
Chapter 10

Reliable Messaging

187

Since the early 1990s, the information technology (IT) community has leveraged
reliable messaging as a means of mitigating the issues presented in the scenarios
and the motivations covered in this chapter. The IT community has been using
message queue technologies such as WebSphereMQ from IBM, SonicMQ from
Sonic, and MSMQ from Microsoft, in addition to reliable publish/subscribe
technologies such as Tibco Rendezvous. The Java Community Process (JCP) has
developed the Java Message Service API (JMS) in an effort to unify the myriad
application programming interfaces (APIs) to these proprietary environments for
the Java platform. These entities have adapted many of these reliable messaging
environments for use in a Web services context by enabling them to carry
SOAP messages and by describing their bindings using Web Services
Description Language (WSDL). However, to date, each vendor tends to exploit
its own proprietary protocol for the transmission of the message between its
source and its destination. It’s only possible to achieve interoperability between
these proprietary messaging environments by means of gateways between dis-
parate environments, each tailored to a specific pair of environments.

With the emergence of Web services as the preferred integration solution for
distributed systems, it is now realistic to think about the possibility of a unified
interoperability standard for reliable messaging.

Weer_CH10.qxd 3/1/05 12:25 PM Page 187

188 Reliable Messaging

WS-Reliable Messaging has the greatest potential for becoming the standard
for reliable messaging for Web services. Therefore, this book focuses on that
specification.

10.1 Motivation for Reliable Messaging

L. Peter Deutsch, a noted computer scientist, has been attributed with publish-
ing what has become known in software engineering circles as the “Eight
Fallacies of Distributed Computing.” He first presented them at a talk he gave to
the researchers and engineers at Sun Microsystems Labs in 1991. At the time
Deutsch first presented the fallacies, there were only seven. He added the
eighth sometime later. The eight fallacies are as follows:

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn’t change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogenous.

Web services are, at their essence, distributed applications. Certainly, when
designing any Web service, you should carefully consider these words of wis-
dom. Ask yourself whether you have inadvertently relied upon any of these
false assumptions in making your design decisions.

The next sections dive deeper into a few of these fallacies and discuss their
relevance to Web services.

Weer_CH10.qxd 3/1/05 12:25 PM Page 188

Motivation for Reliable Messaging 189

10.1.1 The Network Is Reliable
The first of these fallacies, “The network is reliable,” is one trap into which
many software engineering projects fall. Given that most Web services
deployed today use Transmission Control Protocol (TCP), a highly reliable
connection-oriented host-to-host network protocol, you might think that it’s
unimportant to concern yourself with the inherent unreliability of the network.
However, TCP is only reliable to the extent that the sending TCP stack can be
certain that a message has been delivered to the TCP stack at the receiving
host. Likewise, the receiving host can only be certain that it has either received
a message reliably, or it has not. Things can still go wrong from the perspective
of the Web service, which resides far above the TCP/IP interface.

First, consider that the reliability of the TCP protocol is limited in its scope to
the two communicating TCP stacks and everything in between. Although the
receiving TCP stack assumes responsibility for ensuring that received messages
are passed to the application layer, the process could terminate before the TCP
stack has been able to perform its responsibilities in this regard. Messages that
have been successfully received and acknowledged at the TCP layer could be
lost from the perspective of the application.

Second, a sending process might terminate before the sending application
knows that the receiving TCP stack has received and acknowledged its mes-
sage, and the receiving application has processed it.

Either of these two failure modes can leave a Web service consumer or
provider in an inconsistent state with respect to its counterpart. Although this
might not present a problem for certain stateless and/or idempotent operations
such as an HTTP GET, it can present quite a serious problem for others that are
not idempotent.

If you are going to provide for reliable messaging in the context of Web ser-
vices, you need to keep these issues in mind.

Weer_CH10.qxd 3/1/05 12:25 PM Page 189

190 Reliable Messaging

10.1.2 Latency Is Zero
Whether dealing with distributed components of an application on an intranet
or over the Internet, latency between the distributed components impacts relia-
bility. In the time it takes a message to be transmitted from sender to receiver,
all manner of things can go wrong. The network could become partitioned due
to a router failure or a severed or disconnected network cable. The destination
host could crash. The process in which the receiving component is running
could terminate.

When considering latency in terms of a round-trip request and response (or
stimulus and response), latency becomes an even greater concern. If the service
provider is overwhelmed with requests to process, you can often count latency
in seconds, if not minutes. Processing a request can involve significant compu-
tational resources, or it might depend on another distributed component.
Processing a request might even require manual intervention in some cases. The
longer the latency, the greater the potential for something to go wrong, leaving
the distributed application in an inconsistent state.

10.1.3 There Is One Administrator
Even in an intranet context, this fallacy often rears its ugly head. Although your
IT department might assign a single group to be responsible for the network, in
the context of a Web service, many administrators typically exist. In most cases,
these administrators have rather parochial interests. There might be one admin-
istrator for each database, one for each of the application servers that host the
Web service components, one for the demilitarized zone (DMZ) and firewall
complexes, one for the server room, and so on. Administrators might not always
coordinate their activities with your Web service’s needs. All of this can lead to
circumstances in which certain components of a Web service implementation
become unavailable (during an upgrade or routine maintenance, for example),
often at critical and unexpected times.

