
Java EE .NET Security
Interoperability 13

Security by Default

Security exploits and vulnerabilities are often causes of huge financial loss
and disruption of business services. The Computer Security Institute (refer to
[CSI] for details) has reported a worldwide financial loss of circa US$130 mil-
lion that resulted from virus, unauthorized access, and theft of proprietary
information in 2005, a US$7.3 million loss (compared to US$65 million loss in
2003) due to denial of service attacks, and an average US$355,552 (2005) loss
per incident for proprietary information theft in 2003. A business application
that was considered “secure” running on a Unix or Windows platform (for
example, protected by firewall and anti-virus application) is not necessarily
vulnerability-free when exchanging sensitive business data with another
business application running on a different platform. This is because the
interoperable solution is exposed to security vulnerabilities if one of the
applications (either the sender or recipient) is exploited or is being attacked
by hackers.

403

Fisher_CH13  3/24/06  5:05 PM  Page 403



404 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

There are historic incidents of vulnerabilities in the Windows platform
(such as flaw authentication [WindowsAuthFlaw]) or Java platform (such as
a flaw in the JVM in [JavaVMFlaw]). These incidents are critical and can
become the “Achilles’ heel” (a critical problem that causes financial loss or
disruption to the business service) for the mission-critical Java EE .NET inter-
operable solutions. Although the individual vulnerability incident may not
be a direct root cause to security exploits of a Java EE .NET interoperable
solution, any vulnerability exposed on either Solaris OE, Unix, Linux, or
Windows platform becomes a “weakest link” to the security of the interoper-
able solution. 

Web Services Interoperability (WS-I) identifies the following security
threats that can impact Java EE .NET interoperability:

• Message alteration changing the message header or body during the
transit.

• Attachment alteration changing the SOAP attachment during the
transit.

• Confidentiality the capability to ensure no unauthorized access is
made to the message.

• Falsified messages the message is falsified by using a different iden-
tity of the sender.

• Man-in-the-middle the message is being spoofed or tampered with
during transit.

• Principal spoofing the information about the user or subject is being
spoofed during transit.

• Repudiation the sender or recipient denied or repudiated about the
message being sent or received.

• Forged claims the claim about sending the message is forged by tam-
pering with the message content.

• Message replay (or replay of message parts) the message was once
spoofed and modified for resending the message.

• Denial of service a malicious action to replay a message continuously
or to overload the target service provider until the service provider is
out of service.

To make a Java EE .NET interoperable solution secure by default, security
architects and developers should consider the following security require-
ments. Also refer to [WSI-countermeasure] for the details of security scenar-
ios and the counter-measures to the security threats.

Fisher_CH13  3/24/06  5:05 PM  Page 404



• Always Customize Security Settings Do not take the default security
settings of vendor products in the operating environment. Many busi-
ness applications are not designed and deployed with security by
default—they are designed with unused system services turned on
when deployed, which may be open to security exploits and vulnera-
bilities that can severely impact the interoperable solution.

• Use Open Standards for Interoperability Web services security is
currently an open standard for SOAP-based Web services. WS-I Basic
Security Profile (BSP) 1.0 addresses these security threats. In essence,
BSP 1.0 extends Web services security to handle SOAP attachments.
These standards ensure that the applications are interoperable.

• Use Strong Authentication Mechanisms.

• Use Secure Transport Mechanisms Use of secure transport mecha-
nisms such as SSL/TLS should address principal spoofing.

• Use Digital Signature Use of digital signature should address the
security risks of message alteration, attachment alteration, confidential-
ity, repudiation, and forged claims. Signing the SOAP message header
once, creation time, and optional user data over secure transport layer
such as SSL/TLS are able to address the security risk of message replay.

• Use Encryption Use of encryption should address the security risks
of confidentiality.

This chapter recapitulates the features of Java and .NET security that make
interoperability easier. It also discusses different technologies (such as
authentication in the Presentation tier) and the open standards (such as Web
services security) where Java and .NET applications can interact. Finally, two
interoperability strategies are discussed.

Java Security by Design

Application security is critical in Java technology. The Java runtime environ-
ment (aka JVM) provides a tightly guarded security environment for runtime
execution. (Refer to [J2EE14], [J2EE14Tutor], and [LiGong] for more details.)
Figure 13-1 depicts a high-level security overview. Inside the JRE, the
Security Manager is responsible for code runtime verification and access con-
trol. The code runtime verification is managed by the Protection Domain,
where different class files (namely, bootstrap class, system class, and user
class) are verified by bootstrap class loader, system class loader, class loader,

JAVA SE C U R I T Y B Y DE S I G N 405

Fisher_CH13  3/24/06  5:05 PM  Page 405



and the bytecode verifier. The Access Module is responsible to authenticate
and authorize the principal (user or service requester) against the security
policy files (namely, java.security and java.policy files). The JRE supports a
variety of authentication mechanisms, including JAAS login module, data-
base security (using JDBC), or LDAP (using JNDI).

Figure 13-1
Java security overview

Java Runtime Security

Java SE provides a Java “sandbox” to restrict applets from accessing file sys-
tems and networks and untrusted applets from accessing all of the API func-
tionality. The “sandbox” security architecture (refer to Figure 13-1) consists
of three key components:

java.security 

java.policy

Container-Based
Security

(Java EE)

Security Manager 

Authentication

Access
Module

JAAS Login
Module Roles

JAAS

LDAP

JNDI

Principal

Credential

Database
Security

LDAP

Protection
Domain

Bootstrap
Class

Loader

Bootstrap
Class Files

System
Class Files

User
Class Files

System
Class

Loader

Class
Loader

Bytecode
Verifier

Java Run-Time Environment

406 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 406



• Bytecode Verifier It verifies Java bytecodes that are compiled from
Java source codes prior to execution. It ensures that the bytecodes do
not violate permission policies or access system resources using incor-
rect type information.

• Class Loader The “primordial” (root) class loader bootstraps the class
loading process and protects the runtime environment from loading
harmful codes locally or remotely by hackers during the class loading
process (so-called “code-spoofing”). It loads the initial classes 
required by all Java programs. The secure class loader java.secu-
rity.SecureClassLoader then kicks off assembling and loading
other classes locally, for example, bootstrap class files, system class
files, and user class files.

Class loading works under a class loader hierarchy. A child class must
delegate to the parent class to load a specific class. If the parent class
cannot load the specific class, then the child class loads it. Remote
classes from the network are instantiated and loaded by the parent class
loader as a new class. Thus hackers are not able to spoof attack by load-
ing a malicious class directly into the JVM. For instance, hackers 
are able to insert a malicious version of System.out.print or
java.lang.String into the application because the class loader loads
a local version of System.out.print or java.lang.String under
this class loading process. A Java archive (JAR) signer is a utility that
seals packages for protection from tampering and verifies remote
classes prior to loading to the JVM.

• Security Manager The security manager (java.lang.Security
Manager) performs runtime checks on any method or any code access-
ing sensitive system resources (for example, file or network access), and
generates a security exception for any security policy violation. It 
delegates the permission check to the java.security.Access
Controller by calling the checkPermission method. The security
manager can be invoked by specifying the system property while 
starting the JVM (for example, java -Djava.security.manager

myApps.class) or creating an instance in the program code (for exam-
ple, System.setSecurityManager(new SecurityManager());)

The security manager has a security policy database where security policies
are maintained. The security policy database stores permission rules for
authorization and key stores for authentication. A security policy relates to a
set of permissions for a domain (system or application), which encloses a set
of classes. Developers can also customize any additional protection of
resources within the domain boundary, say, using the SignedObject class.

JAVA SE C U R I T Y B Y DE S I G N 407

Fisher_CH13  3/24/06  5:05 PM  Page 407



The protection domain (java.security.ProtectionDomain class) is
another important security concept. It refers to the system and application
components (for example, a group of classes) of the runtime environment
that can be secured according to the predefined security policy. There are two
types of protection domain: static (grant permissions specified only when
constructed) and dynamic (grant permissions specified when constructed
and permissions granted by the security policy). The protection domain
extends the “sandbox” security architecture by associating a group of princi-
pals with permissions. For example, a protection domain associates permis-
sions with a code source (URL where the class file comes from), such that any
classes originating from the same URL will have the same signature and key
placed in the same domain, and thus granted the same permissions and
access rights. This enhances the current mechanism to load a class. Moreover,
the security policy allows defining an association between the principals and
permissions for the classes (via the code source). It can be passed as a param-
eter to the application, which can use different protection domains wherever
necessary.

Java SE security introduces a set of additional security concepts (see
[LiGong] for details), which includes the concepts of a Principal (an entity
that a security service can authenticate with an authentication protocol) and
security domain (the scope related to a set of security policies defined by the
administrator of a security service). There are two important files under JVM
that store security policy information: java.policy and java.security
under the directory, %J2SE%/lib/security, where %J2SE% is the file location
for the JVM. 

