
1029

PART IV
Creating Graphical Output

Yao_C#_book.fm Page 1029 Friday, April 30, 2004 12:12 PM

Yao_C#_book.fm Page 1030 Friday, April 30, 2004 12:12 PM

1031

15
.NET Compact Framework
Graphics

This chapter introduces the basics of creating graphical output from .NET
Compact Framework programs.

HIS CHAPTER DESCRIBES the support that the .NET Compact Frame-
work provides programs for creating graphical output. As we mention

elsewhere in this book, we prefer using .NET Compact Framework classes
whenever possible. To accomplish something beyond what the .NET Com-
pact Framework supports, however, we drill through the managed-code
layer to the underlying Win32 API substrate. This chapter and the two that
follow discuss the .NET Compact Framework’s built-in support for creating
graphical output; these chapters also touch on limitations of that support
and how to supplement that support with the help of GDI functions.

An Introduction to .NET Compact Framework Graphics

In general, programs do not create graphical output by drawing directly to
device hardware.1 A program typically calls a library of graphical output
functions. Those drawing functions, in turn, rely on device drivers that

1. But when necessary for performance reasons or to access device-specific features, a
program might bypass the intervening software layers and interact with hardware.

T

Yao_C#_book.fm Page 1031 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1032

provide the device-specific elements needed to create output on a device.
Historically, creating output on a graphic device such as a display screen or
a printer involves these software layers:

• Drawing program

• Graphic function library

• Graphic device driver (display driver or printer driver)

The core graphics library on desktop Windows is the Graphics Device
Interface (GDI, gdi32.dll). With the coming of .NET, Microsoft added a
second library (GDI+, gdiplus.dll2) to supplement GDI drawing sup-
port. This second library provides a set of enhancements on top of the core
GDI drawing functions. While the primary role for GDI+ was to support
graphics for the managed-code library, it also provides a nice bonus for
native-mode application programmers: the library can be called from
unmanaged (native-mode) C++ programs. On the desktop, these two
graphic libraries—GDI and GDI+—provide the underpinnings for all of
the .NET graphic classes. And so, with .NET Framework programs run-
ning on the Windows desktop, the architecture of graphical output
involves the following elements:

• Managed-code program

• Shared managed-code library (System.Drawing.dll)

• GDI+ native-code library (gdiplus.dll)

• GDI native-code library (gdi32.dll)

• Graphic device driver (display driver or printer driver)

Windows CE supports a select set of GDI drawing functions. There is
no library explicitly named GDI in Windows CE. Instead, the graphical
output functions reside in the coredll.dll library. These functions are
exactly like their desktop counterparts, so even if there is no library named
GDI in Windows CE, we refer to these functions as GDI functions.

2. GDI+ is a native-mode, unmanaged-code library.

Yao_C#_book.fm Page 1032 Friday, April 30, 2004 12:12 PM

AN INTRODUCTION TO .NET COMPACT FRAMEWORK GRAPHICS 1033

Of the 400 or so functions that exist on desktop versions of GDI, only
about 85 are included in Windows CE. Windows CE has none of the draw-
ing functions from the extended desktop graphics library, GDI+. This
places some limits on the extent to which Windows CE can support .NET
drawing functions.

With just 85 of the graphical functions from the desktop’s GDI library
and none of the functions from GDI+, you might wonder whether Win-
dows CE has enough graphics support to create interesting graphical out-
put. The answer is a resounding: Yes! While there are not a lot of graphical
functions, the ones that are present were hand-picked as the ones that pro-
grams tend to use most. For example, there is a good set of text, raster, and
vector functions. A program can use fonts to create rich text output, dis-
play bitmaps along with other kinds of raster data (like JPEG files), and
draw vector objects such as lines and polygons.

For graphical output, .NET Compact Framework programs rely on
System.Drawing.dll, which is also the name of the graphical output
library in the desktop .NET Framework. At 38K, the .NET Compact Frame-
work library is significantly smaller than the 456K of its counterpart on the
desktop. While the desktop library supports five namespaces, the .NET
Compact Framework version supports one: System.Drawing (plus tiny
fragments of two other namespaces). The architecture for drawing from a
.NET Compact Framework program is as follows:

• Managed-code program

• Managed-code library (System.Drawing.dll)

• GDI functions in the native-code library (coredll.dll)

• Graphic device driver (display or printer)

.NET Framework Drawing and Desktop Graphic Device Drivers

With the introduction of the .NET Framework, no changes were required to

the graphic device drivers of any version of Microsoft Windows. That is,

the device driver model used by both display screens and printer drivers

was robust enough to support the .NET drawing classes.

Yao_C#_book.fm Page 1033 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1034

From the arrangement of these software layers, a savvy .NET Compact
Framework programmer can divine two interesting points: (1) The managed-
code library depends on the built-in GDI drawing functions, and managed-
code programs can do the same; and (2) as on the desktop, display screens
and printers require a dedicated graphic driver to operate.

Drawing Surfaces
On the Windows desktop, there are four types of drawing surfaces:

1. Display screens

2. Printers

3. Bitmaps

4. Metafiles

If Possible, Delegate Graphical Output to a Control

Before you dig into .NET Compact Framework graphics, ask yourself

whether you want to create the graphical output yourself or can delegate

that work to a control. If a control exists that can create the output you

require, you can save yourself a lot of effort by using that control instead

of writing the drawing code yourself. For example, the PictureBox con-

trol displays bitmaps and JPEG images with little effort. Aside from that

single control, however, most controls are text-oriented.

Doing your own drawing—and making it look good—takes time and

energy. By delegating graphical output to controls, you can concentrate

on application-specific work. The built-in controls support a highly inter-

active, if somewhat text-oriented, user interface.

Sometimes, however, you do your own drawing to give your program

a unique look and feel. In that case, you can create rich, graphical output

by using classes in the .NET Compact Framework’s System.Drawing

namespace.

Yao_C#_book.fm Page 1034 Friday, April 30, 2004 12:12 PM

AN INTRODUCTION TO .NET COMPACT FRAMEWORK GRAPHICS 1035

When we use the term drawing surface, we mean either a physical drawing
surface or a logical drawing surface. Two of the four drawing surfaces in
the list are physical drawing surfaces, which require dedicated device driv-
ers: display screens and printers. The other two drawing surfaces are logi-
cal drawing surfaces: bitmaps and metafiles. These latter two store pictures
for eventual output to a device.

Bitmaps and metafiles are similar enough that they share a common
base class in the desktop .NET Framework: the Image3 class. Metafiles are
not officially supported in Windows CE, however, and so their wrapper,
the Metafile4 class, does not exist in the current version of the .NET Com-
pact Framework. Because metafiles might someday be supported in a
future version of the .NET Compact Framework, they are worth a brief
mention here.

Display Screens

The display screen plays a central role in all GUI environments because it is
on the display screen that a user interacts with the various GUI applica-
tions. The real stars of the display screen are the windows after which the
operating system gets its name. A window acts as a virtual console5 for
interacting with a user. The physical console for a desktop PC consists of a
display screen, a mouse, and a keyboard. On a Pocket PC, the physical con-
sole is made up of a display screen, a stylus and a touch-sensitive screen for
pointing, and hardware buttons for input (supported, of course, by the on-
screen keyboard).

All graphical output on the display screen is directed to one window or
another. Enforcement of window boundaries relies on clipping. Clipping is
the establishment and enforcement of drawing boundaries; a program can
draw inside clipping boundaries but not outside them. The simplest clip-
ping boundaries are a rectangle. The area inside a window where a pro-
gram may draw is referred to as the window’s client area.

3. Fully qualified name: System.Drawing.Image.
4. Fully qualified name: System.Drawing.Imaging.Metafile.
5. A term we first heard from Marlin Eller, a member of the GDI team for Windows 1.x.

Yao_C#_book.fm Page 1035 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1036

Printers

Printers are the best-established and most-connected peripherals in the
world of computers. While some industry pundits still rant about the soon-
to-arrive paperless office, just the opposite has occurred. Demand for printed
output has continued to go up, not down. Perhaps the world of comput-
ers—with its flashing LCD displays, volatile RAM, and ever-shrinking sili-
con—makes a person want something that is more real.

Printing from Windows CE–powered devices is still in its infancy,
which is a nice way to say that this part of the operating system is less
feature-rich than other portions. Why is that? The official story is that there
is not a good enough business case for adding better printing support,
meaning that users have not asked for it. The fundamental question, then,
is “Why haven’t users asked for better printing for Windows CE?” Perhaps
it is because users are used to printing from desktop PCs. Or perhaps the
problem stems from the lack of printing support in programs bundled with
Pocket PCs (like Pocket Word and Pocket Excel). Whatever the cause, we
show you several ways to print in Chapter 17 so that you can decide
whether the results are worth the effort.

Bitmaps

Bitmaps provide a way to store a picture. Like its desktop counterparts,
Windows CE supports device-independent bitmaps (DIBs) as first-class
citizens. In-memory bitmaps can be created of any size6 and treated like
any other drawing surface. After a program has drawn to a bitmap, that
image can be put on the display screen.

If you look closely, you can see that Windows CE and the .NET Com-
pact Framework support other raster formats. Supported formats include
GIF, PNG, and JPEG. When Visual Studio .NET reads files with these for-
mats (which it uses for inclusion in image lists, for example), it converts the
raster data to a bitmap. The same occurs when a PNG or JPEG file is read
from the object store into a .NET Compact Framework program. Whatever
external format is used for raster data, Windows CE prefers bitmaps. In
this chapter, we show how to create a bitmap from a variety of sources and

6. The amount of available system memory limits the bitmap size.

Yao_C#_book.fm Page 1036 Friday, April 30, 2004 12:12 PM

AN INTRODUCTION TO .NET COMPACT FRAMEWORK GRAPHICS 1037

how to draw those bitmaps onto the display screen from a .NET Compact
Framework program.

Metafiles

A second picture-storing mechanism supported by desktop Windows con-
sists of metafiles. A metafile is a record-and-playback mechanism that
stores the details of GDI drawing calls. The 32-bit version of Windows
metafiles are known as Enhanced Metafiles (EMFs). The following Win32
native metafile functions are exported from coredll.dll but are not offi-
cially supported in Windows CE, although they might gain official support
in some future version of Windows CE:

• CreateEnhMetaFile

• PlayEnhMetaFile

• CloseEnhMetaFile

• DeleteEnhMetaFile

Supported Drawing Surfaces

Of these four types of drawing surfaces, three have official support in Win-
dows CE: display screens, printers, and bitmaps. Only two are supported
by the .NET Compact Framework: display screens and bitmaps. Support
for bitmaps centers around the Bitmap7 class, which we discuss later in
this chapter. We start this discussion of graphical output with the drawing
surface that is the focus in all GUI systems: the display screen.

Compressed Raster Support on Custom Windows
CE Platforms

Pocket PCs support the compressed raster formats, that is, GIF, PNG, and

JPEG files. Custom Windows CE platforms must include the image decom-

pression library, named imgdecmp.dll, to receive that same support.

7. Fully qualified name: System.Drawing.Bitmap.

Yao_C#_book.fm Page 1037 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1038

Drawing Function Families
All of the graphical output functions can be organized into one of three
drawing function families:

• Text

• Raster

• Vector

Each family has its own set of drawing attributes and its own logic for how
its drawing is done. The distinction between these three kinds of output
extends from the drawing program into the graphic device drivers. Each
family is complex enough for a programmer to spend many years master-
ing the details and intricacies of each type of drawing. The drawing sup-
port is rich enough, however, so that you do not have to be an expert to
take advantage of what is offered.

Text Output

For drawing text, the most important issue involves selection of the font
because all text drawing requires a font, and the font choice has the great-
est impact on the visual display of text. The only other drawing attribute
that affects text drawing is color—both the foreground text and the color of
the background area. We touch on text briefly in this chapter, but the topic
is important enough to warrant a complete chapter, which we provide in
Chapter 16.

Raster Output

Raster data involves working with arrays of pixels, sometimes known as bit-
maps or image data. Internally, raster data is stored as a DIB. As we discuss
in detail later in this chapter, six basic DIB formats are supported in the
various versions of Windows: 1, 4, 8, 16, 24, and 32 bits per pixel. Windows
CE adds a seventh DIB format to this set: 2 bits per pixel.

Windows CE provides very good support for raster data. You can
dynamically create bitmaps, draw on bitmaps, display them for the user
to see, and store them on disk. A bitmap, in fact, has the same rights and

Yao_C#_book.fm Page 1038 Friday, April 30, 2004 12:12 PM

AN INTRODUCTION TO .NET COMPACT FRAMEWORK GRAPHICS 1039

privileges as the display screen. By this we mean that you use the same set
of drawing functions both for the screen and for bitmaps. This means you
can use bitmaps to achieve interesting effects by first drawing to a bitmap
and subsequently copying that image to the display screen. An important
difference from desktop versions of Windows is that Windows CE does
not support any type of coordinate transformations, and in particular
there is no support for the rotation of bitmaps; the .NET Compact Frame-
work inherits these limitations because it relies on native Win32 API func-
tions for all of its graphics support.

Vector Output

Vector drawing involves drawing geometric figures like ellipses, rectan-
gles, and polygons. There are, in fact, two sets of drawing functions for
each type of figure. One set draws the border of geometric figures with a
pen. The other set of functions fill the interiors of geometric figures using a
brush. You’ll find more details on vector drawing later in this chapter.

.NET Compact Framework Graphics
The .NET Framework has six namespaces that support the various graphi-
cal output classes. In the .NET Compact Framework, just one namespace
has made the cut: System.Drawing. This namespace and its various
classes are packaged in the System.Drawing.dll assembly. For a detailed
comparison between the graphics support in the .NET Framework and in
the .NET Compact Framework, see the sidebar titled Comparing Sup-
ported Desktop and Smart-Device Drawing.

Comparing Supported Desktop and Smart-Device Drawing

The System.Drawing namespace in the .NET Compact Framework holds

the primary elements used to draw on a device screen from managed

code. The desktop .NET Framework provides five namespaces for creating

graphical output, but in the .NET Compact Framework this has been pared

Yao_C#_book.fm Page 1039 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1040

back to two: System.Drawing and System.Drawing.Design (plus

some fragments from two other namespaces).

Table 15.1 summarizes the .NET namespaces supported in the desk-

top .NET Framework, along with details of how these features are

supported in the .NET Compact Framework. The System.Drawing

namespace supports drawing on a device screen. A second namespace,

System.Drawing.Design, helps when building a custom control. In

particular, this namespace contains elements used to support design-

time drawing of controls (i.e., drawing controls while they are being laid

out inside the Designer). The elements of this namespace reside in the

System.CF.Design.dll assembly, a different name from the assem-

bly name used for the desktop. The change in the file name makes it

clear that this file supports .NET Compact Framework programming.

On the surface, it would be easy to conclude that Microsoft gutted the

desktop System.Drawing.dll library in creating the .NET Compact

Framework edition. For one thing, the desktop version is a whopping

456K, while the compact version is a scant 38K. What’s more, the desktop

version supports 159 classes, while the compact version has a mere 17

classes. A more specific example of the difference between the desktop

.NET Framework and the .NET Compact Framework—from a drawing per-

spective—is best appreciated by examining the Graphics class (a mem-

ber of the System.Drawing namespace). The desktop .NET Framework

version of this class supports 244 methods and 18 properties; the .NET

Compact Framework version supports only 26 methods and 2 properties.