Expanding the scope of Web services to the context of the Internet, things get
even more interesting and complicated. You can no more expect to coordinate
activities related to the components of a Web service when the administrator(s)
of those components are employed by your business partners than you can
expect to win the lottery!

Weer_CH10.qxd 3/1/05 12:25 PM Page 190

Reliable Messaging Scenarios 191

Therefore, you need to design your Web service so that it can recover from
failures related to the unavailability of a distributed component brought down
for routine maintenance or failure.

10.2 Reliable Messaging Scenarios

Considering the issues highlighted by the previous elaborated fallacies, various
strategies are available for designing a more robust and reliable system.

10.2.1 Store and Forward
In many scenarios in highly distributed systems, the best you can hope to
achieve is to get information closer to its intended destination. This allows for
more efficient use of the network resources and decouples the initial sender and
intended recipient such that they do not need to be running concurrently. In
other words, the sending system does not need to be running when the receiv-
ing node receives and processes the information, and the receiving node does
not need to be running when the sending node transmits the information in the
first place.

E-mail is at its essence a store-and-forward system. When you send an e-mail, it
typically is transmitted first to your Internet service provider (ISP), where it is
stored on disk. Then the ISP’s sendmail server transmits the message to a server
that is closer yet to the intended recipient (for example, the sendmail server at
the intended recipient’s ISP). Eventually, the intended recipient logs into her ISP
and retrieves all new e-mail messages that have arrived. If any of the distributed
components along the e-mail’s message path is unavailable, the node at which
the message is currently located attempts to retransmit the message later until
such time as the message transmission, or hop, is successful.

10.2.2 Batch Window
This scenario is a derivative of the store-and-forward scenario discussed in the
previous section. Consider two trading partners who want to exchange
purchase orders reliably. One uses a batch system to process orders, and the
other uses an online system that processes them in near real time. Clearly,
there’s an impedance mismatch between the two partners’ systems. The partner

Weer_CH10.qxd 3/1/05 12:25 PM Page 191

192 Reliable Messaging

with the batch order processing system might be in no position to rip and re-
place its existing batch system for any number of valid reasons, both business
and technical.

An effective strategy for dealing with this impedance mismatch is to interpose a
store-and-forward architecture between the two systems. You can employ this
architecture at either partner or at both. The impedance mismatch is mitigated
by virtue of the fact that the messages transmitted as individual messages can be
collected into a batch for processing. The converse is also true. Neither side
needs to be concerned with the fact that its counterpart has a different process-
ing design.

10.2.3 Failure Recovery
Another scenario is that of failure recovery. Consider two trading partners that
have been exchanging order information over time. One suffers a catastrophic
failure of its order management system and has to recover from the previous
evening’s backup. That partner has lost all the orders that it has received since
the backup from which it recovered was performed, and it must find some way
of resynchronizing its system with that of its trading partner. Similarly, the part-
ner whose system did not fail has an interest in having its trading partner fulfill
all the orders that it has sent. Although the two partners could manually recon-
cile their systems, a manual reconciliation does not scale to scenarios that in-
volve several trading partners. Had the partners been using a protocol that
reliably exchanged messages that leveraged a persistent store and a capability
to redeliver messages that had previously been acknowledged, they might be
able to recover from such a failure in an automated manner, saving time and
money in the process.

10.2.4 Long-Running Transactions
People often use atomic transactions with two or or three-phase commit strate-
gies when designing distributed systems to ensure that the distributed compo-
nents of the system have a consistent view of their shared state.

However, in many scenarios, use of a transaction processing monitor is not prac-
tical. You would never consider locking resources for extended periods neces-
sary for completion of something as long running as a purchase order life cycle.

Weer_CH10.qxd 3/1/05 12:25 PM Page 192

Architectural Concepts 193

Further, because of security considerations, you would never think twice about
letting an external party place locks on your system’s resources; that party could
easily mount a denial-of-service (DoS) attack that could cripple your systems.

Using a reliable messaging protocol, paired with a protocol such as WS-
Business Activity, to manage the compensation of application-level faults, you
can overcome these concerns while enabling a more reliable interaction. The
reliable messaging protocol ensures the dependable delivery of the messages,
and the application-level compensation ensures that the long-running transac-
tion either completes successfully or suitably compensates any failure.

10.3 Architectural Concepts

Of all the proposals for reliable messaging for Web services, WS-Reliable
Messaging seems to have the most promise for broad adoption and widespread
deployment necessary to become a standard for interoperability. That is because
its sponsors represent a majority market-share in both the reliable messaging
and Web services solution space.

WS-Reliable Messaging is by far the simplest of the proposed specifications. It
focuses exclusively on the reliable messaging aspect. The addressing aspect has
been factored out into a separate specification called WS-Addressing, covered
in detail in Chapter 5, “WS-Addressing.”

Reliable messaging is enabled by virtue of something called a Sequence, which
is effectively a shared context for a set of messages to be delivered with a com-
mon quality of service between a sending and a receiving endpoint. Each mes-
sage within a Sequence is assigned a unique message number, starting with 1
and increasing monotonically, by one, for each subsequent message in the
Sequence. The receiving endpoint acknowledges receipt of the messages within
a Sequence by indicating the range of messages it has received using a
SequenceAcknowledgement. Each SequenceAcknowledgement message carries
the acknowledgement information for all the messages that have been received
within a Sequence. Hence, a SequenceAcknowledgement message does not
require retransmission should it fail to reach the sending endpoint of the
original message, because the information is sent with a subsequent
SequenceAcknowledgement message.