Authentication Mechanisms

Figure 13-1 shows an example of three different authentication mechanisms.
A subject (user) has multiple principals, or multiple user names or identities.
Suppose one of his principals (using the java.security.Principal class)
possesses a digital certificate as a credential. Under the Java SE security
architecture, the principal can use the credential to authenticate with the
applications via JAAS (using the javax.security.auth.login.* class),
JNDI (using the LDAP directory server), or JDBC (using back-end database
security). In this example, the security manager is used. Upon successful
authentication, the security manager will check permission, and pass 
control to the access module. The access module (using the java.secu-
rity.AccessController class) checks permission by checking the
java.security file, which contains the policy URL (policy.url.1) and

408 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 408



keystore information (keystore.type). The java.security file associ-
ates the permission (grant ... permission ...) with the principals. If
the principal-permission relationship is found, then the access module
grants access to the principal for the application resources to the principal.

Apart from the “sandbox” security architecture, Java SE also provides
some authentication and encryption services that work with JCA and JCE
layers. These security services include JAAS, JSSE, JGSS, and CertPath.
Applications or security packages can also customize their security APIs
using these security services. 

Container-Based Security

The Java EE container provides a comprehensive application-level security
that is related to the application component deployment and runtime 
environment.

• Declarative Security According to [J2EE14], Java EE security has the
notion of declarative security. In other words, the application’s security
structure, including security roles, access control, and authentication
requirements in a form external to the application, is expressed in the
deployment descriptor. The deployment descriptor is in effect 
a contract between the application component provider and the
deployer or application assembler, where the application security 
policy is mapped to the security structure of the relevant operating
environment.

• Programmatic Security Java EE security architecture also provides
some APIs (programmatic security) to manipulate the roles and princi-
pals, in addition to the declarative security. This supports both servlets
(isUserInRole and getUserPrincipal using the interface
HttpServletRequest) and EJBs (isCallerInRole and
getCallerPrincipal using the interface EJBContext).

Security Interoperability Features

Java technology has provided several interoperability features to secure
business applications. The following highlights a few major security interop-
erability features:

• “Building block” security components to support interoperability, for
example, JAAS and JSSE.

JAVA SE C U R I T Y B Y DE S I G N 409

Fisher_CH13  3/24/06  5:05 PM  Page 409



• JSR implementation that enables interoperability, for example, JAX-
RPC 2.0 and WS-I Basic Security Profile 1.0/1.1.

• Support of single sign-on using Web SSO protocol, WS-MEX protocol,
Liberty, and SAML.

• Support of security interoperability standards, for example, OASIS’s
Web services security.

• Support of WS-Policy by Java Web Services Developer Pack 2.1 or later.

.NET Security by Design

.NET security is targeted at developers. The .NET Framework provides a
developer-centric and runtime security model on top of the Windows operat-
ing system security. It supports a role-based security that defines the access
rights for resources using a role or a group. Role-based security addresses the
security risk of broken access control for applications. At the software code
level, the .NET Framework has Code Access Security, also known as evi-
dence-based security, that defines whether or not a user can be trusted to
access a resource. Code Access Security addresses the security risk of tamper-
ing or the use of a Trojan horse when downloading codes from external
sources or Internet. Refer to [Watkins] for an overview of the .NET
Framework security. 

Figure 13-2 depicts a high-level security overview of the .NET
Framework. The .NET Common Language Runtime (CLR) provides a run-
time environment under the Windows hosting environment. When a .NET
application is deployed, the .NET Framework assembles and deploys the
.NET application to the target runtime environment in MSIL (Microsoft
Intermediate Language) with the associated metadata. MSIL is an object-
oriented assembly language that can be compiled to x86 native codes by a just-
in-time compiler for execution in the CLR environment. metadata is a set of
tables, also known as contract or blueprint, that depict the assembly’s types,
their methods, fields, signatures, and dependencies on other assemblies.

The .NET Common Language Runtime also provides a runtime security
system that uses a policy manager to evaluate what permission should be
granted to a service request. A Principal interacts with a .NET application
and issues a service request to access resources. The security system in the
CLR evaluates the service request based on the evidence, which is a set of
information that constitutes input to security policy decisions, for example,

410 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 410



origin of the codes and digital signature of the assembly, in the Windows
hosting environment and the security policies defined in the CLR’s policy
levels and permission set. 

Figure 13-2
.NET security overview

A .NET application is composed of an assembly and one or more .NET
modules. An assembly is the unit of code deployment in the .NET Common
Language Runtime environment. It consists of an assembly manifest (a list
of the assembly layout and global attributes) and one or more .NET modules.
.NET modules are either DLLs or EXE Windows portable executable files.
They contain the Microsoft Intermediate Language (MSIL), the associated
metadata, and optionally the assembly manifest. 

In the .NET CLR environment, an assembly uses the basic permission set
class System.Security.PermissionSet to grant permissions to codes
that are defined in the policy levels of the security system. Permissions can
be code access permissions, which protect the resources directly, or identity
permissions, which represent evidence that is granted to assemblies.

.NET SE C U R I T Y B Y DE S I G N 411

Fisher_CH13  3/24/06  5:05 PM  Page 411



A Principal authenticates with the Windows system and invokes a .NET
application to access a system resource. The CLR environment evaluates the
security policies to determine whether the Principal has appropriate permis-
sion and access rights to execute the program codes and access the system
resources.

Code Access Security

Code Access Security (CAS) is a key security feature of .NET Framework. It
supports the requirement that different code should have different levels of
trust.  Using CAS, the security access control is based on the identity of the
code, not individual user identity (such as user id), who executes or runs the
software codes. This addresses the limitation of access control for different
software codes by username-password, which is at a coarse granularity level.
For example, developers can define code access security policies to constrain
the ability of an assembly to perform file input/output and restrict file
input/output to a specific directory. Code access security addresses the
insufficiency of guarding against malicious or faulty codes that may have
been downloaded from e-mail or the Internet that can damage files, though
the user has already been authenticated and authorized to run the executable
codes. In other words, CAS addresses the gap of protection against malicious
codes and is complementary to role-based security.

CAS has three key elements: evidence, security policy, and permissions.
Evidence refers to the set of information that constitutes input to security
policy decision. This includes the characteristics of an assembly, such as the
Web site from where an assembly is loaded. Security policy (also refer to next
section for details) is a set of rules used by the runtime policy resolution
process, also known as the Policy Decision Point, to determine which per-
missions an assembly can be granted. Permissions refers to the authority of
an assembly’s code to access protected operations and resources. There are
three different permission classes in .NET: code-access permissions, for
example, file input/output access granted to an assembly; identity permis-
sions, where an assembly presents a certain host evidence value to the run-
time policy resolution process as “identity;” and role-based permissions,
when access is granted to a role, such as system administrator.

To illustrate how CAS works, consider a sample .NET application,
“myinterop.exe,” by re-using the architecture diagram in Figure 13-2. When
a user runs the application “myinterop.exe,” the .NET Common Language
Runtime loads the “myinterop.exe” assembly from the Windows hosting
environment. The runtime then evaluates its evidence and determines what

412 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 412



permissions to grant the application against the defined security policies. For
instance, the application, myinterop.exe, has a permission request to write to
the text file “userpassword” in the local hard drive. The runtime’s policy res-
olution process determines what permission should be granted to the assem-
bly based on the security policies as well as the permission set assigned to the
assembly (for example, FileIOPermission object defined in the myin-
terop.exe assembly). Once the runtime confirms that the application has the
necessary permission to write to the text file, “userpassword,” the runtime
responds with a positive result to the File.Write method. Otherwise, the
runtime throws a System.Security.SecurityException if the permis-
sion is not granted.

CAS is about the understanding of the relationship between evidence,
policies, and permission, the details of which are beyond the scope of this
chapter. Please refer to the References section for more resources.

Security Policies

Security policies in the .NET Framework refer to the mechanism for adminis-
trators to express the level of trust for different codes. There are four key ele-
ments of the .NET security policies:

• Membership conditions A membership condition resembles an
object that answers “yes” or “no” when asked if an assembly matches
its membership test.  The membership conditions turn the evidence of
an assembly into a grant set

• Code groups Code groups map the .NET Framework code to specific
levels of trust. They are bindings between membership conditions and
permission sets. If code matches the membership condition in a code
group, it is ranked a permission set.

• Policy levels The System.Security.Policy.PolicyLevel class
defines policy levels using a list of named permission sets, a code group
hierarchy, and a list of “full trust” assemblies. There are four policy lev-
els supported: enterprise, machine, user, and application domain.
During the policy resolution of an assembly, the Policy Manager evalu-
ates the assembly’s evidence against each individual policy level via
the SecurityManager.ResolvePolicy method.

• Default security policy This is the culmination of the default policies
of all four policy levels, where each policy level has a hard-coded
default.  All default policy levels are identical with reference to the per-
mission set lists and assembly lists. The permission set lists contain all
the named permission sets.

.NET SE C U R I T Y B Y DE S I G N 413

Fisher_CH13  3/24/06  5:05 PM  Page 413



Execution-Time Security 

When an assembly is deployed to a target machine, the Assembly Loader
loads the assembly in the CLR environment with the context of a trusted
host, that is, the host is the trusted piece of code that is responsible to launch
the runtime. The Policy Manager evaluates the current security policy, the
evidence known about the assembly, and the set of permission requests, if
any, made in the assembly metadata. It determines what permissions should
be granted to the service requester based on the security policies for code
access. Upon evaluation by the Policy Manager, the Class Loader loads the
class for the JIT compiler to verify the codes prior to execution. The Code
Manager then translates the classes into native code for execution.