By this accounting, it appears that the prognosis of “gutted” is correct.

Yet, as any thinking person knows, looks can be deceiving.

To understand better the difference between the desktop .NET Frame-

work and the .NET Compact Framework, we have to dig deeper into the

Graphics class. To really see the differences between the desktop and

compact versions, we must study the overloaded methods. If we do, we

see that the desktop .NET Framework provides many overloaded methods

for each drawing call, while the .NET Compact Framework provides far

Yao_C#_book.fm Page 1040 Friday, April 30, 2004 12:12 PM

AN INTRODUCTION TO .NET COMPACT FRAMEWORK GRAPHICS 1041

TABLE 15.1: Desktop .NET Framework Drawing Namespaces in the .NET Compact
Framework

Namespace Description
Support in the .NET
Compact Framework

System.Drawing Core drawing
objects, data
structures, and
functions

A minimal set that
allows for the draw-
ing of text, raster, and
vector objects with
no built-in coordi-
nate transformation

System.Drawing.Design Support for the
Designer and the
various graphic
editors of Visual
Studio .NET

Support provided by
a .NET Compact
Framework–specific
alternative library
named System.CF.
Design.dll

System.Drawing.Drawing2D Support for
advanced graphic
features including
blends, line caps,
line joins, paths,
coordinate trans-
forms, and regions

Not supported in the
.NET Compact Frame-
work (except for the
CombineMode
enumeration)

System.Drawing.Imaging Support for storage
of pictures in meta-
files and bitmaps;
bitmap conversion;
and management of
metadata in image
files

Not supported in the
.NET Compact Frame-
work (except for the
ImageAttributes
class)

System.Drawing.Printing Rich support for
printing and the
user interface for
printing

Not supported in
the .NET Compact
Framework

System.Drawing.Text Font management Not supported in
the .NET Compact
Framework

Yao_C#_book.fm Page 1041 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1042

fewer. For example, the desktop .NET Framework provides six different

ways to call DrawString (the text drawing function), while there is only

one in the .NET Compact Framework. And there are 34 versions of Draw-

Image (the function for drawing a bitmap) but only four in the .NET Com-

pact Framework.

We have, in short, fewer ways to draw objects—but in general we can

draw most of the same things with the .NET Compact Framework that we

can draw on the desktop. This supports a central design goal of Windows

CE, which is to be a small, compact operating system. Win32 programmers

who have worked in Windows CE will recognize that a similar trimming has

been done to define the Windows CE support for the Win32 API. Instead of

calling this a “subset,” we prefer to take a cue from the music recording

industry and use the term “greatest hits.” The .NET Compact Framework

implementation of the System.Drawing namespace is, we believe, the

greatest hits of the desktop System.Drawing namespace.

In comparing the desktop .NET Framework to the .NET Compact Frame-

work, an interesting pattern emerges that involves floating-point num-

bers. In the desktop .NET Framework, most of the overloaded methods

take floating-point coordinates. For all of the overloaded versions of the

DrawString methods, you can only use floating-point coordinates. In

the .NET Compact Framework, few drawing functions have floating-point

parameters—most take either int32 or a Rectangle to specify drawing

coordinates. A notable exception is the DrawString function, which

never takes integer coordinates in the desktop .NET Framework; in the

.NET Compact Framework, it is the sole drawing method that accepts

floating-point values.

It is worth noting that the underlying drawing functions (both in the

operating system and at the device driver level) exclusively use integer

coordinates. The reason is more an accident of history than anything

else. The Win32 API and its supporting operating systems trace their ori-

gins back to the late 1980s, when the majority of systems did not have

built-in floating-point hardware. Such support is taken for granted today,

Yao_C#_book.fm Page 1042 Friday, April 30, 2004 12:12 PM

AN INTRODUCTION TO .NET COMPACT FRAMEWORK GRAPHICS 1043

which is no doubt why the .NET Framework has such rich support for

floating-point values.

A fundamental part of any graphics software is the coordinate system

used to specify the location of objects drawn on a drawing surface. The

desktop .NET Framework supports seven distinct drawing coordinate

systems in the GraphicsUnit enumeration. Among the supported

coordinates systems are Pixel, Inch, and Millimeter. While the

.NET Compact Framework supports this same enumeration, it has only

one member: Pixel. This means that when you draw on a device screen,

you are limited to using pixel coordinates. One exception involves fonts,

whose height is always specified in Point units.

This brings up another difference between the desktop .NET Frame-

work and the .NET Compact Framework: available coordinate transforma-

tions. The desktop provides a rich set of coordinate transformations—

scrolling, scaling, and rotating—through the Matrix class and the 3 × 3

geometric transform provided in the System.Drawing.Drawing2D

namespace. The .NET Compact Framework, by contrast, supports no coor-

dinate mapping. That means that, on handheld devices, application soft-

ware that wants to scale, scroll, or rotate must handle the arithmetic itself

because neither the .NET Compact Framework nor the underlying operat-

ing system provides any coordinate transformation helpers. What the .NET

Compact Framework provides, as far as coordinates go, is actually the

same thing that the underlying Windows CE system provides: pixels, more

pixels, and only pixels.

While it might be lean, the set of drawing services provided in the .NET

Compact Framework is surprisingly complete. That is, almost anything you

can draw with the desktop .NET Framework can be drawn with the .NET Com-

pact Framework. The key difference between the two implementations is

that the desktop provides a far wider array of tools and helpers for drawing.

Programmers of the desktop .NET Framework are likely to have little trouble

getting comfortable in the .NET Compact Framework, once they get used to

the fact that there are far fewer features. But those same programmers

Yao_C#_book.fm Page 1043 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1044

The Role of the Graphics Class

The most important class for creating graphical output is the Graphics8

class. It is not the only class in the System.Drawing namespace, but only
the Graphics class has drawing methods. This class holds methods like
DrawString for drawing a string of text, DrawImage for displaying a bit-
map onto the display screen,9 and DrawRectangle for drawing the outline
of a rectangle. Here is a list of the other classes in the System.Drawing
namespace for the .NET Compact Framework:

• Bitmap

• Brush

• Color

• Font

• FontFamily

• Icon

• Image

• Pen

• Region

• SolidBrush

• SystemColors

These other classes support objects that aid in the creation of graphical out-
put, but none has any methods that actually cause graphical output to
appear anywhere. So while you are going to need these other classes and
will use these other classes, they play a secondary role to the primary
graphical output class in the .NET Compact Framework: Graphics.

are likely to be a bit frustrated when porting desktop .NET Framework code

to the .NET Compact Framework world and are likely to have to rewrite and

retrofit quite a few of their applications’ drawing elements.

8. Fully qualified name: System.Drawing.Graphics.
9. DrawImage can also be used to draw bitmaps onto other bitmaps.

Yao_C#_book.fm Page 1044 Friday, April 30, 2004 12:12 PM

AN INTRODUCTION TO .NET COMPACT FRAMEWORK GRAPHICS 1045

Drawing Support for Text Output

Table 15.2 summarizes the methods of the Graphics class that support text
drawing. The DrawString method draws text, while the MeasureString
method calculates the bounding box of a text string. This calculation is
needed because graphical output involves putting different types of graph-
ical objects on a sea of pixels. When dealing with a lot of text, it is important
to measure the size of each textbox to make sure that the spacing matches
the spacing as defined by the font designer. Failure to use proper spacing
creates a poor result. In the worst cases, it makes the output of your pro-
gram unattractive to users. Even if a user does not immediately notice
minor spacing problems, the human eye is very finicky about what text it
considers acceptable. Poor spacing makes text harder to read because
readers must strain their eyes to read the text. Properly spaced text makes
readers—and their eyes—happier than poorly spaced text does.

Drawing Support for Raster Output

Table 15.3 summarizes the methods of the Graphics class that draw raster
data. We define raster graphics as those functions that operate on an array
of pixels. Two of the listed functions copy an icon (DrawIcon) or a bitmap
(DrawImage) to a drawing surface. The other two methods fill a rectangu-
lar area with the color of an indicated brush. We discuss the details of creat-
ing and drawing with bitmaps later in this chapter.

Drawing Support for Vector Output

Table 15.4 summarizes the seven methods in the Graphics class that
draw vector Graphics objects in the .NET Compact Framework. There

TABLE 15.2: System.Drawing.Graphics Methods for Text Drawing

Method Comment

DrawString Draws a single line of text using a specified font and text color.

MeasureString Calculates the width and height of a specific character string
using a specific font.

Yao_C#_book.fm Page 1045 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1046

TABLE 15.3: System.Drawing.Graphics Methods for Raster Drawing

Method Comment

Clear Accepts a color value and uses that value to fill the entire
surface of a window or the entire surface of a bitmap.

DrawIcon Draws an icon at a specified location. An icon is a raster
image created from two rectangular bitmap masks. The
DrawIcon method draws an icon by applying one of the
masks to the drawing surface using a Boolean AND opera-
tor, followed by the use of the XOR operator to apply the
second mask to the drawing surface. The benefit of icons
is that they allow portions of an otherwise rectangular
image to display the screen behind the icon. The disad-
vantage of icons is that they are larger than comparable
bitmaps and also slower to draw.

DrawImage Draws a bitmap onto the display screen or draws a bitmap
onto the surface of another bitmap.

FillRegion Fills a region with the color specified in a brush. A region
is defined as a set of one or more rectangles joined by
Boolean operations.

TABLE 15.4: System.Drawing.Graphics Methods for Vector Drawing

Method Comment

DrawEllipse Draws the outline of an ellipse using a pen.

DrawLine Draws a straight line using a pen.

DrawPolygon Draws the outline of a polygon using a pen.

DrawRectangle Draws the outline of a rectangle using a pen.

FillEllipse Fills the interior of an ellipse using a brush.

FillPolygon Fills the interior of a polygon using a brush.

FillRectangle Fills the interior of a rectangle using a brush.

Yao_C#_book.fm Page 1046 Friday, April 30, 2004 12:12 PM

DRAWING ON THE DISPLAY SCREEN 1047

are substantially fewer supported vector methods than in the desktop
.NET Framework. The vector methods whose names start with Draw
draw lines. The vector methods whose names start with Fill fill areas.

Drawing on the Display Screen

The various System.Drawing classes in the .NET Compact Framework
exist for two reasons. The first and most important reason is for output to
the display screen. The second reason, which exists to support the first rea-
son, is to enable drawing to bitmaps, which can later be displayed on the
display screen.

Taken together, the various classes in the System.Drawing namespace
support all three families of graphical output: text, raster, and vector. You
can draw text onto the display screen using a variety of sizes and styles of
fonts. You can draw with raster functions, including functions that draw
icons, functions that draw bitmaps, and functions that fill regions10 or the
entire display screen. The third family of graphical functions, vector func-
tions, supports the drawing of lines, polygons, rectangles, and ellipses on
the display screen.

Accessing a Graphics Object
For a .NET Compact Framework program to draw on the display screen, it
must have an instance of the Graphics class—meaning, of course, a
Graphics object. A quick visit to the online documentation in the MSDN
Library shows two interesting things about the Graphics class. First, this
class provides no public constructors. Second, this class cannot be inherited
by other classes. Thus you might wonder how to access a Graphics object.

Close study of the .NET Compact Framework classes reveals that there
are three ways to access a Graphics object. Two are for drawing on a dis-
play screen, and one is for drawing on a bitmap. Table 15.5 summarizes
three methods that are needed to gain access to a Graphics object. We

10. A region is a set of rectangles. Regions exist primarily to support clipping but can also be
used to define an area into which one can draw.

Yao_C#_book.fm Page 1047 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1048

TA
B

LE
 1

5.
5:

.N

ET
 C

om
pa

ct
 F

ra
m

ew
or

k
M

et
ho

ds
 fo

r A
cc

es
si

ng
 a

 G
ra

ph
ic

s
O

bj
ec

t

N
am

es
pa

ce
Cl

as
s

M
et

ho
d

Co
m

m
en

t

S
y
s
t
e
m
.
D
r
a
w
i
n
g

G
r
a
p
h
i
c
s

F
r
o
m
I
m
a
g
e

Cr
ea

te
s

a
G
r
a
p
h
i
c
s

 o
bj

ec
t f

or
 d

ra
w

in
g

on
to

 a
 b

it
m

ap
. W

he
n

do
ne

 d
ra

w
in

g,
 c

le
an

 u
p

th
e
G
r
a
p
h
i
c
s

 o
bj

ec
t b

y
ca

lli
ng

 th
e

D
i
s
p
o
s
e

 m
et

ho
d.

G
r
a
p
h
i
c
s

D
i
s
p
o
s
e

Re
cl

ai
m

s
m

em
or

y
us

ed
 b

y
G
r
a
p
h
i
c
s

 o
bj

ec
ts

.

S
y
s
t
e
m
.
W
i
n
d
o
w
s
.
F
o
r
m
s

C
o
n
t
r
o
l

C
r
e
a
t
e
G
r
a
p
h
i
c
s

Cr
ea

te
s

a
G
r
a
p
h
i
c
s

 o
bj

ec
t f

or
 d

ra
w

in
g

in
 th

e
cl

ie
nt

 a
re

a
of

 a
 c

on
tr

ol
. A

s
in

di
ca

te
d

in
 T

ab
le

 1
5.

6,
 o

nl
y

th
re

e
co

nt
ro

l
cl

as
se

s
su

pp
or

t t
hi

s
m

et
ho

d.
 W

he
n

do
ne

 d
ra

w
in

g,
 c

le
an

 u
p

th
e
G
r
a
p
h
i
c
s

 o
bj

ec
t b

y
ca

lli
ng

 th
e
D
i
s
p
o
s
e

 m
et

ho
d.

C
o
n
t
r
o
l

P
a
i
n
t

 e
ve

nt

ha
nd

le
r

O
bt

ai
ns

 a
 G
r
a
p
h
i
c
s

 o
bj

ec
t t

o
ha

nd
le

 a
 P
a
i
n
t

 e
ve

nt
. A

s
in

di
ca

te
d

in
 T

ab
le

 1
5.

6,
 o

nl
y

fiv
e

co
nt

ro
l c

la
ss

es
 s

up
po

rt

th
is

 e
ve

nt
. D

o
no

t c
al

l t
he

 D
i
s
p
o
s
e

 m
et

ho
d

w
he

n
do

ne

dr
aw

in
g.

Yao_C#_book.fm Page 1048 Friday, April 30, 2004 12:12 PM

DRAWING ON THE DISPLAY SCREEN 1049

include a fourth method in the table, Dispose, because you need to call that
method to properly dispose of a Graphics object in some circumstances.

The display screen is a shared resource. A multitasking, multithreaded
operating system like Windows CE needs to share the display screen and
avoid conflicts between programs. For that reason, Windows CE uses the
same mechanism used by Windows on the desktop: Drawing on a display
screen is allowed only in a window (i.e., in a form or a control).

To draw on the display screen, a program draws in a control. You get
access to a Graphics object for the display screen, then, through controls.
Not just any control class can provide this access, however—only the con-
trol classes that derive from the Control class can.