Weer_CH10.qxd 3/1/05 12:25 PM Page 193

194 Reliable Messaging

As with the other reliable messaging specifications proposed, WS-Reliable
Messaging is defined as a set of SOAP Header extension elements that enable a
range of qualities of service for a Web service, from at-most-once through ex-
actly-once delivery assurances, preservation of message order, and duplicate
detection. However, unlike the other proposals, WS-Reliable Messaging accom-
plishes this with a much simpler syntax and more efficient processing semantics.

10.4 Processing Model

The WS-Reliable Messaging specification defines an abstract model for the
protocol and four distinct roles: Application Source and RM Source on the
sending endpoint, and Application Destination and RM Destination at the
receiving endpoint.

The Application Source role is typically played by the application code running
on the endpoint from which messages are to be delivered reliably. It initiates
the protocol by sending a message (logically) to the RM Source, which then
assumes responsibility for transmitting—and possibly retransmitting—the mes-
sage to the destination role at the receiving endpoint. The RM Source is also
responsible for processing any SequenceAcknowledgement messages from the
RM Destination and taking appropriate action.

The RM Destination role at the receiving endpoint receives messages (re)trans-
mitted by the RM Source role at the sending endpoint. It is responsible for ac-
knowledging receipt of the message and (logically) delivering the message to
the Application Destination role, which is typically played by the application
code that runs on the receiving endpoint. The RM Destination role is responsi-
ble for affecting the quality of service associated with the Delivery Assurance
policy specified for the receiving endpoint.

Figure 10-1 demonstrates this model.

Weer_CH10.qxd 3/1/05 12:25 PM Page 194

Processing Model 195

Initial Sender

Application
Source

Send

RM Source
Transmit

Application
Destination

Deliver

RM Destination
Receive

Ultimate Reciever

Acknowledge

Figure 10-1 Reliable Messaging model.

This model is like that of the TCP protocol. The WS-Reliable Messaging protocol
is limited in its scope to the RM Source and RM Destination roles at either end-
point. Aside from the assurances that the RM Destination observes to fulfill the
specified delivery assurances (At-Most-Once, At-Least-Once, Exactly-Once, and
Ordered), the Application Source role can only be certain that the message has
been reliably delivered to the RM Destination role at the receiving endpoint.

If the application code at the Application Source role needs to have some sort
of application-level acknowledgement that the message was actually processed,
the WS-Reliable Messaging protocol is inadequate for the task. An application-
specific acknowledgement message is required, such as a PurchaseOrderAck as
an application-level acknowledgement/response to a submitted PurchaseOrder.

Note, however, that this separation of concerns is important. Examine the
previous example in light of this separation of concerns. Consider that a
PurchaseOrderAck message sent in response to a PurchaseOrder submission
message might take upward of 24 hours to process in the use case, where the
receiving partner processes its received PurchaseOrders in a batch window
once a day. Waiting 24 hours for some indication that a PurchaseOrder has
been lost in transit between the sending and receiving endpoints can have seri-
ous consequences for the business partner that makes the request. It can even
lead to loss of revenue when order fulfillment is time-sensitive. Clearly, relying
exclusively on the application-level acknowledgement as an indicator that the
message was successfully transmitted is not an ideal situation for all use cases.

Weer_CH10.qxd 3/1/05 12:25 PM Page 195

196 Reliable Messaging

Leveraging an infrastructure-level (or, more precisely, a middleware-level) ac-
knowledgement, decoupled from the application-level processing of the mes-
sage, as the indicator of successful transmission of a message enables the
sending endpoint to respond more quickly to failed transmission attempts.
The failed message transmission can be retried until its receipt has been
acknowledged. The receiving software can take the necessary steps to ensure
that the message is eventually delivered to the application by means of a
persistent store or message queue that the receiving application accesses
when it is ready and able.

This model is highly effective at mitigating the issues discussed earlier in the
“Motivation for Reliable Messaging” section.

The ensuing sections discuss how the WS-Reliable Messaging protocol realizes
this model.

10.4.1 Sequence Lifecycle
An RM Sequence has a well-defined lifecycle. It begins with the RM Source
requesting the creation of a new Sequence of the RM Destination using the
CreateSequence operation. The following example demonstrates the
CreateSequence message.

<?xml version=”1.0” encoding=”UTF-8”?>

<soap:Envelope
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>
<soap:Header>
<wsa:MessageID>
http://example.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546817

</wsa:MessageID>
<wsa:To>http://example.com/service/B</wsa:To>

<wsa:Action>
http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequence

</wsa:Action>
<wsa:ReplyTo>
<wsa:Address>http://example.com/service/A</wsa:Address>

</wsa:ReplyTo>
</soap:Header>

Weer_CH10.qxd 3/1/05 12:25 PM Page 196

Processing Model 197

<soap:Body>
<wsrm:CreateSequence>

<wsrm:AcksTo>
<wsa:Address>http://example.com/service/A</wsa:Address>

</wsrm:AcksTo>
</wsrm:CreateSequence>

</soap:Body>
</soap:Envelope>

The CreateSequence element has a single required child element, the
AcksTo, which indicates the WS-Addressing endpoint to which
SequenceAcknowledgement messages are to be delivered.