Security Interoperability Features

.NET technology has provided several interoperability features to secure
business applications. The following highlights a few major security interop-
erability features:

• Support of WS-I Basic Security Profile 1.0 via Web Services
Enhancement (WSE).

• Support of single sign-on using Web SSO protocol via Active Directory
Federation Services and the WS-MEX (metadata Exchange) protocol
via Microsoft Windows Communication Foundation (WCF) or for-
merly Indigo.

• Support of security interoperability standards, for example, OASIS’s
Web Services Security.

• Support of WS-Policy. WSE is an add-on to the .NET Framework and
provides a policy editor that allows defining policies for Web services
using WS-Policy.

Security for Interoperability

Previous chapters have discussed that Java and .NET applications can inter-
operate synchronously or asynchronously in different architecture tiers. As
security is end-to-end, security for interoperability should not be limited to a
single application component (for example, .NET bridge) or a specific archi-
tecture tier (for example, Web tier). Further, the security requirements for
interoperability in each architecture tier are different. This section discusses

414 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 414



the security requirements and what enabling technologies and security stan-
dards are available to address these requirements. The details of security
standards for interoperability are discussed in the next section. Adopting
interoperability technologies that support security standards allows wider
choice of vendor products and easier implementation.

Figure 13-3 depicts the areas of security for interoperability that have
support for security standards such as WS-I Basic Security Profile and WS-
Security. A Java client should be able to perform a single sign-on with the
.NET application and similarly for a .NET client with a Java application. To
ensure client-to-server communication is secure, developers can use HTTPS
or SSL/TLS to encrypt the communication channel.

Figure 13-3
Security for interoperability

In both the Web and the Business tiers, the client should be able to initiate
service requests or exchange business data synchronously or asynchro-
nously using Web services (with WS-I BSP and WS-Security). This should
allow a servlet, JSP, or JSF component under the Web tier to interoperate with
a .NET service component under the Business tier—or an ASP.NET page
under the Web tier to interoperate with an EJB object under the Business tier. 

In the Resource tier, a Java servlet or EJB component can also request
access to resources such as business data and database objects implemented
by means of the Data Access Layer using a policy language such as 

DAO /
Entity Bean

Data
Access Layer

Policies (WS-Policy,
XACML, WSPL)

HTTPS or SSL/TLS

Shared Authentication,
Single Sign-On

WS-I BSP,
WS-Security

WS-I BSP,
WS-Security Database

Web Tier Business Tier Resource Tier

Client

ASP.NET

Servlet /
JSP / JSF EJB

.NET Serviced
Component

Database

SE C U R I T Y F O R IN T E RO P E R A B I L I T Y 415

Fisher_CH13  3/24/06  5:05 PM  Page 415



WS-Policy, XACML, and Web Services Policy Language (refer to next section
for more details). Similarly, a .NET-serviced component can also share the
same policy language (provided that they are available in both .NET and
Java language) when requesting access to resources via Data Access Objects
or Entity Beans.

There are always business scenarios in the existing or legacy environ-
ment that Figure 13-3 does not cover. As most of these scenarios use nonstan-
dard interoperability technologies that are usually proprietary or highly
customized on a case-by-case basis, they require additional cost and efforts
to analyze the potential security risks and to mitigate the vulnerabilities. For
example, if a bridge technology is used for Java EE .NET interoperability,
developers and security architects need to analyze the risks of the bridge
technology and the customized application codes that connect to the bridge.
The bridge would become an easier target for hacking or the single point of
failure attacks. Even though the security for the bridge is strong, there may
be considerable unknown risks for the customized application codes related
to it.

The following sections elaborate on the security requirements of the Java
EE .NET interoperability and discuss the technologies available to mitigate
the security risks.

Secure Transport

The client-to-server session is often a target of security spoofing. A basic
security requirement for interoperability when exchanging user credentials
or sensitive business data is secure data transport. Java and .NET applica-
tions can use HTTPS or SSL/TLS in the data transport layer to secure the
client-to-server session. Secure data transport can ensure confidentiality and
reduce the risk of principal spoofing. 

Security Interoperability by Tiers

Interoperability at the Web Tier

A Java client can authenticate with an Active Directory or a Directory Server
using a JAAS login module. Similarly, a .NET client can authenticate with a
Directory Server. Digital certificates can be used as a common user creden-
tial; however, Java and .NET clients need to create shared session state in
order to interoperate in a heterogeneous environment. The capability to

416 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 416



authenticate with both Java and .NET application servers and to create
shared common session data are key security requirements for interoperabil-
ity. These security requirements allow the Principal to share session informa-
tion between the Java and .NET environments and not necessitate relogin. 

A Java client can authenticate with a .NET application using the shared
authentication approach. Similarly, a .NET client can also authenticate with
a Java application using the same shared authentication approach. Shared
authentication here refers to the use of form-based authentication and cus-
tomization of shared session data for both Java and .NET applications.
Form-based authentication allows page-level authentication to a Web
application. Shared session data can be stored in a customized shared ses-
sion state database or a Directory Server using existing session APIs in both
Java and .NET platforms—for example, Java has many APIs under the
javax.servlet.http.HttpSession class, and .NET has Shared

Session object. 

Nevertheless, customized processing logic for shared authentication and
shared session data are often proprietary and are specific to certain imple-
mentation. The use of Web SSO MEX (Single Sign-on metadata Exchange)
protocols is a proposed standard for Java EE .NET interoperability to achieve
single sign-on and should be recommended. Please refer to the following sec-
tion for more details.

Shared authentication, shared session data, and single sign-on using
Web SSO MEX protocol are mechanisms to address broken authentication
and session management. They also rely on strong authentication mecha-
nisms, for example, use of digital certificates and strong user passwords, and
reliable authentication infrastructure such as Directory Server. For Web serv-
ices such as asynchronous SOAP messages, it is critical to use the WS-I Basic
Security Profile (BSP) and WS-Security standards. WS-I BSP ensures that
both Java and .NET applications are using a common semantic for SOAP
messages. WS-Security supports service requests or replies that are digitally
signed and/or encrypted to ensure confidentiality. It addresses the risk of
message alteration, attachment alteration, falsified messages, repudiation,
forged claims, and message replay.

Interoperability at the Business Tier

Security interoperability requirements for the Business tier are similar to
those for the Web tier. The key difference is that the Business tier interaction
is often server-to-server, not client-to-server. Interaction between .NET-
serviced components and EJBs or service requests from the Web tier are often

SE C U R I T Y F O R IN T E RO P E R A B I L I T Y 417

Fisher_CH13  3/24/06  5:05 PM  Page 417



point-to-point, and these components do not use SSL/TLS, which is used for
client-to-server communication. Customized and point-to-point security
processing logic (for example, encrypted transactions) that secures the busi-
ness transactions in the Business tier is usually proprietary and is unlikely to
be reusable in another environment. For interoperability using Web services,
WS-I BSP and WS-Security provide an open standard to secure business
transactions. For interoperability using a bridge technology, developers need
to rely on customized encryption or proprietary security mechanism.

Interoperability at the Resource Tier

Both Java and .NET platforms support a variety of access control mecha-
nisms to determine which resources are accessible to the service requesters.
They may either embed the access control processing logic into the program-
ming codes or use a policy framework. Using a policy framework, develop-
ers can decouple the custom access control processing logic from the
application codes. Because the access control processing logic is separate
from the application codes, it will be more flexible, allowing management of
changes without the need to recompile or retest the entire application for
every security policy change.

Without a common policy framework, an interoperability solution
needs to rely on two different access control systems. If the two policy
frameworks are “out of sync,” the service requester may be denied access. It
is also time-consuming to troubleshoot which side of the policy framework
is problematic.

The use of common and standard security policies, such as WS-Policy
and XACML, across Java and .NET platforms addresses the risk of broken
access control. For example, Microsoft’s Web Services Enhancement provides
support for WS-Policy, and Sun’s XACML Kit is available on both Java and
.NET platforms. Please refer to the next section for details on these policy
frameworks.

Support of Audit Control and Compliance

In recent years, support of audit control and compliance (for example,
Sarbanes-Oxley, Gramm-Leach-Bliley Act of 1994, HIPPA or Health Insurance
Privacy and Portability Act of 1996) has become a key security interoperabil-
ity requirement. These compliance requirements are focused in building the
capability for tracking unusual or suspicious user activities, ranging from
unauthorized access to suspicious high volume business transactions. They

418 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 418



also require a timely report of the unusual or suspicious security events, and
tracing the source of the service requesters. Thus, it is extremely important
that the Java and .NET interoperability design should be able to have risk mit-
igation mechanisms for security attacks, and to build up capability for “track
and trace” of any unusual security events and service requests. 