One way to get a Graphics object for the display screen involves the
Paint event. The Paint event plays a very important role in the design of
the Windows CE user interface, a topic we discuss later in this chapter.
Access to a Graphics object is provided to a Paint event handler method
as a property of its PaintEventArgs parameter. Incidentally, when you
get a Paint event, you are allowed to use the Graphics object while
responding to the event. You are not allowed to hold onto a reference to the
Graphics object because the .NET Compact Framework needs to recycle
the contents of that Graphics object for other controls to use.11

A second way to get a Graphics object is by calling the CreateGraph-
ics method, a method defined in the Control class (and therefore avail-
able to classes derived from the Control class). Using the Graphics object
returned by this call, your program can draw inside a control’s client area.
Although the method name suggests that it is creating a Graphics object,
this is not what happens. Instead, like the Graphics object that arrives
with the Paint event, the Graphics object that is provided by the Create-
Graphics method is loaned to you from a supply created and owned by
the Windows CE window manager. Therefore, you are required to return
this object when you are done by calling the Graphics object’s Dispose
method. Failure to make this call results in a program hanging.

11. Ultimately, the window manager reuses the device context contained within the
Graphics object.

Yao_C#_book.fm Page 1049 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1050

The third way to get a Graphics object is by calling the static From-
Image method in the Graphics class. On the desktop, the Image class is an
abstract class that serves as the base class for the Bitmap and Metafile
classes. Because metafiles are not supported in the .NET Compact Frame-
work, the FromImage method can return only a Graphics object for a bit-
map. You can use the resulting Graphics object to draw onto a bitmap in
the same way that the Graphics object described earlier is used to draw on
a display screen. We are going to discuss drawing to bitmaps later in this
chapter; for now, we explore the subject of drawing in controls.

As we discussed in Chapter 7, a main theme for .NET Compact Frame-
work controls is that “inherited does not mean supported.” Of the 28 avail-
able .NET Compact Framework control classes, only 5 support drawing. To
help understand what types of drawing are supported, we start by identi-
fying the specific controls that you can draw onto. We then cover the most
important control event for drawing, the Paint event. We then discuss
how non–Paint event drawing differs from Paint event handling.

Drawing in Controls
In the desktop .NET Framework, a program can draw onto any type of
control (including onto forms). This feature is sometimes referred to as
owner-draw support, a feature first seen in native-code programming for just
a few of the Win32 API controls. The implementers of the .NET Framework
for the desktop seem to think that this feature is something that every con-
trol should support. On the desktop, every control supports the owner-
draw feature. In other words, you can get a Graphics object for every type

Calling the Dispose Method for a Graphics Object

There are two ways to get a Graphics object, but you need to call the

Dispose method for only one of those ways. You must call the Dispose

method for Graphics objects that are returned by the CreateGraph-

ics method. But you do not call Dispose for Graphics objects that are

provided as a parameter to the Paint event handler.

Yao_C#_book.fm Page 1050 Friday, April 30, 2004 12:12 PM

DRAWING ON THE DISPLAY SCREEN 1051

of control12 and use that object to draw inside the client area of any control.
Owner-draw support is widely available because it allows programmers to
inherit from existing control classes and change the behavior and appear-
ance of those classes. This support allows the creation of custom control
classes from existing control classes.

Things are different in the .NET Compact Framework, for reasons that
are directly attributable to the .NET Compact Framework design goals. As
we discussed in detail in Chapter 7, the .NET Compact Framework itself
was built to be as small as possible and also to allow .NET Compact Frame-
work programs to run with reasonable performance. The result is a set of
controls with the following qualities:

• .NET Compact Framework controls rely heavily on the built-in,
Win32 API control classes.

• .NET Compact Framework controls do not support every PME inher-
ited from the base Control13 class.

The result is that only a few .NET Compact Framework controls provide
owner-draw support. In particular, five control classes support the Paint
event. Only three control classes support the CreateGraphics method.
Table 15.6 summarizes the support for drawing in .NET Compact Frame-
work control classes.

As suggested by the column headings in Table 15.6, there are two types
of drawing: Paint event drawing and CreateGraphics method drawing.
The clearest way to describe the difference is relative to events because of
the unique role played by the Paint event and its associated Paint event
handler method. From this perspective, the two types of drawing are bet-
ter stated as Paint event drawing and drawing for other events. All five

12. All desktop control classes that we tested support the CreateGraphics method. How-
ever, a few desktop control classes do not support the overriding of the Paint event: the Com-
boBox, HScrollbar, ListBox, ListView, ProgressBar, StatusBar, TabControl, TextBox,
Toolbar, TrackBar, TreeView, and VScrollBar classes.
13. Fully qualified name: System.Windows.Forms.Control.

Yao_C#_book.fm Page 1051 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1052

controls in Table 15.6 support Paint event drawing. We turn our attention
now to the subject of the Paint event and its role in the Windows CE user
interface.

Anywhere, Anytime Control Drawing

An early definition of .NET talked about “anywhere, anytime access to

information.” Arbitrary boundaries are annoying. It is odd, then, that you

cannot draw onto your controls anywhere at any time. But wait—maybe

you can?

If you are willing to step outside of the managed-code box, you can

draw on any control at any time. The .NET Compact Framework team did a

great job of giving us a small-footprint set of libraries with very good per-

formance. That is why owner-draw support is so limited—not because of

any belief on the part of the .NET Compact Framework team that you

should not be allowed to draw inside controls.

Native-code drawing means using GDI calls, each of which requires you

to have a handle to a device context (hdc). There are two types of device

contexts: those used to draw inside windows and those that can draw

anywhere on a display screen. To draw in a window, you first must get

TABLE 15.6: Support for Drawing in .NET Compact Framework Control Classes

Class Paint Event CreateGraphics Method

Control Yes Yes

DataGrid Yes Yes

Form Yes Yes

Panel Yes No

PictureBox Yes No

Yao_C#_book.fm Page 1052 Friday, April 30, 2004 12:12 PM

DRAWING ON THE DISPLAY SCREEN 1053

The Paint Event
To draw in a window—that is, in a form or in a control—you handle the
Paint14 event. This event is sent by the system to notify a window that the
contents of the window need to be redrawn. In the parlance of Windows
programmers, a window needs to be redrawn when some portion of its cli-
ent area becomes invalid. To fix an invalid window, a control draws every-
thing that it thinks ought to be displayed in the window.

the window handle (set focus to a control and then call the native Get-

Focus function). Call the native GetDC function to retrieve a device con-

text handle, and call the ReleaseDC function when you are done.

A second method for accessing a device context is by using this call:

hdc = CreateDC(NULL, NULL, NULL, NULL). The device context that

is returned provides access to the entire display screen, not just inside

windows. Among its other uses, this type of device context is useful for

taking screenshots of the display screen, which can be useful for creating

documentation. When done with the device context, be sure to clean up

after yourself by calling the DeleteDC function.

The hdc returned by either of these functions—GetDC or CreateDC—

can be used as a parameter to any GDI drawing function. When done

drawing, be sure to provide your own manual garbage collection. In

other words, be sure to call the ReleaseDC or DeleteDC functions.

14. This is what Win32 programmers know as a WM_PAINT message, which MFC program-
mers handle by overriding the CWnd::OnPaint method.

Generating a Paint Event

The purpose of the Paint event is to centralize all the drawing for a win-

dow in one place. Before we look at more of the details of how to handle

the Paint event, we need to discuss the circumstances under which a

Yao_C#_book.fm Page 1053 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1054

Paint event gets generated. A Paint event gets generated when the

contents of a window become invalid. (We use the term window to mean a

form or any control derived from the Control class.) But what causes a

window to become invalid? There are several causes.

When a window is first created, its contents are invalid. When a form

first appears, every control on the form is invalid. A Paint event is deliv-

ered to each control (which, in some cases, is handled by the native-code

control that sits behind the managed-code control).

A window can also become invalid when it gets hidden. Actually, a hid-

den window is not invalid; it is just hidden. But when it gets uncovered,

the window also becomes invalid. At that moment, a Paint event is gen-

erated by the system so that the window can repair itself.

A window can also become invalid when it gets scrolled. Every scroll

operation causes three possible changes to the contents of a window.

Some portion of the contents might disappear, which occurs when some-

thing scrolls off the screen. Nothing is required for that portion. Another

portion might move because it has been scrolled up (or down, left, or

right). Here again, nothing is required. The system moves that portion

to the correct location. The third portion is the new content that is now

visible to be viewed. This third portion must be drawn in response to a

Paint event.

Finally, a Paint event is triggered when something in the logic of your

program recognizes that the graphical display of a window does not match

the program’s internal state. Perhaps a new file was opened, or the user

picked an option to zoom in (or out) of a view. Maybe the network went

down (or came up), or the search for something ended.

To generate a Paint event for any window, a program calls one of the

various versions of the Invalidate method for any Control-derived

class. This method lets you request a Paint event for a portion of a win-

dow or for the entire window and optionally allows you to request that the

background be erased prior to the Paint event.

Yao_C#_book.fm Page 1054 Friday, April 30, 2004 12:12 PM

DRAWING ON THE DISPLAY SCREEN 1055

This approach to graphical window drawing is not new to the .NET
Compact Framework or even to the .NET environment. All GUI systems
have a Paint event—from the first Apple Macintosh and the earliest ver-
sions of desktop Windows up to the current GUI systems shipping today.
A window holds some data and displays a view of that data.

In one sense, drawing is simple: A window draws on itself using the
data that it holds. And what happens if the data changes? In that case, a
window must declare its contents to be invalid, which causes a Paint event
to be generated. A control requests a Paint event by calling the Invali-
date method. Two basic problems can be observed with the Paint event:

1. Failing to request Paint events (which causes cold windows with
stale contents)

2. Requesting Paint events too often (which causes hot window flickers
that annoy users)

These are different problems, but both involve calling the Invalidate
method the wrong number of times. The first problem arises from not
invalidating a window enough. The second problem arises from invalidat-
ing the window too often. A happy medium is needed: invalidating a win-
dow the right number of times and at just the right times.

To draw in response to a Paint event, a program adds a Paint event
handler to a control. You can add a Paint event handler to any Control-
derived class. But the handler is only going to get called for the five control
classes listed in Table 15.6. This is just another example of the “inherited
does not mean supported” behavior of .NET Compact Framework controls.

Here is an empty Paint event handler.

private void FormMain_Paint(

object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 // draw

}

Yao_C#_book.fm Page 1055 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1056

The second parameter to the Paint event handler is an instance of
PaintEventArgs.15 A property of this class is a Graphics object, which
provides the connection that we need to draw in the form. There is more to
be said about the Graphics object, but first let us look at the case of draw-
ing for events besides the Paint event.

Non–Paint Event Drawing
A window that contains any graphical output must handle the Paint
event. Often, the only drawing that a window requires is the drawing for
the Paint event. This is especially true if the contents of the window are
somewhat static. For example, Label controls are often used to display text
that does not change. For a Label control, drawing for the Paint event is
all that is required. However, windows whose contents must change
quickly might need to draw in response to events other than the Paint
event. A program that displays some type of animation, for example,
might draw in response to a Timer event. A program that echoes user
input might draw in response to keyboard or mouse events.

Figure 15.1 shows the DrawRectangles program, a sample program
we presented in Chapter 6. This program draws rectangles in the pro-
gram’s main form, using a pair of (x,y) coordinates. One coordinate pair is
collected for the MouseDown event, and a second coordinate pair is col-
lected for the MouseUp event. As the user moves the mouse (or a stylus on a
Pocket PC), the program draws a stretchable rubber rectangle as the
mouse/stylus is moved from the MouseDown point to the MouseUp point.
The program accumulates rectangles as the user draws them.

The DrawRectangles program uses both Paint and non–Paint event
drawing. In response to the Paint event, the program draws each of the
accumulated rectangles. In response to the MouseMove event, the stretch-
able rectangle is drawn to allow the user to preview the result before com-
mitting to a specific location.

15. Fully qualified name: System.Windows.Forms.PaintEventArgs.

Yao_C#_book.fm Page 1056 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1057

The basic template for the code used in non–Paint event drawing
appears here.

Graphics g = CreateGraphics();

// Draw

g.Dispose();

This follows a programming pattern familiar to some as the Windows sand-
wich.16 The top and bottom lines of code make up the two pieces of bread—
these are always the same. The filling in between the two slices of bread
consists of the drawing, which is accomplished with the drawing methods
from the Graphics class.

Raster Graphics

We define raster graphics as those functions that operate on an array of
pixels. The simplest raster operation is to fill a rectangle with a single color.

16. This is what Eric Maffei of MSDN Magazine used to refer to as the Windows Hoagie.

Figure 15.1: A stretchable rubber rectangle
created in the DrawRectangles program

Yao_C#_book.fm Page 1057 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1058

On a display screen, this is one of the most common operations. If you study
any window on any display screen, you are likely to see that the background
is a single color, often white or sometimes gray. You can use three methods in
the Graphics class to fill a rectangular area:

• Clear: fills a window with a specified color

• FillRectangle: fills a specified rectangle using a brush

• FillRegion: fills a specified region using a brush

The Clear method accepts a single parameter, a structure of type Color.17

The other two methods accept a Brush18 object as the parameter that iden-
tifies the color to use to fill the area. Before we can fill an area with any of
these functions, then, we need to know how to define colors and how to
create brushes.

Specifying Colors
The most basic type of drawing attribute is color, yet few drawing methods
accept colors directly as parameters. Most drawing methods require other
drawing attributes that have a built-in color. For example, for filling areas,
the color to use for filling the area is the color that is part of a brush. When
drawing lines, the line color is the color that is part of a pen. Brushes are
also used to specify text color. So even though color parameters are not
directly used as parameters to methods, they are indirectly specified through
a pen or brush.

There are three ways to specify a color in a .NET Compact Framework
program:

• With a system color

• With a named color

• With an RGB value

17. Fully qualified name: System.Drawing.Color.
18. Fully qualified name: System.Drawing.Brush.

Yao_C#_book.fm Page 1058 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1059

System colors are a set of colors used to draw the elements of the user inter-
face. The use of system colors helps create consistency between different
programs. For example, a given system might be set up with black text on
a white background, or it could be set up with the opposite, white text on a
black background. System colors are made available as properties of the
SystemColors19 class. Available system colors are listed in Table 15.7 in
the System Colors subsection.

Named colors provide access to colors that use human-readable names
like Red, Green, Blue, White, and Black. There are also a large number of
colors with less common names like SeaShell and PeachPuff. Whether
or not you like all the names of the colors you encounter, they provide a
way to specify colors that is easy to remember. Color names are made
available as static properties of the Color structure.

When you specify a color using an RGB value, you specify an amount of
red, an amount of green, and an amount of blue. Each is defined with a
byte, meaning that values can range from 0 to 255. It is sometimes helpful
to remember that RGB is a video-oriented color scheme often used for dis-
play screens and televisions. When the energy for all three colors is 0, the
color you see is black; when all the energy for all three colors is at 100%
(255), the resulting color is white.

System Colors

System colors let you connect your program’s graphical output to current
system settings. This allows a program to blend in with the current system
configuration. On some platforms, users can change system colors from the
system control panel (such as on desktop version of Microsoft Windows).
Other platforms, like the Pocket PC, do not provide the user with an easy
way to modify system color settings. A custom embedded smart device
could easily be created with a unique system color scheme—say, to match
corporate logo colors or to meet unique environmental requirements such
as usage in low-light conditions or in sunlight. For all of these cases, the saf-
est approach to selecting text colors involves using system colors.

19. Fully qualified name: System.Drawing.SystemColors.

Yao_C#_book.fm Page 1059 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1060

System colors are available as read-only properties in the SystemColors
class, the contents of which are summarized in Table 15.7. If you study this
table, you may notice that several entries have the word Text in the
name—such as ControlText and WindowText. There are, after all, many
uses of text in the user interface. When specifying the color for drawing
text, these system colors provide your best choice.