Upon receipt of the CreateSequence message, the RM Destination responds by
creating a new Sequence, assigning it a unique identifier, and by returning a
CreateSequenceResponse message, containing the Sequence’s identifier, to the
RM Source. The following example demonstrates a CreateSequenceResponse
message.

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>

<soap:Header>
<wsa:MessageID>

http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8-
a7c2eb546818

</wsa:MessageID>
<wsa:To>http://example.com/service/A</wsa:To>
<wsa:RelatesTo>

http://example.com/guid/0baaf88d-483b-4ecf-a6d8a7c2eb546817
</wsa:RelatesTo>
<wsa:Action>

http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequenceResponse
</wsa:Action>

</soap:Header>
<soap:Body>

<wsrm:CreateSequenceResponse>

<wsrm:Identifier>http://example.com/RM/ABC</wsrm:Identifier>
</wsrm:CreateSequenceResponse>

</soap:Body>
</soap:Envelope>

Weer_CH10.qxd 3/1/05 12:25 PM Page 197

198 Reliable Messaging

The Sequence then transmits messages between the RM Source and the RM
Destination. When all of the messages in a Sequence have been transmitted
and successfully acknowledged, the Sequence is terminated. Upon receipt of
the SequenceAcknowledgement that acknowledges the entire range of messages
in the Sequence, the RM Source sends a TerminateSequence one-way message
to the RM Destination. Upon receipt of the TerminateSequence message, the
RM Destination is free to reclaim any resources that are associated with the
Sequence. It can do so because it can be assured that the RM Source has re-
ceived the final SequenceAcknowledgement message covering the full range of
messages in the Sequence and will be sending no further messages in the
Sequence.

If the RM Destination receives any subsequent messages in the Sequence, it can
be assured that these messages must have been caught in the network and can
be safely discarded without action. In fact, if the RM Destination receives any
message belonging to a Sequence about which it has no knowledge, it can
safely discard the message without taking action because it can assume that the
message belongs to a Sequence that has been terminated.

If the RM Destination does not receive the TerminateSequence message, it may
preserve the state associated with the Sequence until the Sequence expiry
duration expires so that it can respond with a retransmission of the final
SequenceAcknowledgement message if any subsequent messages for the
Sequence are received.

10.4.2 Basic Syntax
The WS-Reliable Messaging specification defines four SOAP header elements:
Sequence, SequenceFault, SequenceAcknowledgement, and AckRequested. In
addition, a companion specification, WS-RM Policy Assertion, defines a set of
domain-specific policy assertions, to be used in context of WS-Policy and WS-
Policy Attachments for purposes of specifying the quality of service details re-
lated to a Sequence.

The sections that follow explore each of the syntax elements in detail.

Weer_CH10.qxd 3/1/05 12:25 PM Page 198

Processing Model 199

10.4.3 Sequence Element
The core element of the WS-Reliable Messaging protocol is the Sequence ele-
ment. Each message within a Sequence between sending and receiving end-
points must include a Sequence SOAP header element. The following is an
example of a SOAP message containing a Sequence header that initiates a new
Sequence and establishes the initial expiration date for the Sequence:

<soap:Envelope
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”>
<soap:Header>

<rm:Sequence>
<rm:Identifier>

20030818-11010001-0500@example.com
</rm:Identifier>
<rm:MessageNumber>1</rm:MessageNumber>

</rm:Sequence>
</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

The Sequence element has three child elements: Identifier, MessageNumber,
and LastMessage. The Identifier and MessageNumber elements must be present
in each Sequence element.

The Identifier element is the unique identifier of the Sequence. The same value
must be present on each message in a Sequence.

The MessageNumber element carries a positive integer that represents the mes-
sage’s position within a Sequence.

The LastMessage element is included only on the last message in a Sequence. It
signals to the receiving endpoint that this message is the last in the Sequence.

Weer_CH10.qxd 3/1/05 12:25 PM Page 199

200 Reliable Messaging

In addition, you can extend the Sequence element so that it can carry
additional attributes and elements from foreign namespaces. This allows the
Sequence element to be composed in several ways, some of which the authors
of the WS-Reliable Messaging specification might not have anticipated.

A Sequence can be short-lived or long-running. It can have as few as one mes-
sage or as many as 18,446,744,073,709,551,615 messages. Therefore, you can
leverage the protocol for a wide variety of use cases. Partners who exchange
relatively few messages at infrequent intervals might choose to establish a new
Sequence for each burst of activity, whereas partners who have long-term rela-
tionships with frequent exchanges of messages might choose to do so under the
context of a single Sequence. In either case, the protocol is always the same.

A Sequence can apply to all of the messages traveling in a particular direction
(for example, from sender to receiver) in a portType/interface, to messages trav-
eling in a particular direction within selected operations in a portType/interface,
or to particular input or output messages traveling in a particular direction.
Technically, a Sequence can apply to all traffic traveling in a particular direction
between two endpoints, regardless of whether they have been described as a
single portType/interface.

10.4.4 SequenceAcknowledgement Element
Messages within a Sequence are acknowledged by a receiving endpoint by
means of the SequenceAcknowledgement SOAP header element. As previously
mentioned, the SequenceAcknowledgement SOAP header element contains
acknowledgement information about all of the messages in a Sequence. It does
this by means of a set of one or more child AcknowledgementRange elements,
each of which carries an upper and lower bound of contiguous messages that
have been received within a Sequence.