Security Standards for Interoperability

One of the purposes of creating security standards is the ease of interoperability.
Using security standards, developers have more flexibility to interoperate
between Java and .NET applications and do not lock in with a specific vendor
product. This section introduces security standards and specifications for inter-
operability using Web services with details: WS-Security, WS-I Basic Security
Profile, XACML, WS-Policy, Web Services Policy Language, and Single Sign-on
Metadata Exchange (SSO MEX). Table 13-1 provides a list of security standards
and specifications that are relevant for Java EE .NET interoperability. Although
WS-Policy and SSO MEX are not a security standards yet, they are important
security specifications for Java EE .NET interoperability.

Table 13-1
List of Security Standards and Specifications for Interoperability

Security Standards Security Specifications

Application Security Web Services Security (OASIS)

WSI Basic Security Profile (WSI)

Policy XACML (OASIS)

Web Services Policy Language WS-Policy
(OASIS)

Single Sign-on SSO MEX

Others (not covered in this chapter) WS-Trust

WS-SecureConversation

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 419

Fisher_CH13  3/24/06  5:05 PM  Page 419



Web Services Security

Web services security (WS-Security) is an approved standard to secure SOAP
messages under OASIS. It leverages XML Digital Signature and XML
Encryption for message integrity and confidentiality. WS-Security provides
an abstract message security model that specifies how to protect a SOAP
message in terms of a security token and digital signature. Security tokens
are simply assertions of claims about the user identity and can be used to
assert the binding between the authentication secrets, keys, or security iden-
tities. WS-Security currently supports a variety of security tokens, for exam-
ple, user name token (aka password), binary token (such as  the X.509v3
certificate or Kerberos ticket), and XML tokens.

From a Java EE .NET interoperability perspective, WS-Security plays a
key role because it defines a standard format where a Java and .NET applica-
tion can exchange business data. Listing 13-1 shows a .NET program excerpt
how to sign a message using a X.509 certificate.

Listing 13-1
Sample .NET Program Excerpt Showing How to Sign a Message with an X.509 Certificate

using System;
using Microsoft.Web.Services2.Security;

using Microsoft.Web.Services2.Security.Tokens;

using Microsoft.Web.Services2.Security.X509;

using Microsoft.Web.Services2.QuickStart;

namespace X509SigningClient {

/// <summary>

/// This is a sample which allows the user to send a message to 

/// a Web

/// service that has been signed with an x.509 certificate.

/// </summary>

class X509SigningClient : AppBase {

[MTAThread]

static void Main(string[] args) {

X509SigningClient client = null;

try {

client = new X509SigningClient();

420 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 420



client.Run();

} catch (Exception ex) {

Error(ex);

}

Console.WriteLine( "Sample - .NET X.509 Signing Client" );

Console.WriteLine();

}

public void Run() {

// Create and configure Web service proxy

//

//ManufactureDelegate serviceProxy = new 

ManufactureDelegate(...);

//ConfigureProxy(serviceProxy);

...

// Fetch X.509 security token and generate asymmetric key

// 'false' forces to use WSE sample certificate

X509SecurityToken token =

AppBase.GetClientToken(false);  

if (token == null)

throw new ApplicationException

("Cannot retrieve security token!");

// Add the signature element to a security section on the 

// request

// to sign the request

serviceProxy.RequestSoapContext.Security.Tokens.Add(token);

serviceProxy.RequestSoapContext.Security.Elements.

Add(new MessageSignature(token));

// Invoke business service

...

}

}
}

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 421

Fisher_CH13  3/24/06  5:05 PM  Page 421



A Java platform provides low-level and fine-grained programming APIs that
generate XML signatures using the JSR 105 (XML signature) API (refer to
Listing 13-2 for an example). In practice, developers do not use these fine-
grained APIs directly to sign a message in WS-Security. There are tools avail-
able to implement WS-Security with coarse-grained programming APIs. For
example, JWSDP version 1.5 provides a useful WS-Security security handler,
SecurityEnvironmentHandler, that refactors the encryption, decryption,
and the digital signing processing logic into handlers. It does not require
developers to embed the common security processing logic into the applica-
tion. Developers can simply turn on or off the security processing logic in a
configuration file (refer to the next section, “Secure Object Handler
Strategy”).

Listing 13-2
Sample Java Program Excerpt Generating a Digital Signature

import javax.xml.crypto.*;
import javax.xml.crypto.dsig.*;

import javax.xml.crypto.dom.*;

import javax.xml.crypto.dsig.dom.DOMSignContext;

import javax.xml.crypto.dsig.keyinfo.*;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.OutputStream;

import java.security.*;

import java.util.Arrays;

import java.util.Collections;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.transform.*;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

public class SigningClient {

public static void main(String[] args) throws Exception {

// Create digital signature factory

String providerName = System.getProperty

("jsr105Provider", 

422 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 422



"org.jcp.xml.dsig.internal.dom.XMLDSigRI");

XMLSignatureFactory dsigFactory = 

XMLSignatureFactory.getInstance("DOM",

(Provider) Class.forName(providerName).newInstance());

// Create document factory and object reference using SHA1 

// digest

Reference ref = dsigFactory.newReference("#object",

dsigFactory.newDigestMethod(DigestMethod.SHA1, null));

DocumentBuilderFactory docFactory = 

DocumentBuilderFactory.newInstance();

docFactory.setNamespaceAware(true);

Document doc = docFactory.newDocumentBuilder().newDocument();

Node text = doc.createTextNode("PO number");

XMLStructure content = new DOMStructure(text);

XMLObject obj = dsigFactory.newXMLObject

(Collections.singletonList(content), "object", null, null);

// Create the SignedInfo

SignedInfo signedInfo = dsigFactory.newSignedInfo(

dsignFactory.newCanonicalizationMethod

(CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS, null),

dsignFactory.newSignatureMethod(SignatureMethod.DSA_SHA1, 

null),

Collections.singletonList(ref));

// Create a DSA KeyPair

KeyPairGenerator keyPairGen = 

KeyPairGenerator.getInstance("DSA");

keyPairGen.initialize(512);

KeyPair keyPair = keyPairGen.generateKeyPair();

// create key value using DSA public key

KeyInfoFactory keyInfoFactory = 

dsigFactory.getKeyInfoFactory();

KeyValue keyValue = 

keyInfoFactory.newKeyValue(keyPair.getPublic());

KeyInfo keyInfo = 

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 423

continues

Fisher_CH13  3/24/06  5:05 PM  Page 423



Listing 13-2 (continued)
keyInfoFactory.newKeyInfo(Collections.singletonList(keyValue);

// create XML signature

XMLSignature signature = dsigFactory.newXMLSignature(signedInfo, 

keyInfo,Collections.singletonList(obj), null, null);

// create context using DSA private key

DOMSignContext signContext = new 

DOMSignContext(keyPair.getPrivate(), doc);

// Generate enveloping signature using private key

signature.sign(signContext);

...

}
}

WS-I Basic Security Profile

Web Services Interoperability (WS-I)’s Basic Security Profile (BSP) version 1.0
(refer to [BSP] for details) is a draft specification that defines the semantics of
using the elements of OASIS’s Web Services Security and places constraints
on its use to achieve interoperability. BSP includes the following key 
characteristics:

• Elements of a Secure SOAP Message BSP uses elements defined in
the Web Services Security 1.0 specification and includes a secure enve-
lope, secure message, security header, reference, digital signature,
encrypted key, encryption reference list, encrypted key reference list,
encrypted data, security token reference, internal security token, and
timestamp.

• Secure Transport Layer HTTP over TLS 1.0/SSL 3.0 should be used
for transport layer security. Though BSP does not prohibit use of any
specific TLS or SSL ciphersuites, it recommends ciphersuites that 
support the AES encryption algorithm, for example,
TLS_RSA_WITH_AES_128_CBC_SHA, and discourages ciphersuites
that are vulnerable to man-in-the-middle attacks, for example,
SSL_RSA_WITH_NULL_SHA.

424 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 424



• SOAP Message Security BSP places some constraints in the use of
binary security tokens, for example, only Base64Binary encoding
type is supported, and <wsse:BinarySecurityToken> with a single
X.509 certificate in the element <wsu:Id> must have the ValueType
value http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
x509-token-profile-1.0#X509v3. The ValueType element is interesting
and important from the perspective of ensuring openness and interop-
erability because it is used to define customer bearer tokens, which is
used, for instance, by the Liberty Alliance for single sign-on. Moreover,
BSP defines the semantics of a creation timestamp (<wsu:Timestamp>)
element to be used for each <wsu:Created> element but does not
allow leap seconds. BSP also specifies the order of processing the signa-
ture and encryption blocks (that is, signature, encrypted key, and
encryption reference list) within the <wsse:Security> headers so that
the recipient gets the correct result by processing the elements in the
order they appear.

• Username Token Profile BSP specifies the semantics regarding the
use of a username token, for example, the <Type> attribute (such as
Type='http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-username-token-profile-1.0#PasswordText')
must be specified to avoid any ambiguity of the element,
<wsse:Password>. Another example is that Web Services Security
does not fully describe the proper ValueType for the username 
token, and BSP uses the value http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-soap-messagesecurity-1.0#User

nameToken for the attribute wsse:SecurityTokenReference/

wsse:Reference/@ValueType.