TABLE 15.7: System Colors in the .NET Compact Framework

Color Description

ActiveBorder Border color of a window when the window is active

ActiveCaption Color of the background in the caption when a window is
active

ActiveCaptionText Color of the text in the caption when a window is active

AppWorkspace Color of the unused area in an MDIa application

a. MDI is not supported on Windows CE or in the .NET Compact Framework.

Control Background color for a three-dimensional control

ControlDark Color of the middle of the shadow for a three-dimensional
control

ControlDarkDark Color of the darkest shadow for a three-dimensional control

ControlLight Color of the lightest element in a three-dimensional control

ControlLightLight Color of the lightest edge for a three-dimensional control

ControlText Color for drawing text in controls

Desktop Color of the desktop background

GrayText Color for drawing grayed text (e.g., for disabled controls)

Highlight Background color of highlighted areas for menus,
ListBox controls, and TextBox controls

HighlightText Text color for highlighted text

HotTrack Color of hot-tracked items

Yao_C#_book.fm Page 1060 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1061

In some cases, there is a pair of system color names: one with and one
without the word Text in the name (e.g., Control and ControlText,
Window and WindowText). One color in the pair defines a system color for
text, and the other defines the color of the background. For example, when
drawing in a form or dialog box, use the Window color for the background
and WindowText for the text color. When you create a custom control, use
the Control color for the control’s background area and ControlText for
the color of text drawn in a control. In the following code, the background
is filled with the default window background color.

private void FormMain_Paint(

object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 g.Clear(SystemColors.Window);

}

Color Description

InactiveBorder Border color of a top-level window when the window is
inactive

InactiveCaption Color of the background in the caption when a window is
inactive

InactiveCaptionText Color of the text in the caption when a window is inactive

Info Background color of a tool tip

InfoText Text color of a tool tip

Menu Menu background color

MenuText Menu text color

ScrollBar Background color of a scroll bar

Window Background color of a window

WindowFrame Color of a window border

WindowText Color of text in a window

Yao_C#_book.fm Page 1061 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1062

Named Colors

The System.Drawing.Color class defines 142 named colors as read-only
properties. The names include old favorites like Red, Green, Blue, Cyan,
Magenta, Yellow, Brown, and Black. It also includes some new colors
like AliceBlue, AntiqueWhite, Aqua, and Aquamarine. With names like
Chocolate, Honeydew, and PapayaWhip, you may get hungry just picking
a color. The named colors appear in Table 15.8.

The following code draws in the background of a window with the
color PapayaWhip.

private void FormMain_Paint(

object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 g.Clear(Color.PapayaWhip);

}

Colors from RGB Values

The third approach that the .NET Compact Framework supports for speci-
fying colors is to specify the three components—red, green, and blue—that
make up a color. These three components are packed together into a 32-bit
integer with one byte for each. The range for each component is from 0
to 255 (FF in hexadecimal). Table 15.9 summarizes color triplet values for
common colors.

To create a color from an RGB triplet, use the Color.FromArgb method.
There are two overloaded versions for this method. We find the following
one easier to use.

public static Color FromArgb(

 int red,

 int green,

 int blue);

When you read the online documentation for this method, you see a ref-
erence to a fourth element in a color, the alpha value. The .NET Compact
Framework does not support this, so you can safely ignore it. (In the desk-
top .NET Framework, the alpha value defines the transparency of a color,
where a value of 0 is entirely transparent and 255 is entirely opaque. In a

Yao_C#_book.fm Page 1062 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1063

TA
B

LE
 1

5.
8:

N

am
ed

 C
ol

or
s

in
 th

e
.N

ET
 C

om
pa

ct
 F

ra
m

ew
or

k

A
l
i
c
e
B
l
u
e

A
n
t
i
q
u
e
W
h
i
t
e

A
q
u
a

A
q
u
a
m
a
r
i
n
e

A
z
u
r
e

B
e
i
g
e

B
i
s
q
u
e

B
l
a
c
k

B
l
a
n
c
h
e
d
A
l
m
o
n
d

B
l
u
e

B
l
u
e
V
i
o
l
e
t

B
r
o
w
n

B
u
r
l
y
W
o
o
d

C
a
d
e
t
B
l
u
e

C
h
a
r
t
r
e
u
s
e

C
h
o
c
o
l
a
t
e

C
o
r
a
l

C
o
r
n
f
l
o
w
e
r
B
l
u
e

C
o
r
n
s
i
l
k

C
r
i
m
s
o
n

C
y
a
n

D
a
r
k
B
l
u
e

D
a
r
k
C
y
a
n

D
a
r
k
G
o
l
d
e
n
r
o
d

D
a
r
k
G
r
a
y

D
a
r
k
G
r
e
e
n

D
a
r
k
K
h
a
k
i

D
a
r
k
M
a
g
e
n
t
a

D
a
r
k
O
l
i
v
e
G
r
e
e
n

D
a
r
k
O
r
a
n
g
e

D
a
r
k
O
r
c
h
i
d

D
a
r
k
R
e
d

D
a
r
k
S
a
l
m
o
n

D
a
r
k
S
e
a
G
r
e
e
n

D
a
r
k
S
l
a
t
e
B
l
u
e

D
a
r
k
S
l
a
t
e
G
r
a
y

D
a
r
k
T
u
r
q
u
o
i
s
e

D
a
r
k
V
i
o
l
e
t

D
e
e
p
P
i
n
k

D
e
e
p
S
k
y
B
l
u
e

D
i
m
G
r
a
y

D
o
d
g
e
r
B
l
u
e

F
i
r
e
b
r
i
c
k

F
l
o
r
a
l
W
h
i
t
e

F
o
r
e
s
t
G
r
e
e
n

F
u
c
h
s
i
a

G
a
i
n
s
b
o
r
o

G
h
o
s
t
W
h
i
t
e

G
o
l
d

G
o
l
d
e
n
r
o
d

G
r
a
y

G
r
e
e
n

G
r
e
e
n
Y
e
l
l
o
w

H
o
n
e
y
d
e
w

H
o
t
P
i
n
k

I
n
d
i
a
n
R
e
d

I
n
d
i
g
o

I
v
o
r
y

K
h
a
k
i

L
a
v
e
n
d
e
r

L
a
v
e
n
d
e
r
B
l
u
s
h

L
a
w
n
G
r
e
e
n

L
e
m
o
n
C
h
i
f
f
o
n

L
i
g
h
t
B
l
u
e

L
i
g
h
t
C
o
r
a
l

L
i
g
h
t
C
y
a
n

L
i
g
h
t
G
o
l
d
e
n
r
o
d
Y
e
l
l
o
w

L
i
g
h
t
G
r
a
y

L
i
g
h
t
G
r
e
e
n

L
i
g
h
t
P
i
n
k

L
i
g
h
t
S
a
l
m
o
n

L
i
g
h
t
S
e
a
G
r
e
e
n

L
i
g
h
t
S
k
y
B
l
u
e

L
i
g
h
t
S
l
a
t
e
G
r
a
y

L
i
g
h
t
S
t
e
e
l
B
l
u
e

L
i
g
h
t
Y
e
l
l
o
w

L
i
m
e

L
i
m
e
G
r
e
e
n

L
i
n
e
n

M
a
g
e
n
t
a

M
a
r
o
o
n

M
e
d
i
u
m
A
q
u
a
m
a
r
i
n
e

M
e
d
i
u
m
B
l
u
e

M
e
d
i
u
m
O
r
c
h
i
d

M
e
d
i
u
m
P
u
r
p
l
e

M
e
d
i
u
m
S
e
a
G
r
e
e
n

M
e
d
i
u
m
S
l
a
t
e
B
l
u
e

M
e
d
i
u
m
S
p
r
i
n
g
G
r
e
e
n

M
e
d
i
u
m
T
u
r
q
u
o
i
s
e

M
e
d
i
u
m
V
i
o
l
e
t
R
e
d

M
i
d
n
i
g
h
t
B
l
u
e

M
i
n
t
C
r
e
a
m

M
i
s
t
y
R
o
s
e

M
o
c
c
a
s
i
n

N
a
v
a
j
o
W
h
i
t
e

N
a
v
y

O
l
d
L
a
c
e

O
l
i
v
e

O
l
i
v
e
D
r
a
b

O
r
a
n
g
e

O
r
a
n
g
e
R
e
d

O
r
c
h
i
d

P
a
l
e
G
o
l
d
e
n
r
o
d

P
a
l
e
G
r
e
e
n

P
a
l
e
T
u
r
q
u
o
i
s
e

P
a
l
e
V
i
o
l
e
t
R
e
d

P
a
p
a
y
a
W
h
i
p

P
e
a
c
h
P
u
f
f

P
e
r
u

P
i
n
k

P
l
u
m

P
o
w
d
e
r
B
l
u
e

P
u
r
p
l
e

R
e
d

R
o
s
y
B
r
o
w
n

R
o
y
a
l
B
l
u
e

S
a
d
d
l
e
B
r
o
w
n

S
a
l
m
o
n

S
a
n
d
y
B
r
o
w
n

S
e
a
G
r
e
e
n

S
e
a
S
h
e
l
l

S
i
e
n
n
a

S
i
l
v
e
r

S
k
y
B
l
u
e

S
l
a
t
e
B
l
u
e

S
l
a
t
e
G
r
a
y

S
n
o
w

S
p
r
i
n
g
G
r
e
e
n

S
t
e
e
l
B
l
u
e

T
a
n

T
e
a
l

T
h
i
s
t
l
e

T
o
m
a
t
o

T
r
a
n
s
p
a
r
e
n
t

T
u
r
q
u
o
i
s
e

V
i
o
l
e
t

W
h
e
a
t

W
h
i
t
e

W
h
i
t
e
S
m
o
k
e

Y
e
l
l
o
w

Y
e
l
l
o
w
G
r
e
e
n

Yao_C#_book.fm Page 1063 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1064

Knowing Black from White

We give programmers in our training classes the following tip to help

remember the correct RGB for black (0, 0, 0) and white (255, 255,

255). The RGB color encoding is a light-based scheme, which in a com-

puter CRT is often used to correlate the power to apply to the electron

guns in the monitor. Turn the power off, which causes the power to go to

zero, and you see black. When the power to the red, green, and blue is

turned up all the way, you get white.

In Table 15.9, notice the different shades of gray. By studying the color

triplets, you can observe what makes the color gray: equal parts of red,

green, and blue.

TABLE 15.9: Color Triplets for Common Colors

Color Name RGB Triplet (Decimal) RGB Triplet (Hexadecimal)

Black (0, 0, 0) (0, 0, 0)

White (255, 255, 255) (0xFF, 0xFF, 0xFF)

Red (255, 0, 0) (0xFF, 0, 0)

Green (0, 255, 0) (0, 0xFF, 0)

Blue (0, 0, 255) (0, 0, 0xFF)

Cyan (0, 255, 255) (0, 0xFF, 0xFF)

Magenta (255, 0, 255) (0xFF, 0, 0xFF)

Yellow (255, 255, 0) (0xFF, 0xFF, 0)

Dark Gray (68, 68, 68) (0x44, 0x44, 0x44)

Medium Gray (128, 128, 128) (0x80, 0x80, 0x80)

Light Gray (204, 204, 204) (0xCC, 0xCC, 0xCC)

Yao_C#_book.fm Page 1064 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1065

.NET Compact Framework program, all colors have an alpha value of 255,
which means that all colors are 100% opaque.

The following code draws the window background using a light gray
color.

private void FormMain_Paint(

object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 g.Clear(Color.FromArgb(204,204,204));

}

Creating Brushes
A brush specifies the color and pattern to use for area-filling methods, such
as FillRectangle. The .NET Compact Framework does not support pat-
terns in brushes, however, so a brush just specifies the color when filling
areas. Brushes also specify the color to use when drawing text. The second
parameter to the DrawString method, for example, is a brush.

The desktop .NET Framework supports five different kinds of brushes,
including solid brushes, bitmap brushes, and hatch brushes. Windows CE
supports solid brushes and bitmap brushes but not hatch brushes. And in
the .NET Compact Framework, things are even simpler: only solid brushes
are supported, by the SolidBrush20 class. This class has a single construc-
tor, which takes a single parameter—Color. The SolidBrush constructor
is defined as follows.

public SolidBrush(

 Color color);

With one constructor, it is natural to assume that there is one way to cre-
ate a solid brush. But because there are three ways to define a color, there
are three ways to create a brush:

• Using the system colors

• Using a named color

• Using an RGB value

20. Fully qualified name: System.Drawing.SolidBrush.

Yao_C#_book.fm Page 1065 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1066

The following subsections discuss each of these briefly.

Creating Brushes with System Colors

The following code creates a brush from a system color. This brush is suit-
able for drawing text within a program’s main form or in a dialog box.

Brush brText = new SolidBrush(SystemColors.WindowText);

The resulting brush provides the same color used by the operating sys-
tem to draw text. You are not required to select this color, but in doing so
you help ensure that your application fits into the color scheme established
by the user.

There might be reasons to design your own color scheme. For example,
when dealing with financial figures you might display positive numbers in
black and display negative numbers in red. Or perhaps when displaying
certain types of documents you could highlight keywords in different col-
ors, in the same way that Visual Studio .NET highlights language key-
words in blue. To handle these situations, you need to specify the brush
color with one of the two other color-defining schemes: using either named
colors or RGB colors.

Creating Brushes with Named Colors

Here are examples of creating brushes using named colors.

Brush brRed = new SolidBrush(Color.Red);

Brush brPaleGreen = new SolidBrush(Color.PaleGreen);

Brush brLightBlue = new SolidBrush(Color.LightBlue);

You might wonder where these color names come from. Some—like Red—
are, of course, names for common colors. But when you read through the
list of names, you see colors like AliceBlue, GhostWhite, and White-
Smoke. The colors are sometimes called HTML Color Names because the
more exotic names were first supported as color names in HTML by vari-
ous browsers. Officially, however, HTML 4.0 includes only 16 color names,
not the 140+ names defined in the Color structure.

Yao_C#_book.fm Page 1066 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1067

Creating Brushes with RGB Values

To create a brush using an RGB value, call the FromArgb method in the
Color class and pass the return value to the SolidBrush constructor. This
method accepts three integer parameters, one each for red, green, and blue.
Here is how to create three brushes from RGB triplets.

Brush brRed = new SolidBrush(Color.FromArgb(255, 0, 0));

Brush brGreen = new SolidBrush(Color.FromArgb(0, 255, 0));

Brush brBlue = new SolidBrush(Color.FromArgb(0, 0, 255));

Creating Bitmaps
A bitmap is a two-dimensional array of pixels with a fixed height and a
fixed width. Bitmaps have many uses. One is to hold scanned images, such
as a company logo. Photographs are stored as bitmaps, commonly in the
highly compressed format of JPEG21 files. Bitmaps can be used to create
interesting effects on a display screen, such as smooth scrolling and seam-
less animation.

Bitmaps are often used to store complex images that a program can eas-
ily draw in one or more locations by making a single method call. As useful
as this approach can be, it is important to always remember that bitmaps
require a lot of room—both in memory and in the file system. If you plan to
include any bitmaps with your program, give some thought to the format
of those bitmaps. We address this issue later in this chapter.