Technically, the correctness of the protocol can be accomplished by virtue of
the receiving endpoint sending just one acknowledgement message with a
SequenceAcknowledgement element in response to the receipt of a message
that has a Sequence element with the LastMessage element present.

Weer_CH10.qxd 3/1/05 12:25 PM Page 200

Processing Model 201

Of course, waiting until all the messages within a Sequence have been received
before sending an acknowledgement message might be impractical in many, if
not most, circumstances. As you will soon see in the section titled “10.4.8 Policy
Assertions,” a receiving endpoint is typically configured with a maximum inter-
val between acknowledgement messages using the AcknowledgementInterval
policy assertion. A sending endpoint then expects to receive an acknowledge-
ment message within the specified AcknowledgmentInterval after transmitting a
message. Failure to receive a SequenceAcknowledgement message within the
specified time interval might indicate a problem at the receiving endpoint and
result in a retransmission attempt for any unacknowledged messages.

The following is an example of a SequenceAcknowledgement element that ac-
knowledges receipt of messages 1 through 10.

<soap:Envelope
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”>
<soap:Header>

...
<rm:SequenceAcknowledgment>

<rm:Identifier>
20030818-11010001-0500@example.com

</rm:Identifier>
<rm:AcknowledgmentRange Upper=”10” Lower=”1”/>

</rm:SequenceAcknowledgment>
</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

Next is an example of a SOAP message that contains a Sequence
Acknowledgement SOAP header element. This element indicates that
it has not received the third message in a Sequence that has five messages
(as perceived from the receiving endpoint’s perspective). Note that the
SequenceAcknowledgement element has two AcknowledgementRange child
elements: one that acknowledges receipt of messages 1 and 2, and a second
that acknowledges receipt of messages 4 and 5.

Weer_CH10.qxd 3/1/05 12:25 PM Page 201

202 Reliable Messaging

<soap:Envelope
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”>
<soap:Header>

<rm:SequenceAcknowledgment>
<rm:Identifier>
20030818-11010001-0500@example.com

</rm:Identifier>
<rm:AcknowledgmentRange Upper=”2” Lower=”1”/>
<rm:AcknowledgmentRange Upper=”5” Lower=”4”/>

</rm:SequenceAcknowledgment>
</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

The sending endpoint that received such a SequenceAcknowledgement would
determine that message 3 needed to be retransmitted until the sending endpoint
received a message carrying a SequenceAcknowledgement SOAP header ele-
ment indicating that the receiving endpoint had, in fact, received message 3.

<soap:Envelope
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”>
<soap:Header>

...
<rm:SequenceAcknowledgment>

<rm:Identifier>20030818-11010001-
0500@example.com</rm:Identifier>

<rm:AcknowledgmentRange Upper=”5” Lower=”1”/>
</rm:SequenceAcknowledgment>

</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

10.4.5 AckRequested Element
The third SOAP header element defined by the WS-Reliable Messaging specifi-
cation is the AckRequested element. A sending endpoint might include an
AckRequested SOAP header element in a message as a means of asking the
receiving endpoint to send an acknowledgement message immediately instead
of waiting for the acknowledgement interval to expire.

Weer_CH10.qxd 3/1/05 12:25 PM Page 202

Processing Model 203

The following SOAP message is an example of use of the AckRequested element.

<soap:Envelope
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2003/03/addressing”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsu=”http://schemas.xmlsoap.org/ws/2002/07/utility”>
<soap:Header>

...
<rm:Sequence>

<rm:Identifier>20030818-11010001-
0500@example.com</rm:Identifier>

<rm:MessageNumber>1</rm:MessageNumber>
</rm:Sequence>
<rm:AckRequested/>

</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

10.4.6 SequenceFault Element
The fourth and final SOAP header element defined in the WS-Reliable
Messaging specification is SequenceFault. It carries fault detail information re-
lated to the processing of the Sequence, SequenceAcknowledgement, and
AckRequested SOAP header elements. The fault information is carried as a
SOAP header element because faults that are related to the processing of SOAP
header elements must also be conveyed as SOAP header elements per the
SOAP specification(s).

The SequenceFault element has two required child elements: Identifier, to iden-
tify the Sequence to which the fault applies, and FaultCode, to carry the quali-
fied name (QName) of one of the fault codes defined in the WS-Reliable
Messaging specification. It might also have one or more
AcknowledgementRange child elements if the fault was generated in
response to processing a SequenceAcknowledgement.

In addition, the specification provides for extensibility of the SequenceFault
element by means of an XML Schema wildcard element.

Weer_CH10.qxd 3/1/05 12:25 PM Page 203

204 Reliable Messaging

The following is an example of a SOAP message carrying a SequenceFault
SOAP header element. It indicates that the Sequence has been refused because
of insufficient resources at the RM Destination to allocate a new Sequence.

<soap:Envelope
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsu=”http://schemas.xmlsoap.org/ws/2002/07/utility”>
<soap:Header>

<rm:SequenceFault>
<rm:FaultCode>rm:SequenceRefused</rm:FaultCode>

</rm:SequenceFault>
</soap:Header>
<soap:Body>

<soap:Fault>
<faultcode>soap:Server</faultcode>
<faultstring>
insufficient resources for new Sequence.
</faultstring>

</soap:Fault>
</soap:Body>

</soap:Envelope>

10.4.7 Delivery Semantics Supported
The WS-Reliable Messaging protocol is an At-Least-Once protocol. That means
that each message will be delivered to the RM Destination at least once in the
correct operation of the protocol. This base enables the RM Destination to offer
the full spectrum of delivery assurances to the Application Destination, ranging
from At-Most-Once to At-Least-Once and Exactly-Once to Ordered.