• X.509 Certificate Token Profile Web Services Security supports three
token types (namely, X509v3, x509PKIPathv1, and PKCS7) in the X.509
certificate token profile.  BSP places some constraints to the profile, for
example, when certificate path information is provided via either
X509PKIPathv1 or PKCS7 formats, the sender must provide one of 
the X509PKIPathv1 or PKCS7 token types. In addition, when the 
element, <wsse:KeyIdentifier>, is used within a security token 
reference to denote an X.509 certificate token, the element,
<wsse:KeyIdentifier>, must use the value http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-pro-

file-1.0#X509SubjectKeyIdentifier in the <ValueType>

attribute.

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 425

Fisher_CH13  3/24/06  5:05 PM  Page 425



• Use of XML Signature BSP places some constraints on the use of
XML Signature—for example, the enveloping signature is not allowed,
and a detached signature should be used instead. BSP also recom-
mends two key signature algorithms (hmac-sha1 and rsa-sha1) and one
digest algorithm (SHA1) for interoperability.

• Use of XML Encryption BSP adds some constraints on the use of
XML Encryption—for example, an encrypted key <xenc:Encrypted
Key> must precede any encrypted data in the same security header.

• Attachment Security BSP specifies some constraints on the SOAP
with Attachments for interoperability, one of which is that secure mes-
sage must conform to WS-I Attachment Profile 1.0. BSP also defines the
semantics around the signed attachments—for example, reference to a
signed MIME part must use a URI attribute of the form
"cid:partToBeSigned", and encrypted attachments—for example,
encrypted data referencing a MIME part must include a type attribute
with the value of either "...#Attachment-Content-Only" or
"...#Attachment-Complete".

XACML

Business applications usually have custom security policies to determine
which resources or business data a service requester can access. Some appli-
cations may tightly couple the access control processing logic with the busi-
ness processing logic. This would make the access control policies very
difficult to extend or customize. For Java and .NET applications running on
different platforms, it is fairly important to have a generic, flexible, and adap-
tive policy framework that operates on both Java and .NET applications.
When there is a change of access control policy, developers do not need to
modify their program logic or recompile their programs.

eXtensible Access Control Markup Language (XACML) version 2.0 is an
approved security policy management standard under OASIS (refer to
[XACML2]). Currently, it has both Java and .NET implementations. XACML
is both a policy language and an access control decision request-response
language encoded in XML. It is used to express authorization rules and
polices and to evaluate rules and policies for authorization decisions.
Moreover, XACML is used to make authorization decision requests and
responses. 

In a typical application environment, a user wants to make a request to
access certain resources. The Policy Enforcement Point (PEP) is a system or

426 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 426



application that protects the resources. The PEP needs to check whether the
service requester is eligible to access the resources. It sends the resources
request to the Policy Decision Point (PDP), which looks up the security
access control policies. XACML provides both a policy language and an
access control decision request-response language to meet the security access
control requirements. With XACML, the PEP forms a query language to ask
the PDP whether or not a given action should be allowed. The PDP responds
by returning the value of either Permit, Deny, Indeterminate (decision
cannot be made due to some errors or missing values), or Not Applicable
(the request cannot be answered by this service).

XACML Components

XACML provides a rich policy language data model to define flexible and
sophisticated security policies. The following summarizes the key compo-
nents in an XACML data model, [XACML2]:

• Policies A policy represents a single access control policy, expressed
through a set of rules. Policies are a set of rules together with a rule-
combining algorithm and an optional set of obligations. Obligations are
operations specified in a policy or policy set that should be performed
in conjunction with enforcing an authorization decision. Each XACML
policy document contains exactly one Policy or PolicySet root XML tag.

• Policy Set A Policy Set is a set of policies or other Policy Sets and a
policy-combining algorithm, and a set of optional obligations.

• Rules Rules are expressions describing conditions under which
resource access requests are to be allowed or denied. They apply to the
target (<Target>), which can specify some combination of particular
resources, subjects, or actions. Each rule has an effect (which can be
permit or deny) that is the result to be returned if the rule’s target and
conditions are true. Rules can specify a condition (<Condition>) using
Boolean expressions and a large set of comparison and data-manipula-
tion functions over subject, resource, action, and environment attributes.

• Target A Target is basically a set of simplified conditions for the
Subject, Resource, and Action that must be met for a PolicySet, Policy,
or Rule to apply to a given request. These use Boolean functions
(explained more in the next section) to compare values found in a
request with those included in the Target. If all the conditions of a
Target are met, then its associated PolicySet, Policy, or Rule applies to
the request. In addition to being a way to check applicability, Target

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 427

Fisher_CH13  3/24/06  5:05 PM  Page 427



information also provides a way to index policies, which is useful if
several policies need to be stored and then quickly sifted through to
find which ones apply.

• Attributes Attributes are named values of known types that may
include an issue identifier or an issue date and time. Specifically, attrib-
utes are characteristics of the Subject, Resource, Action, or Environment
in which the access request is made. For example, a user’s name, their
group membership, a file they want to access, and the time of day are
all attribute values. When a request is sent from a PEP to a PDP, that
request is formed almost exclusively of attributes, which are compared
to attribute values in a policy to make the access decisions.

Example

Listing 13-3 depicts a service request to access the URL http://www.supply-
chain.com/purchaseorder.html. The service requester is a buyer with the
subject buyer@javadotnetinterop.com and the access rights group
tradingPartner. 

Listing 13-3
Sample Service Request to Access a URL

<?xml version="1.0" encoding="UTF-8"?>
<Request xmlns="urn:oasis:names:tc:xacml:2.0:context"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Subject>

<Attribute 

AttributeId=

"urn:oasis:names:tc:xacml:2.0:subject:subject-id"                    

DataType=

"urn:oasis:names:tc:xacml:2.0:data-type:rfc822Name">

<AttributeValue>

buyer@javadotnetinterop.com

</AttributeValue>

</Attribute>

<Attribute 

AttributeId="group"

DataType=

http://www.w3.org/2001/XMLSchema#string

Issuer=

428 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 428



"admin@javadotnetinterop.com">

<AttributeValue>tradingPartner</AttributeValue>

</Attribute>

</Subject>

<Resource>

<Attribute AttributeId=

"urn:oasis:names:tc:xacml:2.0:resource:resource-id"

DataType=

"http://www.w3.org/2001/XMLSchema#anyURI">

<AttributeValue>

http://www.supplychain.com/purchaseorder.html

</AttributeValue>

</Attribute>

</Resource>

<Action>

<Attribute 

AttributeId=

"urn:oasis:names:tc:xacml:2.0:action:action-id"

DataType=

"http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>execute</AttributeValue>

</Attribute>

</Action>
</Request>

Listing 13-4 defines the security policy in XACML. The policy indicates that
only service requesters with the e-mail address javadotnetinterop.com
and the access rights group tradingPartner can access the URL,
http://www.supplychain.com/purchaseorder.html. 

Listing 13-4  
Sample XACML Policy

<?xml version="1.0" encoding="UTF-8"?>
<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

PolicyId="MemberCanPlaceOrder_ObligationPolicy"

RuleCombiningAlgId=

"urn:oasis:names:tc:xacml:2.0:rule-combining-algorithm:permit-

overrides">

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 429

continues

Fisher_CH13  3/24/06  5:05 PM  Page 429



Listing 13-4  (continued)
<Description>

This policy states that trading partners with a valid domain name 

@javadotnetinterop.com should be able to submit purchase order

online using the URL http://www.supplychain.com/purchaseorder.html

Both successful and invalid read request are logged using 

Obligation.

If users have a different domain name other than 

@javadotnetinterop.com, this policy will deny access.

If users with a domain name @javadotnetinterop.com who 

are NOT trading partners this policy also deny their access.

This policy illustrates use of "Condition" within a 

"Target" element to apply constraints to the read access

for the requester who are Administrator only. It also 

provides an example of "Obligation"

to log successful read and log invalid access.