Bitmaps are sometimes referred to as off-screen-bitmaps because of the
important role bitmaps have historically played in supporting display
screen graphics. The Bitmaps on the Desktop sidebar discusses how bit-
maps are used on desktop versions of Windows to support various user
interface objects. That same support does not exist in Windows CE because
of memory constraints. But bitmaps are still available to Windows CE pro-
grams for all of their other uses.

21. JPEG stands for Joint Photographic Experts Group, the name of the original
committee that created the standard. For details on this compression standard, visit
http://www.jpeg.org.

Yao_C#_book.fm Page 1067 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1068

In our programming classes, we observe that programmers often get
confused when first starting to work with bitmaps. The confusion seems to
come from not grasping that bitmaps are inherently off-screen. Or it may
arise from an understanding that display screens are supported by memory-
mapped video devices and that the memory occupied by a bitmap must
somehow be related to the memory used by the display adapter. After cre-
ating a bitmap and drawing into a bitmap, some programmers expect that
bitmaps are going to appear somewhere on the screen. That does not hap-
pen, however, because bitmaps appear on a display screen only when your
program explicitly causes them to appear.

Bitmaps: Drawing Surface or Drawing Object?

Bitmaps play two roles in every graphic library built for Microsoft Win-
dows: (1) as drawing surfaces and (2) as drawing objects used to draw
onto other surfaces. This is another reason why bitmaps can at first seem
confusing for some programmers.

A bitmap is a drawing surface like other drawing surfaces. We say this
because a program can obtain a Graphics object for a bitmap and then use
the methods of that object to draw onto the surface of the bitmap. All of the

Bitmaps on the Desktop

On desktop versions of Windows, bitmaps support the quick appearance

and disappearance of menus, dialog boxes, and various other user inter-

face elements. For example, before a menu appears on the screen, a snap-

shot is taken of the area to be covered by the menu. When the menu

disappears, the bitmap is used to redraw the affected part of the screen.

This technique helps make the elements of the user interface appear and

disappear very quickly. This technique is not employed in Windows CE

because of the tight memory restrictions of mobile and embedded sys-

tems. But your program could use bitmaps in other ways to support the

display of your program’s user interface.

Yao_C#_book.fm Page 1068 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1069

drawing methods in the Graphics object are supported for bitmaps,
including text, raster, and vector drawing methods.

The second role played by bitmaps is that of a drawing object. Like other
drawing objects, such as pens, brushes, and fonts, a bitmap holds a pattern
that can be applied to a drawing surface. Each drawing object has its partic-
ular uses, and each produces a different effect, as determined by the various
drawing methods. The .NET Compact Framework supports four overloads
for the bitmap drawing method, which is named DrawImage.

An example might clarify what we mean by each of these two roles.
Using a Graphics object, a program can draw onto a bitmap by calling
drawing methods. One such drawing method is DrawImage, which draws
a bitmap onto a drawing surface. A program can call the DrawImage
method to draw one bitmap (the drawing object) onto the surface of another
bitmap (the drawing surface).

To push the example one step further, a bitmap can be both the draw-
ing surface and also the drawing object. You could do this by using the
DrawImage method to draw onto a bitmap while using the bitmap itself as
the image source. This may sound like a snake eating its own tail, a seem-
ingly impossible operation. It is possible, however, because it involves
copying a rectangular array of pixels from one part of a bitmap to another
part. The work required for this type of bitmap handling is well under-
stood and has been part of Windows display drivers for more than a
decade. The bitmap drawing code in Windows CE can easily—and cor-
rectly—handle cases where, for example, source and destination rectan-
gles overlap. This describes what happens, for example, when a user picks
up and moves a window.

The Bitmap Class

The .NET Compact Framework supports in-memory bitmaps with the
Bitmap22 class. This class is derived from the Image class, which is a com-
mon base class for the Bitmap class and the Metafile class. As we men-
tioned earlier in this chapter, metafiles are not supported in the .NET

22. Fully qualified name: System.Drawing.Bitmap.

Yao_C#_book.fm Page 1069 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1070

Compact Framework. But because the .NET Compact Framework main-
tains consistency with the desktop .NET Framework, our bitmap drawing
method is called DrawImage (instead of, for example, DrawBitmap). On the
desktop, where metafiles are supported, the DrawImage method draws
both bitmaps and metafiles.

The dimensions of a bitmap are available through two properties of
the Bitmap object: Height and Width. The dimensions are also available
through the Size property, which provides a convenient package for height
and width. These are read-only properties because an image cannot change
size once it has been created.

On the desktop, the Bitmap class supports 12 constructors, while in the
.NET Compact Framework there are only 4 constructors. You can create a
bitmap these ways:

• By opening an image file

• By reading an image from a stream

• By starting from an existing bitmap

• By specifying the width and height for an empty bitmap

Table 15.10 maps the constructors to six common sources you might use to
create a bitmap.

Creating an Empty Bitmap

One way to create a bitmap is to specify the desired dimensions of the bit-
map to the following constructor in the Bitmap class.

public Bitmap(

 int width,

 int height);

This constructor creates a bitmap in program memory with the specified
size. This is the quickest and easiest way to create a bitmap, but the empty
(i.e., all-black) image means that you must draw into the bitmap before dis-
playing its contents. You might call this a scratch space or double-buffer bit-
map because it provides an off-screen drawing surface for doodling, just
like scratch paper. The term double-buffer refers to a technique of creating

Yao_C#_book.fm Page 1070 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1071

smooth graphic effects by doing complex drawing off-screen and sending
the resulting output to the display screen with a single, fast drawing opera-
tion. Let’s use a bitmap created with this constructor.

After creating the bitmap itself, a program typically obtains a Graphics
object for the bitmap. As we mentioned earlier in this chapter, we need a
Graphics object for any type of drawing. We obtain a Graphics object for
the bitmap by calling the FromImage method of the Bitmap class. Before
drawing anything else in the bitmap, it makes sense to first erase the bit-
map’s background.

We need to think about cleanup. This is a subject that can often be
ignored in managed code, but not when working with resource-intensive
objects like bitmaps. So, when done working with a bitmap, your program
must use the Dispose method to clean up two objects: the bitmap itself
and the Graphics object. The code in Listing 15.1 shows the whole life
cycle of our created bitmap: The code creates a bitmap, erases the bitmap’s
background, draws the bitmap to the display screen, and then cleans up
the two objects that were created.

TABLE 15.10: Sources for Bitmaps and Associated Bitmap Class Constructors

Source
Constructor
Parameters Comments

An external image
file

(String) Provides the path to the bitmap in the file
system

A portion of a file (Stream) Uses the FileStream class to open the file
and move the seek position to the first byte
of the bitmap

Data in memory (Stream) Uses the MemoryStream class to assemble
the bitmap bits as a byte array

A resource (Stream) Reads bitmap data from a managed resource
created as an untyped manifest resource

An existing bitmap (Image) Copies an existing bitmap

An empty bitmap (int,int) Specifies the width and height of the empty
bitmap

Yao_C#_book.fm Page 1071 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1072

Listing 15.1: Dynamic Bitmap Creation

private void

CreateAndDraw(int x, int y)

{

 // Create a bitmap and a Graphics object for the bitmap.

 Bitmap bmpNew = new Bitmap(100,100);

 Graphics gbmp = Graphics.FromImage(bmpNew);

 // Clear the bitmap background.

 gbmp.Clear(Color.LightGray);

 // Get a Graphics object for the form.

 Graphics g = CreateGraphics();

 // Copy the bitmap to the window at (x,y) location.

 g.DrawImage(bmpNew, x, y);

 // Clean up when we are done.

 g.Dispose();

 gbmp.Dispose();

 bmpNew.Dispose();

}

Creating a Bitmap from an External File

Another way to create a bitmap is by specifying the path to an image file.
This is accomplished with a constructor that accepts a single parameter, a
string with the path to the candidate file. This second Bitmap class con-
structor is defined as follows.

public Bitmap(

 string filename);

This method has two important requirements. One is that there must be
enough memory to accommodate the bitmap. If there is not, the call fails. A
second requirement is that the specified file must have an image in a for-
mat that the constructor understands. We have been able to create bitmaps
from the following file types:

• Bitmap files (.bmp) with 1, 4, 8, or 24 bits per pixel

• JPEG (.jpg) files

Yao_C#_book.fm Page 1072 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1073

• GIF (.gif) files

• PNG (.png) files

Among the unsupported graphic file formats are TIFF (.tif) files.
This constructor throws an exception if the file name provided is not a

recognized format or if it encounters other problems when attempting to
open the file or create the bitmap. For that reason, it makes sense to wrap
this constructor in a try…catch block. Listing 15.2 provides an example
of calling this constructor, with a file name provided by the user in a File
Open dialog box.

Listing 15.2: Creating a Bitmap with a File Name

try

{

 bmpNew = new Bitmap(strFileName);

}

catch

{

 MessageBox.Show("Cannot create bitmap from " +

 "File: " + strFileName);

}

Creating a Bitmap from a Resource

When a program needs a bitmap for its normal operation, it makes sense to
package the bitmap as a resource. Resources are read-only data objects that
are bound into a program’s executable file23 at program build time. The
benefit of binding a bitmap to an executable file is that it is always available
and cannot be accidentally deleted by a user.

Resources have been a part of Windows programming from the very
first version of Windows. In a native-mode program, resources are used for
bitmaps and icons and also to hold the definitions of dialog boxes and
menus. In managed-code programs, resources are still used for bitmaps
and icons, although some program elements—including dialog boxes and

23. Resources can be bound into any executable module, meaning any program (.exe) or
library (.dll) file.

Yao_C#_book.fm Page 1073 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1074

menus—are not defined in a resource but instead are defined using code in
the InitializeComponent method by the Designer.

While resources are used in both native code and managed code, native
resources can be used only from native mode code, and managed resources
can be used only from managed code. The only exception is the program icon
for a managed-code program, which is defined as a native icon. In managed
code, there are two types of resources: typed resources and untyped resources.

Typed Resources. We like to use typed resources to hold literal strings,
which aid in the localization of programs. To access typed resources, a pro-
gram creates an instance of a ResourceManager24 class and then makes
calls to methods like GetObject and GetString. We provided an example
of using typed resources for literal strings in Chapter 3, in the sample
project named StringResources.

Typed resources are defined using XML in files that have an extension
of .resx. In a typed resource, an XML attribute provides type information,
as shown in this example.

<data name="dlgFileOpen.Location" type="System.Drawing.Point,

 System.CF.Drawing, Version=7.0.5000.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a">

 <value>125, 17

 </value>

</data>

Where Do Resources Live?

Because memory is scarce on a Windows CE–powered device, it helps to

know when and how memory gets used. When a resource gets added to a

module, the resource occupies space in the module’s file but uses no pro-

gram memory until the resource is explicitly opened and used. This is true

for both native resources and managed resources.

24. Fully qualified name: System.Resources.ResourceManager.

Yao_C#_book.fm Page 1074 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1075

The Designer makes extensive use of typed resources. For each form
created in the Designer, there is an associated file used to store a variety of
details about the form. The Visual Studio .NET Solution Explorer does not
normally display resource files, but you can make them appear by clicking
the Show All Files icon.

For example, bitmaps in the image collection of an ImageList control
on a form are stored as typed resources in the typed resource file of the
form that contains the control. The bitmaps themselves are serialized into
the XML and are not stored in their original, binary form. While a pro-
grammer could convert bitmap files into XML resources, we prefer to
avoid this extra step and use untyped resources when we add bitmap
resources to a project.

Untyped Resources. Untyped resources are also known as manifest resources
because they are made available through an assembly’s manifest (or table of
contents). As the name implies, an untyped resource contains no type infor-
mation and is made available as a raw stream of bytes. It does have a name,
however, created by combining the default project namespace with the file
name that contained the original resource data. You must know this name
because you use the name to retrieve the resource. If you have trouble figur-
ing out the resource name, the ildasm.exe utility can help. Open the pro-
gram file and then click on the manifest. Listing 15.3 shows three bitmap
resource names in a fragment from the manifest for the ShowBitmap sample
program presented later in this chapter.

Listing 15.3: Three Bitmap Resource Names from the ShowBitmap Manifest

.mresource public ShowBitmap.SPADE.BMP

{

}

.mresource public ShowBitmap.CUP.BMP

{

}

.mresource public ShowBitmap.HEART.BMP

{

}

Yao_C#_book.fm Page 1075 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1076

Visual Studio .NET creates an untyped resource from an external file
when you add the file to a project and assign a build action of Embedded
Resource. The default build action for bitmap files, Content, allows the bit-
map file to be downloaded with a program, but as a separate file and not as
an embedded resource. Figure 15.2 shows the Visual Studio .NET settings
to turn the file CUP.BMP into an embedded bitmap resource. The name of
the resource is ShowBitmap.CUP.BMP, which we need to know to access the
resource from our code.

You can access an embedded resource by calling a method in the Assem-
bly class named GetManifestResourceStream.25 As suggested by the
method name, the return value is a Stream object; more precisely, you are
provided a MemoryStream26 object. You can use all of the elements associ-
ated with a Stream-derived class (including the ability to query the resource
length, which is the same as the resource input file) to seek a location in the
stream and to read bytes (the CanSeek and CanRead properties are both set
to true). In keeping with the read-only nature of Windows resources, you
cannot write to a resource stream27 (CanWrite returns false).

The code fragment in Listing 15.4 shows two methods from the Show-
Bitmap sample program. These methods are helper routines to handle the

25. Fully qualified name: System.Reflection.Assembly.GetManifestResourceStream.
26. Fully qualified name: System.IO.MemoryStream.
27. In contrast to an Apple Macintosh resource fork, which supports both read and write
operations.

Figure 15.2: The settings to turn CUP.BMP
into an embedded bitmap resource

Yao_C#_book.fm Page 1076 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1077

initialization and cleanup of resource-based bitmaps. The LoadBitmap-
Resource method creates a bitmap from a resource; the DisposeBitmap
method provides the cleanup.

Listing 15.4: Creating Bitmaps from Untyped Manifest Resources

private Bitmap LoadBitmapResource(string strName)

{

 Assembly assembly = Assembly.GetExecutingAssembly();

 string strRes = "ShowBitmap." + strName;

 Stream stream = assembly.GetManifestResourceStream(strRes);

 Bitmap bmp = null;

 try

 {

 bmp = new Bitmap(stream);

 }

 catch { }

 stream.Close();

 return bmp;

}

continues

What Can Go into an Untyped Resource?

This chapter provides an example of putting a bitmap into an untyped

resource. But this is not the only type of resource you can create. You can

put any custom data into untyped resources, which can then be used to

access the data at runtime. When you request an untyped resource, you

are provided with a Stream object that you can use as you wish. You

might, for example, read a resource into an array of bytes and then parse

those bytes in whatever way your application needs. Such resources can

be any read-only data that your program needs: tax tables, sports scores,

or—as we show in the ShowBitmap sample program—a set of bitmaps.

A benefit of using custom resources is that we have access to data we

need at runtime. But when we are not using that data, it does not occupy

scarce program memory. This makes custom resources a useful tool in our

toolkit for building memory-wise programs.

Yao_C#_book.fm Page 1077 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1078

continued

private void DisposeBitmap(ref Bitmap bmp)

{

 if (bmp != null)

 {

 bmp.Dispose();

 }

 bmp = null;

}

The LoadBitmapResource method creates a bitmap by opening a
resource stream and uses data read from that stream to create a bitmap.
This method gets a reference to the program’s assembly by calling a static
method in the Assembly class named GetExecutingAssembly. After cre-
ating a bitmap, the stream can be closed. Once a bitmap has been created, it
is self-contained and needs no external data. That is why we can close the
stream once the Bitmap object has been created.