For instance, the RM Destination could maintain a limited buffer for messages
received and discard duplicates and the oldest undelivered messages in the
buffer as new messages are received within a Sequence after the buffer size is
exceeded. That would provide At-Most-Once delivery semantics to the
Application Destination.

Alternatively, the RM Destination could be implemented such that it did not
check for and discard duplicate messages, thus providing At-Least-Once deliv-
ery semantics to the Application Destination.

Weer_CH10.qxd 3/1/05 12:25 PM Page 204

Processing Model 205

The RM Destination could apply Exactly-Once delivery semantics by applying
duplicate detection to the At-Least-Once semantics.

The RM Destination could provide “Ordered” delivery semantics by ensuring
that it buffered those messages that have gaps in the Sequence until messages
are received that fill those gaps before delivering the messages to the
Application Destination.

Ultimately, it is the RM Destination’s responsibility to fulfill the delivery assur-
ance requirements of the Application Destination. This simplifies the protocol
and increases the potential for interoperability.

10.4.8 Policy Assertions
The companion WS-RM Policy Assertion specification defines a policy assertion
that is intended for use in the context of WS-Policy and WS-Policy Attachments.
The policy assertion is aimed at enabling endpoints that participate in the
WS-Reliable Messaging protocol either to specify their requirements or to indi-
cate the protocol’s observed behavior to a prospective partner.

10.4.9 Inactivity Timeout
This assertion property specifies (in milliseconds) a period of inactivity for a
Sequence. If during this duration an endpoint has received no application or
control messages, the endpoint MAY consider the Sequence to have been termi-
nated due to inactivity.

<rm:InactivityTimeout Milliseconds=”86400000”/>

10.4.10 Retransmission Interval
A ReliableMessaging source may optionally specify a base retransmission
interval for a sequence. If no acknowledgement has been received for a given
message within that interval, the source will retransmit the message. The
retransmission interval may be modified at the discretion of the source during
the lifetime of the sequence. This assertion property does not alter the formula-
tion of messages as transmitted, only the timing of their transmission.

Weer_CH10.qxd 3/1/05 12:25 PM Page 205

206 Reliable Messaging

The sequence may optionally specify that the interval will be adjusted using the
commonly known exponential backoff algorithm.

<rm:BaseRetransmissionInterval Milliseconds=”3000”/>
<rm:ExponentialBackoff/>

10.4.11 Acknowledgement Interval
Acknowledgements can be sent on return messages or sent stand alone. In the
case where a return message is not available with which to send an acknowl-
edgement, a ReliableMessaging Destination may wait for the duration of the
acknowledgement interval before sending a stand alone acknowledgement. If
there are no unacknowledged messages, the ReliableMessaging Destination
may choose not to send an acknowledgement.

This assertion property does not alter the formulation of messages or acknowl-
edgements as transmitted. Its purpose is to communicate the timing of acknowl-
edgements so that the source may be tuned appropriately. It does not alter the
meaning of the <AckRequested> directive.

<rm:AcknowledgementInterval Milliseconds=”1000”/>

10.4.12 Basic WS-Reliable Messaging Profile
Given that the policy assertion properties that comprise timing considerations
can be arranged into any number of possible combinations, the authors of the
WS-Reliable Messaging specification have defined a base timing profile that is
intended to help promote interoperability.

The specifics of this profile are as follows:

<wsp:Policy>
<rm:RMAssertion>

<rm:BaseRetransmissionInterval Milliseconds=”3000”/>
<rm:ExponentialBackoff/>
<rm:InactivityTimeout Milliseconds=”86400000”/>
<rm:AcknowledgementInterval Milliseconds=”1000”/>

</rm:RMAssertion>
</wsp:Policy>

Weer_CH10.qxd 3/1/05 12:25 PM Page 206

Strengths and Weaknesses 207

The authors have assigned this profile the following URI designation:

http://schemas.xmlsoap.org/ws/2005/02/rm/baseTimingProfile.xml

Therefore, you can reference it using a WS-Policy Attachment PolicyReference.

10.5 Strengths and Weaknesses

On the plus side, WS-Reliable Messaging offers the full range of quality of ser-
vice that you would expect. The protocol is quite simple, but in many respects,
it is far more efficient and effective than the other proposed specifications.

WS-Reliable Messaging has been carefully architected to be fully composeable
with other Web services specifications that have been or have yet to be pub-
lished by IBM, Microsoft, and their partners.

Specifically, WS-Reliable Messaging can be composed with WS-Addressing to
enable a wide variety of reliable message exchange patterns (MEPs). However,
WS-Reliable Messaging does not require composition with WS-Addressing or
any specific version of WS-Addressing. For example, consider the case in which
WS-Reliable Messaging is used with the synchronous SOAP/HTTP binding,
such that the SequenceAcknowledgment is carried in a SOAP message on
the HTTP response message. Typically, there would be no need to address
information in this use case. Yet, it enables a far more robust and reliable
exchange of messages between the sending and receiving endpoints. If a
SequenceAcknowledgement message fails to reach the sending endpoint that
initiated the HTTP request, the acknowledgement information is carried on the
HTTP response for the next message in the Sequence without requiring that the
sending endpoint resend the unacknowledged message.