</Description>

<Target>

<Subjects>

<Subject>

<SubjectMatch MatchId=

"urn:oasis:names:tc:xacml:2.0:function:rfc822Name-match">

<AttributeValue 

DataType=

"http://www.w3.org/2001/XMLSchema#string">

javadotnetinterop.com

</AttributeValue>

<SubjectAttributeDesignator 

DataType=

"urn:oasis:names:tc:xacml:2.0:data-type:rfc822Name"

AttributeId=

"urn:oasis:names:tc:xacml:2.0:subject:subject-id"/>

</SubjectMatch>

</Subject>

</Subjects>

<Resources>

<Resource>

<ResourceMatch 

MatchId=

430 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 430



"urn:oasis:names:tc:xacml:2.0:function:anyURI-equal">

<AttributeValue 

DataType=

"http://www.w3.org/2001/XMLSchema#anyURI">

http://www.supplychain.com/purchaseorder.html

</AttributeValue>

<ResourceAttributeDesignator 

DataType=

"http://www.w3.org/2001/XMLSchema#anyURI"

AttributeId=

"urn:oasis:names:tc:xacml:2.0:resource:resource-id"/>

</ResourceMatch>

</Resource>

</Resources>

<Actions>

<AnyAction/>

</Actions>

</Target>

<Rule RuleId="ExecuteRule" Effect="Permit">

<Target>

<Subjects>

<AnySubject/>

</Subjects>

<Resources>

<AnyResource/>

</Resources>

<Actions>

<Action>

<ActionMatch 

MatchId=

"urn:oasis:names:tc:xacml:2.0:function:string-equal">

<AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">

execute

</AttributeValue>

<ActionAttributeDesignator 

DataType=

"http://www.w3.org/2001/XMLSchema#string"

AttributeId=

"urn:oasis:names:tc:xacml:2.0:action:action-id"/>

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 431

continues

Fisher_CH13  3/24/06  5:05 PM  Page 431



Listing 13-4  (continued)
</ActionMatch>

</Action>

</Actions>

</Target>

<Condition 

FunctionId=

"urn:oasis:names:tc:xacml:2.0:function:string-equal">

<Apply FunctionId=

"urn:oasis:names:tc:xacml:2.0:function:string-one-and-only">

<SubjectAttributeDesignator 

DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="group"/>

</Apply>

<AttributeValue 

DataType=

"http://www.w3.org/2001/XMLSchema#string">

tradingPartner

</AttributeValue>

</Condition>

</Rule>

<Rule RuleId="DenyOtherActions" Effect="Deny"/>

<Obligations>

<Obligation 

ObligationId="LogSuccessfulExecute" 

FulfillOn="Permit">

<AttributeAssignment 

AttributeId="user" 

DataType=

"http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:2.0:subject:subject-id

</AttributeAssignment>

<AttributeAssignment 

AttributeId="resource" 

DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:2.0:resource:resource-id

</AttributeAssignment>

</Obligation>

<Obligation 

432 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 432



ObligationId="LogInvalidAccess" 

FulfillOn="Deny">

<AttributeAssignment 

AttributeId="user" 

DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:2.0:subject:subject-id

</AttributeAssignment>

<AttributeAssignment 

AttributeId="resource" 

DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:2.0:resource:resource-id

</AttributeAssignment>

<AttributeAssignment 

AttributeId="action" 

DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:2.0:action:action-id

</AttributeAssignment>

</Obligation>

</Obligations>

</Policy>

When applying the XACML security policy using Sun XACML Kit’s sample
policy engine (SimplePDP), the policy engine shows a positive policy evalua-
tion result, and the service requester is granted access to the URL in question.
Refer to Listing 13-5.

Listing 13-5  
Evaluating an XACML Policy

C:\XACML2\sunxacml-1.2\sample>java SimplePDP request\request.xml
policy\policy.xml
<Response>

<Result ResourceID=

"http://www.supplychain.com/purchaseorder.html">

<Decision>Permit</Decision>

<Status>  

<StatusCode 

Value="urn:oasis:names:tc:xacml:2.0:status:ok"/>

</Status>

<Obligations>

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 433

continues

Fisher_CH13  3/24/06  5:05 PM  Page 433



Listing 13-5  (continued)
<Obligation 

ObligationId="LogSuccessfulExecute" 

FulfillOn="Permit">

<AttributeAssignment 

AttributeId="user" 

DataType=

"http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:2.0:subject:subject-id

</AttributeAssignment>

<AttributeAssignment 

AttributeId="resource" 

DataType=

"http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:2.0:resource:resource-id

</AttributeAssignment>

</Obligation>

</Obligations>

</Result>
</Response>

WS-Policy 

Policies are useful in specifying the conditions or assertions regarding inter-
actions between Java and .NET interoperable applications. These policies can
be defined for authentication, authorization, quality of protection, quality of
service, privacy, reliable messaging, and service-specific options (such as
bandwidth guarantee). For Java EE .NET interoperable solutions using Web
services, there are two emerging policy-related specifications: WS-Policy and
WSPL (Web services policy language).

WS-Policy (Web Services Policy) framework is part of the Web Services
roadmap and specifications (a.k.a., WS*) proposed by Microsoft, IBM,
VeriSign, and others. It is primarily a policy language that defines polices for
Web services. WS-Policy encodes the policy definition in XML using SOAP
messages for data exchange. These Web services policies are a collection of
“policy alternatives,” which are a collection of policy assertions such as
authentication scheme, privacy policy, and so forth. This policy framework is
a flexible mechanism to define rules for executing Java and .NET applica-
tions even though they run on different software platforms and different
underlying implementations. Currently, there is a draft JSR 265 specification

434 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 434



for Web services policy (refer to www.jcp.org/en/jsr/detail?id=265
&showPrint for details).

Please note that WS-Policy is still not yet an open standard. Some exten-
sions and usage of WS-Policy are now defined in the WS-SecurityPolicy
specification. The new OASIS Web Services Secure Exchange (WS-SX)
Technical Committee (http://www.oasis-open.org/committees/tc_home
.php?wg_abbrev=ws-sx) is working on finalizing a set of specifica-
tions based on WS-SecureConversation, WS-SecurityPolicy, and WS-Trust 
specifications.

Unlike XACML, the WS-Policy specification does not restrict the policy
definitions to access control or privacy. WS-Policy can be used to specify the
type of security token, digital signature algorithm, and encryption mecha-
nism for a SOAP message (for example, a purchase order message) or even
partial contents of a SOAP message (a credit card number, for example). In
addition, it can also specify data-privacy or data-confidentiality rules.
Nevertheless, WS-Policy does not specify how to discover policies or how to
attach a policy to a Web service. It relies on other WS* specifications (for
example, WS-PolicyAttachment) to provide full functionality of policy 
management.

Listing 13-6 shows an example of a WS-Policy that uses Triple DES and
RSA OAEP (RSA Optimal Asymmetric Encryption Padding) encryption key
algorithms.

Listing 13-6  
Sample WS-Policy File

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<configSections>

<section name="microsoft.web.services2" 

type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration,

Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" />

</configSections>

<microsoft.web.services2>

<security>

<x509 storeLocation="CurrentUser" allowTestRoot="true" 

allowRevocationUrlRetrieval="false" verifyTrust="true" />

<binarySecurityTokenManager 

valueType="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-x509-token-profile-1.0#X509v3">

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 435

continues

Fisher_CH13  3/24/06  5:05 PM  Page 435



Listing 13-6  (continued)
<sessionKeyAlgorithm name="TripleDES" />

<keyAlgorithm name="RSAOAEP" />

</binarySecurityTokenManager>

<securityTokenManager

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-secext-1.0.xsd" 

qname="wsse:UsernameToken" />

</security>

<diagnostics>

<trace enabled="true" input="InputTrace.webinfo" 

output="OutputTrace.webinfo" />

</diagnostics>

<policy>

<cache name="policyCache.config" />

</policy>

<tokenIssuer>

<autoIssueSecurityContextToken enabled="true" />

</tokenIssuer>

</microsoft.web.services2>
</configuration>

Under WS-Policy, there is a set of policy assertions for each policy domain.
For example, the assertions for use with WS-Security are defined in WS-
SecurityPolicy. Each specification or schema to be controlled or managed by
WS-Policy requires definition of a new set of assertions. 

Under the WS-Policy model, a policy for Web services denotes conditions
or assertions regarding the interactions between two Web services endpoints.
The service provider exposes a Web services policy for the services they pro-
vide. The service requester decides, using the policies, whether it wants to
use the service, and if so, the “policy alternative” it chooses to use. In other
words, WS-Policy does not have the notion of a Policy Enforcement Point,
which enforces policies, and a Policy Decision Point, which also determines
policies. It leaves the policy enforcement and decision to the service
providers and service requesters.

Web Services Policy Language

WSPL (Web Services Policy Language) is based on XACML and is currently a
working draft in the OASIS XACML technical committee. It uses a strict
subset of XACML syntax (restricted to Disjunctive Normal Form) and has a

436 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 436



different evaluation engine than XACML. XACML evaluates the access-
control policies with a given set of attributes and policies, while WSPL deter-
mines what the mutually acceptable sets of attributes are when given two
policies. For a good introduction on WSPL refer to [Anne3].

WSPL has provided similar functionality to define policies for Web serv-
ices. WSPL has the semantics of policy and operators, which allow compari-
son between an attribute of the policy and a value or between two attributes
of the policy. The policy syntax also supports rule preference. There are three
distinctive features in WSPL. First, it allows policy negotiation, which can
merge policies from two sources. Second, policy parameter allows fine-
grained parameters such as time of day, cost, or network subnet address to be
defined in a policy for Web services. Third, the design of WSPL is flexible
enough to support any type of policy by expressing the policy parameters
using standard data types and functions.

One main problem WSPL has addressed is the negotiation of policies for
Web services. Negotiation is necessary when choices exist or when both par-
ties, Web services consumers and service providers, have preferences, capa-
bilities, or requirements. In addition, it is necessary to automate service
discovery and connection related to policies.

WSPL shares similar policy definition capabilities with WS-Policy.
Listing 13-7 shows a policy defined in WS-Policy, which specifies the security
token usage and type for the Web services. It uses the element,
<ExactlyOne>, to denote the security token usage.

