.gxd 3/1/05 12:13 PM Page 59 $

Summary 59

3.12 Summary

This chapter provided a high-level overview and understanding of the structure
and composition of a Web services platform. This overview was presented as a
rendering of the fundamental concepts of service orientation that were intro-
duced in Chapter 1, with a specific set of Web services specifications that IBM,
Microsoft, and other significant industry partners developed. This platform rep-
resents the basic core of a new Web-based distributed computing platform that
overcomes some of the problems of earlier distributed computing technologies.
Although the platform is not complete, it certainly forms a viable foundation on
which to build additional higher-level, value-added infrastructure and business
services. It also seeks to address other aspects of a more complete distributed
computing platform. Some additional potential future topics therefore may need
to be addressed to provide this more complete platform, and these are covered
in Chapters 17, “Conclusion,” and 18, “Futures.”

Weer_CHO3.gxd 3/1/05 12:13 PM Page 60 $