WS-Reliable Messaging does not require specialized logic to validate required
interdependencies between header elements that cannot be expressed in XML
Schema, as do some of the other two proposed specifications that this chapter
has reviewed. Therefore, off-the-shelf schema validators, such as the Apache
Xerces parser, can validate the SOAP header elements.

Weer_CH10.qxd 3/1/05 12:25 PM Page 207

208 Reliable Messaging

WS-Reliable Messaging has also been carefully designed to be extensible. It can
add optional extension element and attribute content from a foreign namespace
in a manner that does not require implementations to be upgraded but allows
those that do upgrade to take advantage of the extended features.

10.6 Examples

The subsequent examples demonstrate a typical message exchange using the
WS-Reliable Messaging protocol. What follows is the initial message to create
the Sequence using a CreateSequence message.

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope

xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”

xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>
<soap:Header>

<wsa:MessageID>
http://example.com.com/0baaf88d-483b-4ecf-a6d8-a7c2eb546817

</wsa:MessageID>
<wsa:To>http://example.com.com/service/B</wsa:To>

<wsa:Action>
http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequence

</wsa:Action>
<wsa:ReplyTo>

<wsa:Address>http://example.com.com/service/A</wsa:Address>
</wsa:ReplyTo>

</soap:Header>
<soap:Body>
<wsrm:CreateSequence>

<wsrm:AcksTo>
<wsa:Address>

http://example.com.com/service/A
</wsa:Address>

</wsrm:AcksTo>
</wsrm:CreateSequence>

</soap:Body>
</soap:Envelope>

Next is a CreateSequenceResponse message.

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”

Weer_CH10.qxd 3/1/05 12:25 PM Page 208

Examples 209

xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>
<soap:Header>

<wsa:MessageID>
http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546818

</wsa:MessageID>
<wsa:To>http://example.com.com/service/A</wsa:To>
<wsa:RelatesTo>

http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8a7c2
➥eb546817

</wsa:RelatesTo>
<wsa:Action>

http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequenceResponse
</wsa:Action>

</soap:Header>
<soap:Body>

<wsrm:CreateSequenceResponse>
<wsrm:Identifier>

http://example.com.com/RM/ABC
</wsrm:Identifier>

</wsrm:CreateSequenceResponse>
</soap:Body>

</soap:Envelope>

After WS-Reliable Messaging creates the Sequence, messages can begin flowing
for the Sequence. In the next example, the Sequence has three messages, and
one of the messages is lost in transit, requiring a retransmission.

Message 1

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>

<soap:Header>
<wsa:MessageID>

http://example.com.com/guid/71e0654e-5ce8-477b-bb9d-34f05
➥cfcbc9e

</wsa:MessageID>
<wsa:To>http://example.com.com/service/B</wsa:To>
<wsa:From>

<wsa:Address>
http://example.com.com/service/A

</wsa:Address>
</wsa:From>
<wsa:Action>

http://example.com.com/service/B/request
</wsa:Action>

Weer_CH10.qxd 3/1/05 12:25 PM Page 209

210 Reliable Messaging

<wsrm:Sequence>
<wsrm:Identifier>

http://example.com.com/RM/ABC
</wsrm:Identifier>
<wsrm:MessageNumber>1</wsrm:MessageNumber>

</wsrm:Sequence>
</soap:Header>
<soap:Body>

<!— Some Application Data —>
</soap:Body>

</soap:Envelope>

Message 2

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>

<soap:Header>
<wsa:MessageID>

http://example.com.com/guid/daa7d0b2-c8e0-476e-a9a4-d164154
➥e38de

</wsa:MessageID>
<wsa:To>http://example.com.com/service/B</wsa:To>
<wsa:From>

<wsa:Address>
http://example.com.com/service/A

</wsa:Address>
</wsa:From>
<wsa:Action>

http://example.com.com/service/B/request
</wsa:Action>
<wsrm:Sequence>

<wsrm:Identifier>
http://example.com.com/RM/ABC

</wsrm:Identifier>
<wsrm:MessageNumber>2</wsrm:MessageNumber>

</wsrm:Sequence>
</soap:Header>
<soap:Body>

<!— Some Application Data —>
</soap:Body>

</soap:Envelope>

Message 3

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope

Weer_CH10.qxd 3/1/05 12:25 PM Page 210

Examples 211

xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>
<soap:Header>
<wsa:MessageID>
http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8-

➥a7c2eb546817
</wsa:MessageID>
<wsa:To>http://example.com.com/service/B</wsa:To>
<wsa:From>
<wsa:Address>

http://example.com.com/service/A
</wsa:Address>

</wsa:From>
<wsa:Action>

http://example.com.com/service/B/request
</wsa:Action>
<wsrm:Sequence>
<wsrm:Identifier>
http://example.com.com/RM/ABC

</wsrm:Identifier>
<wsrm:MessageNumber>3</wsrm:MessageNumber>
<wsrm:LastMessage/>

</wsrm:Sequence>
</soap:Header>
<soap:Body>
<!— Some Application Data —>

</soap:Body>
</soap:Envelope>

The RM Destination has not received message 2 because of a transmission er-
ror, so it responds with a SequenceAcknowledgement for messages 1 and 3.