The DisposeBitmap method deletes the bitmap to free up its associ-
ated memory. It does this by calling the Dispose method for a Bitmap
object. There are only a few situations in which it is mandatory to call the
Dispose method.28 Sometimes, however, it is still a good idea—even if it is
not, strictly speaking, required. Bitmaps can be large, so we suggest you
consider explicitly deleting bitmaps, as we have done in our sample.
Among the factors to consider are the size of your bitmaps and the number
of bitmaps. We suggest that you explicitly delete bitmaps when you have
either many small bitmaps or a few large bitmaps.

We call our two methods using code like the following.

private void

mitemResourceCup_Click(object sender, EventArgs e)

{

 DisposeBitmap(ref bmpDraw);

 bmpDraw = LoadBitmapResource("CUP.BMP");

 Invalidate();

}

28. The only situation requiring a call to the Dispose method is to release a Graphics object
obtained in a control by calling the CreateGraphics method.

Yao_C#_book.fm Page 1078 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1079

After cleaning up the old bitmap, we create a new bitmap and request a
Paint event by calling the Invalidate method. Next, we discuss image
file size, and how to save memory by changing the format you use for your
images.

Image File Sizes

Bitmaps can occupy a lot of memory, which can create problems in a memory-
scarce environment like Windows CE. When placing bitmaps in resources,
we recommend that you test different formats and use the smallest one. To
provide a starting point, we conducted some tests with three 100 × 100 pixel
images stored in different formats. Table 15.11 summarizes our results, which
provide the size in bytes for each image file.

Four formats are uncompressed and three are compressed. The first
four entries in the table are for DIB files. This well-known format is thor-
oughly documented in the MSDN Library and is the format that Visual
Studio .NET provides for creating bitmap images. Notice that the size of
these images is the same for a given number of bits per pixel. This reflects
the fact that DIB files are uncompressed.

TABLE 15.11: Size Comparison for Three 100 x 100 Images in Various Image File Formats

Format

Bits
per
Pixel

Size of Single-
Color Image
(Bytes)

Size of Multicolor
Image with
Regular Data
(Bytes)

Size of Multi-
color Image with
Irregular Data
(Bytes)

Monochrome
DIB

1 1,662 1,662 1,662

16-color DIB 4 5,318 5,318 5,318

256-color DIB 8 11,078 11,078 11,078

True-color DIB 24 30,054 30,054 30,054

GIF 8 964 3,102 7,493

PNG 8 999 616 5,973

JPEG 24 823 3,642 5,024

Yao_C#_book.fm Page 1079 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1080

The last three formats are the compressed formats: GIF, PNG, and JPEG.
To make sense of these formats, we must discuss the contents of the three
images. The single-color image was a solid black rectangle. Each of the
three compressed formats easily beat any of the uncompressed formats
for the single-color image. The reason is that compressed formats look for a
pattern and use that information to store details of the pattern. A single
color is a pretty easy pattern to recognize and compress.

The second column, the multicolor image with regular data, shows the
results for an image created with a solid background and vertical stripes.
We used vertical stripes in an attempt to thwart the compression because
run-length encoding of horizontal scan lines is an obvious type of com-
pression. We were surprised (and pleased) to find that PNG compression
was able to see through the fog we so carefully created—it created the
smallest image in the table.

The third column, the multicolor image with irregular data, shows the
sizes for images created with very random data. For this test, we copied
text (.NET Compact Framework source code) into an image file. (We never
want our work to be called “random,” but we wanted an irregular image to
push the envelope for the three compression formats.) The result was more
like a photograph than any of the other images, which is why JPEG—the
compression scheme created for photographs—was able to provide the
best compression. It provided the smallest file size with the least loss of
information (the monochrome image was smaller, but the image was lost).

To summarize, the two compression schemes that created the smallest
image files were PNG (for regular data) and JPEG (for irregular data). One
problem is that Visual Studio .NET does not support either of these for-
mats. But Microsoft Paint (mspaint.exe) supports both, so we recom-
mend that you make sure your images have been compressed as much as
possible prior to embedding your images as resources.

Drawing Bitmaps
The Graphics class supports four overloaded versions of the bitmap draw-
ing method, DrawImage. These alternatives support the following types of
bitmap drawing:

Yao_C#_book.fm Page 1080 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1081

• Drawing the entire bitmap at the original image size

• Drawing part of a bitmap at the original image size

• Drawing part of a bitmap with a change to the image size

• Drawing part of a bitmap with a change to the image size and with
transparency

We discuss these four methods in the sections that follow.

Drawing the Entire Bitmap at the Original Image Size

The simplest version of the DrawImage method copies an entire bitmap
onto a device surface with no change in the image size, as shown here.

public void DrawImage(

 Image image,

 int x,

 int y);

Listing 15.5 shows an example of calling this method in a Paint event
handler.

Listing 15.5: Drawing an Entire Bitmap at the Original Size

private void

FormMain_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 int x = 10;

 int y = 10;

 g.DrawImage(bmpDraw, x, y);

}

Drawing Part of a Bitmap at the Original Image Size

While we sometimes want to draw an entire bitmap, there are also times
when we only want to see a portion of a bitmap. The second version of the
DrawImage method provides the support we need to do just that, as shown
on the next page.

Yao_C#_book.fm Page 1081 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1082

public void DrawImage(

 Image image,

 int x,

 int y,

 Rectangle srcRect,

 GraphicsUnit srcUnit);

This version of the DrawImage method has five parameters, while the
earlier one has only three. One of the extra parameters is useful, and the
second is not so useful. The fourth parameter, srcRect, is the useful one,
which identifies the rectangular area in the source bitmap that we wish to
copy to the destination surface.

The fifth parameter, srcUnit, can be set to only one valid value in the
.NET Compact Framework: GraphicsUnit.Pixel. On the desktop, the
presence of this parameter gives the caller the freedom to select a conve-
nient unit of measure for the source rectangle (e.g., inches or millimeters).
But the .NET Compact Framework supports only pixel drawing units,
which is why this parameter is not so useful in the context of a .NET Com-
pact Framework program. The srcUnit parameter is present because of
the high level of compatibility between the desktop .NET Framework and
the .NET Compact Framework. As such, it represents a small price to pay
for the convenience of allowing smart-device code to have binary compati-
bility with the desktop runtime.

Drawing Part of a Bitmap with a Change to the Image Size

The third overloaded version of the DrawImage method allows a portion of
a bitmap to be selected for drawing, and that portion can be stretched (or
shrunk) to match a specified size on the destination surface. Of course,
nothing requires the image to change size: If the width and height of the
destination rectangle is the same as the width and height of the source rect-
angle, no size change occurs. This version of the DrawImage method is
defined as shown here.

public void DrawImage(

 Image image,

 Rectangle destRect,

 Rectangle srcRect,

 GraphicsUnit srcUnit);

Yao_C#_book.fm Page 1082 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1083

Drawing Part of a Bitmap with a Change to the Image Size and
with Transparency

The final version of the DrawImage method adds a new feature to the draw-
ing of bitmaps. It enables transparency while drawing a bitmap. In some
ways, this feature breaks our definition of raster graphics. You might recall
that we refer to raster graphics as those operations that operate on arrays of
pixels. Implicit in this definition is that all operations are rectangular.

The ability to draw a raster operation and touch only a nonrectangular
set of pixels on a drawing surface is, therefore, something of a heresy (like
having nonrectangular windows on a display screen or a late-night cod-
ing session without ordering large quantities of unhealthy food). We hope
that readers can accept this change with little loss of sleep. We certainly
are happy to break the shackles that have previously limited almost all
raster graphics to the boring world of rectangular arrays of pixels. This
amazing new feature is available through the following version of the
DrawImage method.

public void DrawImage(

 Image image,

 Rectangle destRect,

 int srcX,

 int srcY,

 int srcWidth,

 int srcHeight,

 GraphicsUnit srcUnit,

 ImageAttributes imageAttr);

With its eight parameters, this version of the DrawImage method is the
most complicated one that the .NET Compact Framework supports. Per-
haps it is appropriate that this version matches the other versions in capa-
bilities: It can draw an entire bitmap at its original size, draw a portion of a
bitmap at its original size, and draw a portion of a bitmap at a different size.

What makes this version different is the final parameter, a reference to
an ImageAttributes object. On the desktop, this class supports a variety
of color adjustments that can be applied when drawing a bitmap onto a
surface. The .NET Compact Framework version is much simpler, with
what amounts to a single property: a color key. The color key defines the
range of colors that represent transparent portions of an image. In other

Yao_C#_book.fm Page 1083 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1084

words, any color that matches the color key is a color that is not copied by
the call to the DrawImage method. The color key settings are controlled
through two methods: SetColorKey defines the transparency range, and
ClearColorKey disables the transparency range.

Figure 15.3 shows an example of transparency at work. A 100 × 100 bit-
map is first drawn without transparency at the window origin. That same
bitmap is then drawn three times, using the version of the DrawImage
method that supports transparency. The color key is set to light gray, which
corresponds to the color outside the ellipse (the interior of the ellipse is set
to yellow). Listing 15.6 shows the code, a handler for a MouseDown event,
which we used to create the example.

Listing 15.6: Event Handler That Draws a Bitmap with Transparency

bool bFirstTime = true;

private void

FormMain_MouseDown(object sender, MouseEventArgs e)

{

 // Get a Graphics object for the form.

 Graphics g = CreateGraphics();

Figure 15.3: Four calls to the DrawImage method,
three with transparency enabled

Yao_C#_book.fm Page 1084 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1085

 // Create a bitmap and a Graphics object for the bitmap.

 Bitmap bmpNew = new Bitmap(100,100);

 Graphics gbmp = Graphics.FromImage(bmpNew);

 // Clear the bitmap background.

 gbmp.Clear(Color.LightGray);

 // Create some drawing objects.

 Pen penBlack = new Pen(Color.Black);

 Brush brBlack = new SolidBrush(Color.Black);

 Brush brYellow = new SolidBrush(Color.Yellow);

 // Draw onto the bitmap.

 gbmp.FillEllipse(brYellow, 0, 0, 98, 98);

 gbmp.DrawEllipse(penBlack, 0, 0, 98, 98);

 gbmp.DrawString("At " + e.X.ToString() + "," + e.Y.ToString(),

 Font, brBlack, 40, 40);

 // Copy the bitmap to the window at the MouseDown location.

 if (bFirstTime)

 {

 // Copy without transparency.

 g.DrawImage(bmpNew, e.X, e.Y);

 bFirstTime = false;

 }

 else

 {

 // Copy the bitmap using transparency.

 Rectangle rectDest = new Rectangle(e.X, e.Y, 100, 100);

 ImageAttributes imgatt = new ImageAttributes();

 imgatt.SetColorKey(Color.LightGray, Color.LightGray);

 g.DrawImage(bmpNew, rectDest, 0, 0, 99, 99,

 GraphicsUnit.Pixel, imgatt);

 }

 // Clean up when we are done.

 g.Dispose();

 gbmp.Dispose();

 bmpNew.Dispose();

}

A Sample Program: ShowBitmap
Our bitmap drawing sample program shows several features of bitmaps that
we have been discussing. This program can open files and create a bitmap.
Several formats are supported, including the standard Windows DIB (.bmp)

Yao_C#_book.fm Page 1085 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1086

files and also a few compressed image file formats such as GIF (.gif) files,
JPEG (.jpg) files, and PNG (.png) files. Figure 15.4 shows the ShowBitmap
program with a JPEG image of Chandler (the office beagle at The Paul Yao
Company). This image is drawn scaled to 50%, an effect made possible by
selecting the appropriate version of the DrawImage method.

Our sample program contains a set of bitmap files that are bound to the
program files as embedded resources (see Listing 15.7). As with all types of
resources, the resource data does not get loaded into memory until we
explicitly load the resource. In this program, we load the resource when
the user selects an item on the program’s resource menu. Figure 15.5 shows
the bitmap resource that was read from a resource identified as ShowBit-
map.CUP.BMP, drawn at 400% of its original size.

Listing 15.7: Source Code for ShowBitmap.cs

using System.Reflection; // Needed for Assembly

using System.IO; // Needed for Stream

using System.Drawing.Imaging; // Needed for ImageAttributes

// ...

Figure 15.4: ShowBitmap displaying
a JPEG file scaled to 50%

Yao_C#_book.fm Page 1086 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1087

private Bitmap bmpDraw;

bool bFirstTime = true;

bool bResource = false;

string strResName;

// Draw a bitmap using transparency where the MouseDown

// event is received.

private void

FormMain_MouseDown(object sender, MouseEventArgs e)

{

#if false

 CreateAndDraw(e.X, e.Y);

#endif

 // Get a Graphics object for the form.

 Graphics g = CreateGraphics();

 // Create a bitmap and a Graphics object for the bitmap.

 Bitmap bmpNew = new Bitmap(100,100);

 Graphics gbmp = Graphics.FromImage(bmpNew);

 // Clear the bitmap background.

 gbmp.Clear(Color.LightGray);

 // Create some drawing objects.

 Pen penBlack = new Pen(Color.Black);

continues

Figure 15.5: ShowBitmap displaying
a bitmap from a resource

Yao_C#_book.fm Page 1087 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1088

continued

 Brush brBlack = new SolidBrush(Color.Black);

 Brush brYellow = new SolidBrush(Color.Yellow);

 // Draw onto the bitmap.

 gbmp.FillEllipse(brYellow, 0, 0, 98, 98);

 gbmp.DrawEllipse(penBlack, 0, 0, 98, 98);

 gbmp.DrawString("At " + e.X.ToString() + "," + e.Y.ToString(),

 Font, brBlack, 40, 40);

 // Copy the bitmap to the window at the MouseDown location.

 if (bFirstTime)

 {

 // Copy without transparency.

 g.DrawImage(bmpNew, e.X, e.Y);

 bFirstTime = false;

 }

 else

 {

 // Copy the bitmap using transparency.