Listing 13-7  
Policy for a Security Token Usage and Type Defined in WS-Policy

<wsp:Policy>
<wsp:ExactlyOne>

<wsse:SecurityToken>

<wsse:TokenType>wsse:Kerberosv5TGT

</wsse:TokenType>

<wsse:/SecurityToken>

<wsse:SecurityToken>

<wsse:TokenType>X509v3

</wsse:TokenType>

<wsse:/SecurityToken>

</wsp:ExactlyOne>
</wsp:Policy>

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 437

Fisher_CH13  3/24/06  5:05 PM  Page 437



Listing 13-8 shows that the same policy can be expressed in WSPL. WSPL
translates the policy requirements into two rules. This makes it more descrip-
tive and extensible in the event that security architects and developers need
to add more operators or constraints.

Listing 13-8  
Sample WSPL Policy Showing Two Rules that Need to Be Satisfied

<Policy PolicyId="policy:1" RuleCombiningAlgorithm="&permit-
overrides;">

<Rule RuleId="rule:1" Effect="Permit">

Condition FunctionId="&function;string-is-in">

<AttributeValue DataType="&string;">Kerberosv5TGT</AttributeValue>

<ResourceAttributeDesignator 

AttributeId="&SecurityToken;"

DataType="&string;"/>

</Condition>

</Rule>

<Rule RuleId="rule:2" Effect="Permit">

<Condition FunctionId="&function;string-is-in">

<AttributeValue    

DataType="&string;">X509v3</AttributeValue>

<ResourceAttributeDesignator 

AttributeId="&SecurityToken;"

DataType="&string;"/>

</Condition>

</Rule>
</Policy>

WS-Policy and WSPL share similar functional features for interoperable Java
EE .NET solutions. Anderson has identified a few technical limitations of
WS-Policy when compared with WSPL (refer to [Anne2] for details):

• Negotiation WS-Policy does not specify a standard merge algorithm
or standard way to specify policy negotiation (for example, for merging
policies from two sources). Specifications for domain-specific WS-
Policy Assertions may describe how to merge or negotiate assertions,
but these methods are domain-specific.

438 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 438



• Assertion Comparison Because there is no standard language for
defining Assertions in WS-Policy, there is no standard way to describe
requirements such as minimumPurchaseQuantity > 3000. Again,
specifications for domain-specific WS-Policy Assertions may describe
schema elements for such comparisons, but the implementation of
these elements must be done on a domain-by-domain basis given there
is no standard.

• Dependency WS-Policy is designed to depend on extensions. Each
extension must be supported by a custom evaluation engine.

Web Single Sign-On Metadata Exchange (SSO MEX)

Both Java and .NET platforms have different approaches in achieving single
sign-on. Liberty and SAML protocols are open standards that have wide
Java-based implementations. On the .NET side, WS-Federation is used to
provide single sign-on functionality. To enable both sides of the single sign-
on technologies to interoperate, a new protocol is defined to enable browser-
based Web single sign-on between security domains that use different
protocols such as Liberty ID-FF and WS-Federation. The Web Single Sign-on
Metadata Exchange (Web SSO MEX) primarily specifies a protocol that is
independent of the stack and a profile specifying the interoperability
between Liberty Identity Federation Framework and WS-Federation. It is not
restricted to .NET (or WCF) and Liberty. 

The Web SSO MEX protocol defines how a service queries an identity
provider for the metadata regarding the identity-federation protocol suites
supported by that identity provider. The Web Single Sign-on interoperability
profile further describes how the Web SSO MEX protocol is used to enable
interoperability between two particular protocol stacks: Liberty’s ID-FF 1.2
browser POST profile and WS-Federation Passive Requestor Interoperability
profile.

Technology Challenges

A service provider’s identity provider may be supporting multiple identity
providers, such as Liberty-based and WS-Federation-based identity federa-
tion solutions. Both identity management solutions have very different
designs and implementations for account federation. For example, Liberty
federates different accounts via identity mapping using opaque identifiers,
while WS-Federation federates accounts via identity mapping using the

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 439

Fisher_CH13  3/24/06  5:05 PM  Page 439



Pseudonym Service. Handling of security tokens can be designed and imple-
mented in different ways as well. For example, Liberty extends SAML asser-
tions for communicating authentication and authorization security tokens
between security providers, while WS-Federation uses X.509v3 and Kerberos
profiles from the WS-Security specification. For details on the differences
between Liberty and WS-Federation, please refer to [LibertyWSFed]. 

Use Case Scenario

A sample use case scenario (refer to Figure 13-4) would be a Web supply
chain portal that supports both Liberty-based and WS-Federation-based
identity federation infrastructures. A buyer browses through the online cata-
log and places purchase orders with two different suppliers. One supplier
uses Liberty identity federation framework, denoted in the circles in Figure
13-4, for their supply chain system, and the other supplier uses the WS-
Federation identity federation protocol for their order management system,
denoted in the triangles in the figure. 

Using the Web SSO MEX protocol, the Web portal, acting as the Identity
Provider in this scenario, can identify which single sign-on protocol to work
with. Each identity federation infrastructure manages its own security token
information (such as single sign-on token, SAML assertion, session informa-
tion, and authentication information). However, there is no data conversion,
data exchange, or security token mapping between the two single sign-on
systems. Many security vendors are creating products for security token
mapping soon. For example, Sun Java System Access Manager
(http://www.sun.com/software/products/access_mgr/) now can provide
single sign-on token information between the two identity federation 
infrastructures.

440 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 440



Figure 13-4 
Web portal use case scenario

Figure 13-5 depicts a sequence diagram for the message flow between
the client (buyer), the service provider (supplier), and the identity provider
(Web portal):

• Upon successful authentication, the client selects the Target Service
from the Web portal.  

• The client indicates its Identity Provider to the Target Service (Step 1).

• The Target Service formulates the Identity Provider (Step 2) and issues
a request for the supported identity federation protocol from the
Identity Provider (Step 3).

• The Identity Provider returns the protocol suite document to the Target
Service.

• The Target Service determines the appropriate protocol suite (Step 4).

No Data Conversion or
Exchange of Security Tokens

Between Two Identity Federation
Infrastructures

Supplier 2Supplier 1 Supplier 3

Supplier 4 Supplier 5

Supplier 6

Single Sign-On Circle of Trust

Single Sign-On Circle of Trust

Protocol=Liberty ID-FF

Web Portal

Protocol=WS-Federation

Identity Provider

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 441

Fisher_CH13  3/24/06  5:05 PM  Page 441



• The Target Service begins to exchange documents or messages using
the common protocol suite-based single sign-on operations (Step 5). In
this step, multiple single sign-on operations are required, and these
operations, such as authentication and authentication assertions, vary
according to the single sign-on protocols used.

• The Target Service is now able to provide business service based on the
user identity (Step 6).

Figure 13-5
Web SSO sequence diagram

TargetService IdentityProvider

Client

1: Client indicates its identity provider

2: Formulates identity provider's address

3: Requests supported protocol suites

4: Determines appropriate protocol suite

5: Perform multiple single sign-on operations using common protocol

6: Renders identity-based business services

442 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 442



The service provider indicates an identity provider by any of the following
four methods:

• Special header in the HTTP request (EPR-base64)

• Query string parameter in the URL

• Custom mechanism (such as mapping table, user prompt)

• EPR constructed using DNS name for the requester (client)

Sample Web SSO MEX Message

Listing 13-9 depicts a request message for Web SSO.

Listing 13-9  
Sample Web SSO MEX Message

<s12:Header>
<wsa:Action>

http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadata/Request

</wsa:Action>

<wsa:MessageID>

uuid:53daedfc-4c3c-38b9-ba46-2480caee43e9

</wsa:MessageID>

<wsa:ReplyTo>

<wsa:Address>

http://client.javadotnetinterop.com/Endpoint

</wsa:Address>

</wsa:ReplyTo>

<wsa:To>http://service.sun.com/IdentityProvider</wsa:To>

<ssi:SsiProtocolSuiteHandler/>

</s12:Header>

<s12:Body>

<wsx:GetMetadata>

<wsx:Dialect>

http://schemas.xmlsoap.org/ws/2005/04/SsiSuites

</wsx:Dialect>

</wsx:GetMetadata>
</s12:Body>

SE C U R I T Y STA N DA R D S F O R IN T E RO P E R A B I L I T Y 443

Fisher_CH13  3/24/06  5:05 PM  Page 443



Listing 13-10 shows a response message to the MEX request message.

Listing 13-10 
Sample Web SSO MEX Reply

<s12:Header>
<wsa:Action>

http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadata/Response

</wsa:Action>

<wsa:MessageID>

uuid:73d7edfc-5c3c-49b9-ba46-2481caee4177

</wsa:MessageID>

<wsa:RelatesTo>

uuid:73d7edfc-5c3c-49b9-ba46-2480caee43e9

</wsa:RelatesTo>

<wsa:To>http://client.javadotnetinterop.com/MyEndpoint</wsa:To>

</s12:Header>

<s12:Body>

<wsx:Metadata>

<wsx:MetadataSection

Dialect='http://schemas.xmlsoap.org/ws/2005/04/SsiSuites' >

<wsp:ExactlyOne>

...