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>
<soap:Header>
<wsa:MessageID>
http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8-

➥a7c2eb546817
</wsa:MessageID>
<wsa:To>http://example.com.com/service/A</wsa:To>
<wsa:From>
<wsa:Address>http://example.com.com/service/B</wsa:Address>

</wsa:From>
<wsa:Address>http://example.com.com/service/B</wsa:Address>

</wsa:From>

Weer_CH10.qxd 3/1/05 12:25 PM Page 211

212 Reliable Messaging

<wsa:RelatesTo>
http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8-

➥a7c2eb546817
</wsa:RelatesTo>
<wsa:Action>

http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement
</wsa:Action>
<wsrm:SequenceAcknowledgement>
<wsrm:Identifier>
http://example.com.com/RM/ABC

</wsrm:Identifier>
<wsrm:AcknowledgementRange Upper=”1” Lower=”1”/>
<wsrm:AcknowledgementRange Upper=”3” Lower=”3”/>

</wsrm:SequenceAcknowledgement>
</soap:Header>
<soap:Body/>

</soap:Envelope>

The sending endpoint discovers that the RM Destination did not receive mes-
sage 2, so it resends the message and requests an acknowledgement.

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>
<soap:Header>
<wsa:MessageID>
http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8-

➥a7c2eb546817
</wsa:MessageID>
<wsa:To>http://example.com.com/service/B</wsa:To>
<wsa:From>
<wsa:Address>http://example.com.com/service/A</wsa:Address>

</wsa:From>
<wsrm:Sequence>
<wsrm:Identifier>
http://example.com.com/RM/ABC

</wsrm:Identifier>
<wsrm:MessageNumber>2</wsrm:MessageNumber>

</wsrm:Sequence>
<wsrm:AckRequested>
<wsrm:Identifier>
http://example.com.com/RM/ABC

</wsrm:Identifier>
</wsrm:AckRequested>

Weer_CH10.qxd 3/1/05 12:25 PM Page 212

Examples 213

</soap:Header>
<soap:Body>
<!-- Some Application Data -->

</soap:Body>
</soap:Envelope>

The RM Destination responds with a SequenceAcknowledgement for the com-
plete sequence, which can then be terminated.

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>
<soap:Header>
<wsa:MessageID>
http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8-

➥a7c2eb546817
</wsa:MessageID>
<wsa:To>http://example.com.com/service/A</wsa:To>
<wsa:From>
<wsa:Address>http://example.com.com/service/B</wsa:Address>

</wsa:From>
<wsa:RelatesTo>

http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8-
➥a7c2eb546817

</wsa:RelatesTo>
<wsa:Action>

http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement
</wsa:Action>
<wsrm:SequenceAcknowledgement>
<wsrm:Identifier>
http://example.com.com/RM/ABC

</wsrm:Identifier>
<wsrm:AcknowledgementRange Upper=”3” Lower=”1”/>

</wsrm:SequenceAcknowledgement>
</soap:Header>
<soap:Body/>

</soap:Envelope>

The RM Source receives the final SequenceAcknowledgement message. Then it
sends a TerminateSequence to the RM Destination to indicate that it can
reclaim the resources that are associated with the Sequence.

Weer_CH10.qxd 3/1/05 12:25 PM Page 213

214 Reliable Messaging

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wsrm=”http://schemas.xmlsoap.org/ws/2005/02/rm”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”>
<soap:Header>
<wsa:MessageID>
http://example.com.com/guid/0baaf88d-483b-4ecf-a6d8-

➥a7c2eb546817
</wsa:MessageID>
<wsa:To>http://example.com.com/service/B</wsa:To>
<wsa:Action>

http://schemas.xmlsoap.org/ws/2005/02/rm/TerminateSequence
</wsa:Action>
<wsa:From>
<wsa:Address>http://example.com.com/service/A</wsa:Address>

</wsa:From>
</soap:Header>
<soap:Body>
<wsrm:TerminateSequence>
<wsrm:Identifier>
http://example.com.com/RM/ABC

</wsrm:Identifier>
</wsrm:TerminateSequence>

</soap:Body>
</soap:Envelope>

10.7 Future Directions

At the time of this writing, the authors and others who have developed
implementations are performing interoperability and composeability testing
on the WS-Reliable Messaging specification. After the interoperability and com-
poseability testing are complete, the developers will republish the specification
and submit it to a standards body. They haven’t chosen a venue yet.

The specification is expected to be leveraged so that it provides for a standards-
based interoperability protocol to bridge the various proprietary JMS provider
environments.

Weer_CH10.qxd 3/1/05 12:25 PM Page 214

Summary 215

10.8 Summary

This chapter covered the motivations for reliable messaging, including some of
L. Peter Deutsch’s “Eight Fallacies of Distributed Computing.” Reliable messag-
ing has served IT well as a foundation for many enterprise application integra-
tion deployments, providing the loose coupling necessary to mitigate against
those fallacies. WS-Reliable Messaging promises to bring the benefits of reliable
messaging to SOA and Web services, enabling enterprises to extend Web ser-
vices to support reliable business-to-business (B2B) exchanges. This would re-
place Electronic Data Interchange (EDI) and offer the potential for a single
interoperability protocol for the various proprietary Message Oriented
Middleware (MOM) protocols.

Weer_CH10.qxd 3/1/05 12:25 PM Page 215

Weer_CH10.qxd 3/1/05 12:25 PM Page 216