 Rectangle rectDest = new Rectangle(e.X, e.Y, 100, 100);

 ImageAttributes imgatt = new ImageAttributes();

 imgatt.SetColorKey(Color.LightGray, Color.LightGray);

 g.DrawImage(bmpNew, rectDest, 0, 0, 99, 99,

 GraphicsUnit.Pixel, imgatt);

 }

 // Clean up when we are done.

 g.Dispose();

 gbmp.Dispose();

 bmpNew.Dispose();

}

private void FormMain_Paint(object sender, PaintEventArgs e)

{

 Graphics g = e.Graphics;

 float sinX = 10.0F;

 float sinY = 10.0F;

 SizeF szfText = g.MeasureString("X", Font);

 float cyLine = szfText.Height;

 Brush brText = new SolidBrush(SystemColors.WindowText);

 if (bmpDraw != null)

 {

 if (bResource)

 {

 g.DrawString("Resource: " + strResName,

 Font, brText, sinX, sinY);

 }

 else

Yao_C#_book.fm Page 1088 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1089

 {

 g.DrawString("File: " + dlgFileOpen.FileName,

 Font, brText, sinX, sinY);

 }

 sinY += cyLine;

 g.DrawString("Bitmap Height = " + bmpDraw.Height,

 Font, brText, sinX, sinY);

 sinY += cyLine;

 g.DrawString("Bitmap Width = " + bmpDraw.Width,

 Font, brText, sinX, sinY);

 sinY += cyLine;

 sinY += cyLine;

 if (mitemScale100.Checked)

 {

 g.DrawImage(bmpDraw, (int)sinX, (int)sinY);

 }

 else

 {

 Rectangle rectSrc = new Rectangle(0, 0,

 bmpDraw.Width, bmpDraw.Height);

 int xScaled = 0;

 int yScaled = 0;

 if (mitemScale50.Checked)

 {

 xScaled = bmpDraw.Width / 2;

 yScaled = bmpDraw.Height / 2;

 }

 else if (mitemScale200.Checked)

 {

 xScaled = bmpDraw.Width * 2;

 yScaled = bmpDraw.Height * 2;

 }

 else if (mitemScale400.Checked)

 {

 xScaled = bmpDraw.Width * 4;

 yScaled = bmpDraw.Height * 4;

 }

 Rectangle rectDest = new Rectangle((int)sinX,

 (int)sinY, xScaled, yScaled);

 g.DrawImage(bmpDraw, rectDest, rectSrc,

 GraphicsUnit.Pixel);

 }

 }

 else

continues

Yao_C#_book.fm Page 1089 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1090

continued

 {

 g.DrawString("File: None", Font, brText, sinX, sinY);

 }

}

private void

mitemFileOpen_Click(object sender, EventArgs e)

{

 dlgFileOpen.Filter = "Bitmap (*.bmp)|*.bmp|" +

 "Picture (*.jpg)|*.jpg|" +

 "PNG Files (*.png)|*.png|" +

 "TIF Files (*.tif)|*.tif|" +

 "GIF Files (*.gif)|*.gif |" +

 "All Files (*.*)|*.*";

 if (dlgFileOpen.ShowDialog() == DialogResult.OK)

 {

 Bitmap bmpNew = null;

 try

 {

 bmpNew = new Bitmap(dlgFileOpen.FileName);

 bResource = false;

 }

 catch

 {

 MessageBox.Show("Cannot create bitmap from " +

 "File: " + dlgFileOpen.FileName);

 return;

 }

 DisposeBitmap (ref bmpDraw);

 bmpDraw = bmpNew;

 Invalidate();

 }

}

private void

mitemScale_Click(object sender, EventArgs e)

{

 // Clear the checkmark on related items.

 mitemScale50.Checked = false;

 mitemScale100.Checked = false;

 mitemScale200.Checked = false;

 mitemScale400.Checked = false;

 // Set the checkmark on selected menu item.

 ((MenuItem)sender).Checked = true;

Yao_C#_book.fm Page 1090 Friday, April 30, 2004 12:12 PM

RASTER GRAPHICS 1091

 // Request paint to redraw bitmap.

 Invalidate();

}

private void

mitemResourceCup_Click(object sender, EventArgs e)

{

 DisposeBitmap(ref bmpDraw);

 bmpDraw = LoadBitmapResource("CUP.BMP");

 Invalidate();

}

private void

mitemResourceBell_Click(object sender, EventArgs e)

{

 DisposeBitmap(ref bmpDraw);

 bmpDraw = LoadBitmapResource("BELL.BMP");

 Invalidate();

}

private void

mitemResourceSpade_Click(object sender, EventArgs e)

{

 DisposeBitmap(ref bmpDraw);

 bmpDraw = LoadBitmapResource("SPADE.BMP");

 Invalidate();

}

private void

mitemResourceHeart_Click(object sender, EventArgs e)

{

 DisposeBitmap(ref bmpDraw);

 bmpDraw = LoadBitmapResource("HEART.BMP");

 Invalidate();

}

private void

mitemResourceDiamond_Click(object sender, EventArgs e)

{

 DisposeBitmap(ref bmpDraw);

 bmpDraw = LoadBitmapResource("DIAMOND.BMP");

 Invalidate();

}

private void

mitemResourceClub_Click(object sender, EventArgs e)

continues

Yao_C#_book.fm Page 1091 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1092

continued

{

 DisposeBitmap(ref bmpDraw);

 bmpDraw = LoadBitmapResource("CLUB.BMP");

 Invalidate();

}

private Bitmap LoadBitmapResource(string strName)

{

 Assembly assembly = Assembly.GetExecutingAssembly();

 string strRes = "ShowBitmap." + strName;

 Stream stream = assembly.GetManifestResourceStream(strRes);

 Bitmap bmp = null;

 try

 {

 bmp = new Bitmap(stream);

 strResName = strRes;

 bResource = true;

 }

 catch { }

 stream.Close();

 return bmp;

}

private void DisposeBitmap(ref Bitmap bmp)

{

 if (bmp != null)

 {

 bmp.Dispose();

 }

 bmp = null;

}

// Simplest possible bitmap: Create a bitmap, clear the

// bitmap background, draw the bitmap to the display screen.

private void

CreateAndDraw(int x, int y)

{

 // Create a bitmap and a Graphics object for the bitmap.

 Bitmap bmpNew = new Bitmap(100,100);

 Graphics gbmp = Graphics.FromImage(bmpNew);

 // Clear the bitmap background.

 gbmp.Clear(Color.LightGray);

 // Get a Graphics object for the form.

 Graphics g = CreateGraphics();

Yao_C#_book.fm Page 1092 Friday, April 30, 2004 12:12 PM

VECTOR GRAPHICS 1093

 // Copy the bitmap to the window at (x,y) location.

 g.DrawImage(bmpNew, x, y);

 // Clean up when we are done.

 g.Dispose();

 gbmp.Dispose();

 bmpNew.Dispose();

}

Vector Graphics

The available vector drawing methods in the .NET Compact Framework
are summarized in Table 15.12 (which appeared earlier in this chapter as
Table 15.4 and is repeated here for convenience). As indicated in the table,
some shapes are drawn with a pen, a drawing object used for lines. The
.NET Compact Framework supports only pens that are 1 pixel wide
(unless a programmer drills through to the native GDI drawing support).
Other shapes in the table are drawn with a brush. We discussed the three
methods for creating brushes earlier in this chapter. We cover the creation
of pens in this discussion of vector graphics.

TABLE 15.12: System.Drawing.Graphics Methods for Vector Drawing

Method Comment

DrawEllipse Draws the outline of an ellipse using a pen.

DrawLine Draws a straight line using a pen.

DrawPolygon Draws the outline of a polygon using a pen.

DrawRectangle Draws the outline of a rectangle using a pen.

FillEllipse Fills the interior of an ellipse using a brush.

FillPolygon Fills the interior of a polygon using a brush.

FillRectangle Fills the interior of a rectangle using a brush.

Yao_C#_book.fm Page 1093 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1094

The vector methods with names that start with Draw are those that use a
pen to draw a line or a set of connected lines. The call to the DrawRectangle
method, for example, draws the outline of a rectangle without touching the
area inside the line. If you pass a blue pen to the DrawRectangle method,
the result is the outline of a rectangle drawn with a blue line. The .NET
Compact Framework supports four line-drawing methods.

Vector methods whose names start with Fill, on the other hand, use
a brush to fill in the area bounded by the lines. For example, if you pass a
red brush to the FillRectangle method, the result is a solid red rectangle.
There are three such methods in the .NET Compact Framework for draw-
ing ellipses, polygons, and rectangles.

The Draw and Fill methods complement each other. You could, for
example, pass a red brush to the FillRectangle method and pass a blue
pen to the DrawRectangle method using the same coordinates that you
used to draw the red, filled rectangle. The result would be a two-colored
rectangle, with a blue border and a red interior. This type of two-colored
figure is natively available in the Windows API. Yet it seems apparent that
few programs need to draw two-colored vector figures. That is, no doubt, a
factor that contributed to the design of vector drawing in the .NET Frame-
work and the .NET Compact Framework.

If a programmer is willing to do a bit of work, almost all vector drawing
can be accomplished by calling two of these methods: DrawLine and
FillPolygon. Each of the supported method names is of the form
<verb><shape>. In the DrawLine method, for example, the verb is Draw
and the shape is Line.

Creating Pens
Pens draw lines. The desktop supports a very sophisticated model for
pens, including support for scalable geometric pens and nonscalable cos-
metic pens. Pens on the desktop support features that allow you to fine-
tune how an end of a line appears (rounded or squared) and even how the
“elbow” joints are drawn. Pens can be wide or narrow, and even nonsolid
pen colors are supported.

Wake up! In the .NET Compact Framework, pens are always 1 pixel
wide. Pens provide a quick and simple way to define the color used to

Yao_C#_book.fm Page 1094 Friday, April 30, 2004 12:12 PM

VECTOR GRAPHICS 1095

draw a line. From the seventeen properties supported for pens on the desk-
top, one has survived to the .NET Compact Framework: Color. And so it
should come as no surprise that the one constructor for the Pen29 class has
a single parameter, a color as shown here.

public Pen(

 Color color);

There are three ways to define a pen in a .NET Compact Framework
program because there are three ways to specify a color:

1. With a system color

2. With a named color

3. With an RGB value

Earlier in this chapter, we described some of the details about the three ways
to pick a color. We showed that each of the color-specifying approaches
could be used to create a brush. Now the time has come to show the same
thing for pens.

The following code fragment creates three pens. One pen is created using
a system color; another pen is created using a named color; and finally, the
third pen is created with an RGB value.

// Pen from a system color

Pen penCtrl = new Pen(SystemColors.ControlDark);

// Pen from a named color

Pen penRed = new Pen(Color.Red);

// Pen from an RGB value

Pen penBlue = new Pen(Color.FromArgb(0, 0, 255));

A Game: JaspersDots
While writing this book, we watched Paul’s son, Jasper, playing a paper-
and-pencil game with one of his friends. They were having so much fun

29. Fully qualified name: System.Drawing.Pen.

Yao_C#_book.fm Page 1095 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1096

that we decided to write a .NET Compact Framework version. The game
was Dots, which may be familiar to some readers. In this two-person game,
players take turns connecting dots that have been drawn in a grid. A player
is awarded a point for drawing the last line that creates a box. We named our
version of the game JaspersDots, in honor of Paul’s son. The playing board
for this game is drawn entirely with the following vector graphic methods:

• FillEllipse

• FillRectangle

• DrawLine

• DrawRectangle

This program provides extensive use of various Graphics objects includ-
ing colors, pens, and brushes.

Figure 15.6 shows the New Game dialog box. Each player enters a name
and picks a color to use for claimed squares. The default board size is 8 × 8,
which can be overridden in the New Game dialog box (the maximum
board size is 11 × 9).

Figure 15.6: New Game dialog box
for the JaspersDots program

Yao_C#_book.fm Page 1096 Friday, April 30, 2004 12:12 PM

VECTOR GRAPHICS 1097

The New Game dialog box is a simple dialog box drawn with regular
controls, with one small enhancement: This dialog handles a Paint event,
which draws a selection rectangle around each player’s currently selected
color. The set of available colors is drawn with Panel controls, five for each
player. Listing 15.8 shows the source code for the event handlers for
responding to the Click event for each set of Panel controls and to the
Paint event for the New Game dialog box.

Listing 15.8: Paint and Click Event Handlers for the New Game Dialog Box

private void

Panel1_Click(object sender, EventArgs e)

{

 if (sender == (object)panel1)

 iColor1 = 0;

 else if (sender == (object)panel2)

 iColor1 = 1;

 else if (sender == (object)panel3)

 iColor1 = 2;

 else if (sender == (object)panel4)

 iColor1 = 3;

 else if (sender == (object)panel5)

 iColor1 = 4;

 // Redraw the window.

 Invalidate();

}

private void

Panel2_Click(object sender, EventArgs e)

{

 if (sender == (object)panelA)

 iColor2 = 0;

 else if (sender == (object)panelB)

 iColor2 = 1;

 else if (sender == (object)panelC)

 iColor2 = 2;

 else if (sender == (object)panelD)

 iColor2 = 3;

 else if (sender == (object)panelE)

 iColor2 = 4;

 // Redraw the window.

 Invalidate();

}

continues

Yao_C#_book.fm Page 1097 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1098

continued

private void

GameNewDialog_Paint(object sender, PaintEventArgs e)

{

 Panel panel = panel1;

 //

 // Player 1

 //

 // What is the current player 1 panel?

 switch(iColor1)

 {

 case 0:

 panel = panel1;

 break;

 case 1:

 panel = panel2;

 break;

 case 2:

 panel = panel3;

 break;

 case 3:

 panel = panel4;

 break;

 case 4:

 panel = panel5;

 break;

 }

 clr1 = panel.BackColor;

 // Draw a rectangle around the color selected by player 1.

 Pen penBlack = new Pen(Color.Black);

 Rectangle rc = new

 Rectangle(panel.Left - 3,

 panel.Top - 3,

 panel.Width + 5,

 panel.Height + 5);

 e.Graphics.DrawRectangle(penBlack, rc);

 rc.Inflate(1, 1);

 e.Graphics.DrawRectangle(penBlack, rc);

 rc.Inflate(1, 1);

 e.Graphics.DrawRectangle(penBlack, rc);

 //

 // Player 2

 //

 // What is the current player 2 panel?

Yao_C#_book.fm Page 1098 Friday, April 30, 2004 12:12 PM

VECTOR GRAPHICS 1099

 switch(iColor2)

 {

 case 0:

 panel = panelA;

 break;

 case 1:

 panel = panelB;

 break;

 case 2:

 panel = panelC;

 break;

 case 3:

 panel = panelD;

 break;

 case 4:

 panel = panelE;

 break;

 }

 clr2 = panel.BackColor;

 // Draw a rectangle around the color selected by player 2.

 rc = new Rectangle(panel.Left - 3,

 panel.Top - 3,

 panel.Width + 5,

 panel.Height + 5);

 e.Graphics.DrawRectangle(penBlack, rc);

 rc.Inflate(1, 1);

 e.Graphics.DrawRectangle(penBlack, rc);

 rc.Inflate(1, 1);

 e.Graphics.DrawRectangle(penBlack, rc);

}

There is a bug in Visual Studio .NET that affects C# programmers. The
bug is that supported events for certain controls do not appear in the
Designer. You can, however, add an event handler manually. Inside the
Visual Studio code editor, you type the control name, the event name, and
the += operator, and IntelliSense helps by providing the rest.

In our JaspersDots game, we found that the Designer did not support
the Click event for Panel controls. To create Click event handlers for the
Panel controls in the New Game dialog box, we manually typed in event
handler names, which were completed for us by IntelliSense. The resulting
code appears in Listing 15.9.

Yao_C#_book.fm Page 1099 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1100

Listing 15.9: Adding Event Handlers Manually

// Set up the Click handler for player 1 panels.

// Note: The Designer does not support this

// so we have to do it manually.

panel1.Click += new EventHandler(this.Panel1_Click);

panel2.Click += new System.EventHandler(this.Panel1_Click);

panel3.Click += new System.EventHandler(this.Panel1_Click);

panel4.Click += new System.EventHandler(this.Panel1_Click);

panel5.Click += new System.EventHandler(this.Panel1_Click);

// Set up the Click handler for player 2 panels.

// Note: The Designer does not support this

// so we have to do it manually.

panelA.Click += new EventHandler(this.Panel2_Click);

panelB.Click += new System.EventHandler(this.Panel2_Click);

panelC.Click += new System.EventHandler(this.Panel2_Click);

panelD.Click += new System.EventHandler(this.Panel2_Click);

panelE.Click += new System.EventHandler(this.Panel2_Click);

Figure 15.7 shows an example of the JaspersDots game in play. Each
dot is drawn with a call to the FillEllipse method that is drawn in a
bounding rectangle that is 4 pixels by 4 pixels. Players draw lines by click-
ing in the area between dots, and when a hit is detected a line is drawn by

Figure 15.7: JaspersDots with a game under way

Yao_C#_book.fm Page 1100 Friday, April 30, 2004 12:12 PM

VECTOR GRAPHICS 1101

calling the DrawLine method. A player’s claimed boxes are drawn with
calls to the FillRectangle method.

The JaspersDots program uses a custom control for the game win-
dow, our DotControl class. Listing 15.10 shows the source code to the Dot-
Control class.

Listing 15.10: The DotControl Class

public class DotControl : System.Windows.Forms.Control

{

 private FormMain formParent;

 private Brush m_brPlayer1;

 private Brush m_brPlayer2;

 private Squares sq;

 public DotControl(FormMain form)

 {

 formParent = form;

 formParent.Controls.Add(this);

 this.Paint += new

 PaintEventHandler(this.DotControl_Paint);

 this.MouseDown += new

 MouseEventHandler(this.DotControl_MouseDown);

 this.Left = 0;

 this.Top = 64;

 this.Width = 240;

 this.Height = 240;

 sq = new Squares(this);

 }

 public bool SetGridSize(int cxWidth, int cyHeight)

 {

 return sq.SetGridSize(cxWidth, cyHeight);

 }

 public bool SetPlayerColors(Color clr1, Color clr2)

 {

 m_brPlayer1 = new SolidBrush(clr1);

 m_brPlayer2 = new SolidBrush(clr2);

 return sq.SetPlayerBrushes(m_brPlayer1, m_brPlayer2);

 }

 private void

 DotControl_MouseDown(object sender, MouseEventArgs e)

continues

Yao_C#_book.fm Page 1101 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1102

continued

 {

 // Check result.

 int iResult = sq.HitTest(e.X, e.Y,

 formParent.CurrentPlayer);

 // Click on the available line, no score.

 if(iResult == 1)

 {

 formParent.NextPlayer();

 }

 // Click on the available line, score.

 if (iResult == 2)

 {

 int iScore1 = sq.GetScore(1);

 formParent.DisplayScore(1, iScore1);

 int iScore2 = sq.GetScore(2);

 formParent.DisplayScore(2, iScore2);

 int count = sq.Height * sq.Width;

 if (iScore1 + iScore2 == count)

 {

 string strResult = null;

 if (iScore1 > iScore2)

 strResult = "Player 1 wins! ";

 else if (iScore1 < iScore2)

 strResult = "Player 2 wins! ";

 else

 strResult = "Tie Game! ";

 MessageBox.Show(strResult, "JaspersDots");

 }

 }

 }

 private void

 DotControl_Paint(object sender, PaintEventArgs e)

 {

 // Fill squares which players now own.

 sq.FillSquares(e.Graphics);

 // Draw lines which players have selected.

 sq.DrawLines(e.Graphics);

 // Draw dots in grid.

 sq.DrawDots(e.Graphics);

 }

} // class

Yao_C#_book.fm Page 1102 Friday, April 30, 2004 12:12 PM

VECTOR GRAPHICS 1103

The DotControl class handles two events: MouseDown and Paint. Most
of the work for these events is done by a helper class named Squares. The
source code for the Squares class appears in Listing 15.11.

Listing 15.11: The Squares Class

public class Squares

{

 public int Width

 {

 get { return cxWidth; }

 }

 public int Height

 {

 get { return cyHeight; }

 }

 private int cxLeft = 15;

 private int cyTop = 15;

 private int cxWidth;

 private int cyHeight;

 const int cxLine = 20;

 const int cyLine = 20;

 const int cxyDelta = 5;

 private Square [,] m_asq;

 private Control m_ctrlParent;

 private Brush m_brPlayer1;

 private Brush m_brPlayer2;

 private Brush m_brBackground = new _

 SolidBrush(SystemColors.Window);

 private Brush hbrBlack = new SolidBrush(Color.Black);

 private Point ptTest = new Point(0,0);

 Rectangle rc = new Rectangle(0, 0, 0, 0);

 private Size szDot = new Size(4,4);

 Pen penLine = new Pen(Color.Black);

 public Squares(Control ctrlParent)

 {

 m_ctrlParent = ctrlParent;

 } // Squares()

 public bool SetGridSize(

 int cxNewWidth, // Width of array.

 int cyNewHeight // Height of array.

)

continues

Yao_C#_book.fm Page 1103 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1104

continued

 {

 // Temporary scratch space

 Rectangle rcTemp = new Rectangle(0,0,0,0);

 Point ptTemp = new Point(0,0);

 Size szTemp = new Size(0,0);

 // Set up an array to track squares.

 cxWidth = cxNewWidth;

 cyHeight = cyNewHeight;

 m_asq = new Square[cxWidth, cyHeight];

 if (m_asq == null)

 return false;

 int x, y;

 for (x = 0; x < cxWidth; x++)

 {

 for (y = 0; y < cyHeight; y++)

 {

 m_asq[x,y].iOwner = 0; // No owner.

 int xLeft = cxLeft + x * cxLine;

 int yTop = cyTop + y * cyLine;

 int xRight = cxLeft + (x+1) * cxLine;

 int yBottom = cyTop + (y+1) * cyLine;

 int cxTopBottom = cxLine - (2 * cxyDelta);

 int cyTopBottom = cxyDelta * 2;

 int cxLeftRight = cxyDelta * 2;

 int cyLeftRight = cxLine - (2 * cxyDelta);

 // Main rectangle

 ptTemp.X = xLeft + 1;

 ptTemp.Y = yTop + 1;

 szTemp.Width = xRight - xLeft - 1;

 szTemp.Height = yBottom - yTop - 1;

 rcTemp.Location = ptTemp;

 rcTemp.Size = szTemp;

 m_asq[x,y].rcMain = rcTemp;

 // Top hit rectangle

 m_asq[x,y].rcTop =

 new Rectangle(xLeft + cxyDelta,

 yTop - cxyDelta,

 cxTopBottom,

 cyTopBottom);

 m_asq[x,y].bTop = false;

 // Right hit rectangle

 m_asq[x,y].rcRight =

 new Rectangle(xRight - cxyDelta,

 yTop + cxyDelta,

Yao_C#_book.fm Page 1104 Friday, April 30, 2004 12:12 PM

VECTOR GRAPHICS 1105

 cxLeftRight,

 cyLeftRight);

 m_asq[x,y].bRight = false;

 // Bottom hit rectangle

 m_asq[x,y].rcBottom =

 new Rectangle(xLeft + cxyDelta,

 yBottom - cxyDelta,

 cxTopBottom,

 cyTopBottom);

 m_asq[x,y].bBottom = false;

 // Left hit rectangle

 m_asq[x,y].rcLeft =

 new Rectangle(xLeft - cxyDelta,

 yTop + cxyDelta,

 cxLeftRight,

 cyLeftRight);

 m_asq[x,y].bLeft = false;

 } // for y

 } // for x

 return true;

 }

 public bool

 SetPlayerBrushes(

 Brush br1, // Brush color for player 1

 Brush br2 // Brush color for player 2

)

 {

 m_brPlayer1 = br1;

 m_brPlayer2 = br2;

 return true;

 }

 //--

 public void

 FillOneSquare(Graphics g, int x, int y)

 {

 Brush brCurrent = m_brBackground;

 if (m_asq[x,y].iOwner == 1)

 brCurrent = m_brPlayer1;

 else if (m_asq[x,y].iOwner == 2)

 brCurrent = m_brPlayer2;

 g.FillRectangle(brCurrent, m_asq[x,y].rcMain);

 }

continues

Yao_C#_book.fm Page 1105 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1106

continued

 // FillSquares -- Fill owned squares with a player's color.

 //

 public void

 FillSquares(Graphics g)

 {

 int x, y;

 for (x = 0; x < cxWidth; x++)

 {

 for (y = 0; y < cyHeight; y++)

 {

 if (m_asq[x,y].iOwner != 0)

 {

 FillOneSquare(g, x, y);

 }

 }

 }

 } // method: FillSquares

 //

 // DrawOneLineSet

 //

 public void DrawOneLineSet(Graphics g, int x, int y)

 {

 int xLeft = cxLeft + x * cxLine;

 int yTop = cyTop + y * cyLine;

 int xRight = cxLeft + (x+1) * cxLine;

 int yBottom = cyTop + (y+1) * cyLine;

 if (m_asq[x,y].bTop)

 g.DrawLine(penLine, xLeft, yTop, xRight, yTop);

 if (m_asq[x,y].bRight)

 g.DrawLine(penLine, xRight, yTop, xRight, yBottom);

 if (m_asq[x,y].bBottom)

 g.DrawLine(penLine, xRight, yBottom, xLeft, yBottom);

 if (m_asq[x,y].bLeft)

 g.DrawLine(penLine, xLeft, yBottom, xLeft, yTop);

 } // DrawOneLineSet()

 //

 // DrawLines -- Draw lines which have been hit.

 //

 public void DrawLines(Graphics g)

 {

 int x, y;

 for (x = 0; x < cxWidth; x++)

 {

 for (y = 0; y < cyHeight; y++)

Yao_C#_book.fm Page 1106 Friday, April 30, 2004 12:12 PM

VECTOR GRAPHICS 1107

 {

 DrawOneLineSet(g, x, y);

 }

 }

 } // DrawLines()

 public void DrawDots (Graphics g)

 {

 // Draw array of dots.

 int x, y;

 for (x = 0; x <= cxWidth; x++)

 {

 for (y = 0; y <= cyHeight; y++)

 {

 ptTest.X = (cxLeft - 2) + x * cxLine;

 ptTest.Y = (cyTop - 2) + y * cyLine;

 rc.Location = ptTest;

 rc.Size = szDot;

 g.FillEllipse(hbrBlack, rc);

 }

 }

 } // DrawDots

 public enum Side

 {

 None,

 Left,

 Top,

 Right,

 Bottom

 }

 //

 // HitTest - Check whether a point hits a line.

 //

 // Return values:

 // 0 = miss

 // 1 = hit a line

 // 2 = hit and completed a square.

 public int HitTest(int xIn, int yIn, int iPlayer)

 {

 int x, y;

 bool bHit1 = false;

 bool bHit2 = false;

 Side sideHit = Side.None;

 for (x = 0; x < cxWidth; x++)

 {

 { for (y = 0; y < cyHeight; y++)

continues

Yao_C#_book.fm Page 1107 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1108

continued

 // If already owned, do not check.

 if (m_asq[x,y].iOwner != 0)

 continue;

 // Otherwise check for lines against point.

 if (m_asq[x,y].rcTop.Contains(xIn, yIn))

 {

 // Line already hit?

 if (m_asq[x,y].bTop) // Line already hit?

 return 0;

 // If not, set line as hit.

 sideHit = Side.Top;

 m_asq[x,y].bTop = true;

 }

 else if (m_asq[x,y].rcLeft.Contains(xIn, yIn))

 {

 // Line already hit?

 if (m_asq[x,y].bLeft) // Line already hit?

 return 0;

 // If not, set line as hit.

 sideHit = Side.Left;

 m_asq[x,y].bLeft = true;

 }

 else if (m_asq[x,y].rcRight.Contains(xIn, yIn))

 {

 // Line already hit?

 if (m_asq[x,y].bRight) // Line already hit?

 return 0;

 // If not, set line as hit.

 sideHit = Side.Right;

 m_asq[x,y].bRight = true;

 }

 else if (m_asq[x,y].rcBottom.Contains(xIn, yIn))

 {

 // Line already hit?

 if (m_asq[x,y].bBottom) // Line already hit?

 return 0;

 // If not, set line as hit.

 sideHit = Side.Bottom;

 m_asq[x,y].bBottom = true;

 }

 // No hit in current square -- keep looking.

 if (sideHit == Side.None)

 continue;

 // We hit a side.

 bHit1 = true;

Yao_C#_book.fm Page 1108 Friday, April 30, 2004 12:12 PM

VECTOR GRAPHICS 1109

 // Draw sides.

 Graphics g = m_ctrlParent.CreateGraphics();

 DrawOneLineSet(g, x, y);

 // Check whether square is now complete.

 // We hit a line - check for hitting a square.

 if (m_asq[x,y].bLeft &&

 m_asq[x,y].bTop &&

 m_asq[x,y].bRight &&

 m_asq[x,y].bBottom)

 {

 // Side is complete.

 m_asq[x,y].iOwner = iPlayer;

 bHit2 = true;

 // Fill current square.

 FillOneSquare(g, x, y);

 }

 g.Dispose();

 } // for y

 } // for x

 if (bHit2) return 2;

 else if (bHit1) return 1;

 else return 0;

 } // HitTest

 //

 // GetScore - Get current score for player N.

 //

 public int GetScore (int iPlayer)

 {

 int iScore = 0;

 int x, y;

 for (x = 0; x < cxWidth; x++)

 {

 for (y = 0; y < cyHeight; y++)

 {

 if (m_asq[x,y].iOwner == iPlayer)

 iScore++;

 }

 }

 return iScore;

 } // GetScore

} // class Squares

Yao_C#_book.fm Page 1109 Friday, April 30, 2004 12:12 PM

.NET COMPACT FRAMEWORK GRAPHICS1110

Finally, we define two simple data structures—Square and Players—
to hold details about individual game board squares and details about
individual players, respectively. Listing 15.12 shows the code.

Listing 15.12: The Square and Players Structures

 public struct Square

 {

 // Coordinate of main rectangle

 public Rectangle rcMain;

 public int iOwner;

 // Hit-rectangles of four edges of main rectangle

 public Rectangle rcTop;

 public bool bTop;

 public Rectangle rcRight;

 public bool bRight;

 public Rectangle rcBottom;

 public bool bBottom;

 public Rectangle rcLeft;

 public bool bLeft;

 } // struct Square

 public class Players

 {

 public string strName1;

 public string strName2;

 public bool bComputerPlaying;

 public System.Drawing.Color clr1;

 public System.Drawing.Color clr2;

 }

CONCLUSION

Whether or not you believe that good things always come in small pack-
ages, it should be clear that some very rich capabilities for creating graphi-
cal output have been placed in the very small package of the .NET Compact
Framework’s System.Drawing.dll library. This chapter looked in detail
at the four types of drawing surfaces that Windows programmers are used
to, two of which are supported in the .NET Compact Framework. This
chapter also discussed the three families of drawing functions, which are

Yao_C#_book.fm Page 1110 Friday, April 30, 2004 12:12 PM

CONCLUSION 1111

reasonably well represented by the .NET Compact Framework’s capable,
though small, feature set.

In this chapter, we explored two of the families in depth: raster and vector
drawing functions. In the next chapter, we take an in-depth look at the third
family of output—text. This part of the book concludes in Chapter 17 with
coverage of an output device that is not officially supported in the .NET
Compact Framework, namely, printers. In spite of the lack of managed-code
support, we show that there are ways for a .NET Compact Framework pro-
gram to satisfy the need that users sometimes have for hard copy. We do so
by providing something that programmers sometimes need: some sample
programs to make it clear how such an unsupported feature can, in fact, be
made available.

Yao_C#_book.fm Page 1111 Friday, April 30, 2004 12:12 PM

Yao_C#_book.fm Page 1112 Friday, April 30, 2004 12:12 PM