</wsp:ExactlyOne>

</wsx:MetadataSection>

</wsx:Metadata>
</s12:Body>

Secure Object Handler Strategy

Problems

It is not uncommon for developers to embed the security processing logic
(such as verifying the access rights of the requester and signing the message)
in the application code. Such practice allows easy testing of both business
functionality and security requirements, without dependency on external
program units that provide security functions. This becomes convenient
when building Java EE .NET interoperable applications where each platform

444 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 444



has its own security processing requirements. However, when the business
application grows larger in scale or becomes highly distributed, the mainte-
nance effort and support to manage a change in the security processing logic
is enormous. For example, a change in the message digest algorithm or in the
access rights processing logic may require considerable program changes in
each application program, recompilation and subsequent retesting. 

Handlers are processes that can take the service request from the
requester’s object and process it. For example, a handler can be customized
to digitally sign a SOAP message when a service request is created. Thus
there is no need to embed the digital signing processing logic in the service
requester’s application. In essence, handlers are internal representations of
actions when an event is triggered or a service request is received. When
applied to Java EE .NET interoperability, handlers can be used to execute
security processing actions such as digital signing of the SOAP messages,
executing the access rights control for a service request, or creating an audit
event for the Java EE .NET interoperability actions. Using a secure object
handler can decouple the security process from the business processing logic
so that the Java EE .NET interoperability solution can be scalable and more
manageable.

Solution

The Secure Object Handler strategy applies to both synchronous, asynchro-
nous and bridge interoperability strategies. In essence, the secure object han-
dler intercepts the service request and adds custom processing logic, such as
adding a digital signature, to the incoming business data object. Using the
object handler strategy, developers do not need to rewrite the application
processing logic because they can modify existing handlers directly or add
new handlers, or chained handlers.

With synchronous or asynchronous integration, the Secure Object
Handler can take the service requester’s message or object, and apply the
handler action, such as digital signing, encryption/decryption, or tracking
the security actions for security audit or compliance reasons. Using a bridge
interoperability strategy via, for example, an Enterprise Service Bus, the
Secure Object Handler can act as a “service engine” or transformer process
for the inbound or outbound service provider.

Although using a handler is a neat strategy, not all interoperability tech-
nologies can support the same implementation approach of creating a Secure
Object Handler. The following sections discuss different types of technology
options for each interoperability strategy that can implement a Secure Object
Handler.

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 445

Fisher_CH13  3/24/06  5:05 PM  Page 445



Synchronous Integration

Synchronous integration enables a Java client to interoperate with a .NET
application in a synchronous mode, and vice versa for a .NET client with a
Java application. In the synchronous communication between the service
requester (client) and the service provider (application), the client waits in a
“blocked state,” in which no processing or communication with other
processes are made until the service provider completes the service request. 

.NET Remoting and RPC-style Web services are examples of synchro-
nous integration technologies. .NET implemented in C#, for example, imple-
ments the notion of a handler programmatically at the application code level.
The client needs to invoke the handler explicitly. If a developer needs to
change the handler or update the processing logic in the handler, he or she
needs to modify the application codes, recompile, test, and deploy them
again. 

Listing 13-11 shows a sample secure object handler code that processes a
group of service requests (in string array). If the incoming service request
contains the string password, then the client invokes the handler
Encrypting to encrypt the service request. If the incoming service request
contains the string creditCard or cashPayment, then the client invokes the
handler DigitalSigning to perform digital signature. If the service request
contains the string news, the client invokes the handler SecureLogging to
log the service request for audit control. 

Listing 13-11 
Sample Secure Object Handler in .NET Using Synchronous Integration

using System;

/// <summary>

///     Abstract class definition for handler

/// </summary>

abstract class Handler {

protected Handler succeedBy;

/// <param name="succeedBy" type="Handler">

///set next successor to the current method</param>

public void SetSuccessor(Handler succeedBy) {

this.succeedBy = succeedBy;

}

446 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 446



/// <param name="serviceRequest" type="string">

///invoking secure object handler</param>

abstract public void SecureObjectHandler(string serviceRequest);

}

/// <summary>

///      Encrypting handler will encrypt the data object or message

///      using XML-Encryption and WS-Security

/// </summary>

class Encrypting: Handler {

/// <param name="serviceRequest" type="string">

///invoking secure object handler for Encrypting</param>    

override public void SecureObjectHandler(string serviceRequest) {

if (serviceRequest == "password") 

//

// add your encryption processing logic

Console.WriteLine("'{0}' secure object handler processed for

'{1}'", 

this, serviceRequest);

else if (succeedBy != null)

succeedBy.SecureObjectHandler(serviceRequest);

}

}

/// <summary>

///     Digital Signing handler will digitally sign the data 

///     object or message using

///     XML-Signature and WS-Security

/// </summary>

class DigitalSigning : Handler {

/// <param name="serviceRequest" type="string">

///invoking secure object handler DigitalSigning</param>

override public void SecureObjectHandler(string serviceRequest) {

if ((serviceRequest == "cashPayment") || 

(serviceRequest == "creditCard"))

//

// add your digital signing processing logic

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 447

continues

Fisher_CH13  3/24/06  5:05 PM  Page 447



Listing 13-11 (continued)
Console.WriteLine("'{0}' 

secure object handler processed for '{1}'", 

this, serviceRequest);

else if (succeedBy != null)

succeedBy.SecureObjectHandler(serviceRequest);

}

}

/// <summary>

///     SecureLogging handler will log the user info and business

///     transaction reference

///     for audit trail and/or compliance

/// </summary>

class SecureLogging : Handler {

/// <param name="serviceRequest" type="string">

///invoking secure object handler SecureLogging</param>

override public void SecureObjectHandler(string serviceRequest) {

if (serviceRequest == "news")

//

// add your secure logging processing logic

Console.WriteLine("'{0}' secure object handler processed for

'{1}'", 

this, serviceRequest);

else if (succeedBy != null )

succeedBy.SecureObjectHandler(serviceRequest);

}

}

/// <summary>

///     Client class to invoke a business transaction or service

///     request.

///     The secure object handler will be invoked.

/// </summary>

public class Client {

/// <summary>

448 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 448



///     Main method for Client class

/// </summary>

public static void Main(string[] args) {

// Setup Chain of Responsibility

Handler encrypting = new Encrypting();

Handler digitalSigning = new DigitalSigning();

Handler secureLogging = new SecureLogging();

encrypting.SetSuccessor(digitalSigning);

digitalSigning.SetSuccessor(secureLogging);

// Generate and process serviceRequest

string[] serviceRequests = {"password", "creditCard", "cashPayment",

"news", "others"};

Console.WriteLine("Secure Object Handler for Synchronous Integration

- Example");

Console.WriteLine();

Console.WriteLine();

foreach (string serviceRequest in serviceRequests)

encrypting.SecureObjectHandler(serviceRequest);

Console.Read();

}
}

RPC-style synchronous Web services usually have support of handlers at the
container level. For example, Sun Java Web Services Developer Pack
(JWSDP) version 1.6 and Apache Axis version 1.2 allow developers to add
handlers without modifying the application codes. In JWSDP, developers can
specify a configuration file for their server security environment configura-
tion, such as the certificate alias of the digital signature and the name of the
handler. Refer to Listing 13-12 for the sample configuration file. The sample
handler SecurityEnvironmentHandler.java is an implementation of a
CallbackHandler that provides digital signature and encryption function-
ality. The application codes do not need to embed any of the security process-
ing logic.

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 449

Fisher_CH13  3/24/06  5:05 PM  Page 449



Listing 13-12  
Sample Security Environment Configuration File wsse.xml in JWSDP

<xwss:JAXRPCSecurity
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

<xwss:Service>

<xwss:SecurityConfiguration dumpMessages="true">

<xwss:Sign>

<xwss:X509Token certificateAlias="s1as"/>

</xwss:Sign>

<xwss:Encrypt>

<xwss:X509Token certificateAlias="wse2client"/>

</xwss:Encrypt>

</xwss:SecurityConfiguration>

</xwss:Service>

<xwss:SecurityEnvironmentHandler>

com.sun.xml.wss.sample.SecurityEnvironmentHandler

</xwss:SecurityEnvironmentHandler>

</xwss:JAXRPCSecurity>

When building secure object handlers for synchronous integration, develop-
ers need to ensure the client is properly authenticated with the server and
authorized for the business services prior to invoking the services. This is to
ensure that no unauthorized user can invoke the business service. Having
these security measures in place addresses the risks of confidentiality, princi-
pal spoofing, repudiation, broken authentication, and broken access control.

Asynchronous Integration

Asynchronous integration is loosely coupled interaction between the service
requester (client) and the service provider (server). Unlike synchronous inte-
gration, asynchronous integration does not require that the client go into a
blocked state until the processing of the service request is complete.

450 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 450



Document-style Web service is a common example of asynchronous inte-
gration using Web services. It encapsulates the service request or the reply in
the form of a message, which can be encrypted or decrypted for confidential-
ity and digitally signed for non-repudiation. Synchronous integration also
uses the same handler mechanism in the Web services container, such as
JWSDP or Axis, as discussed earlier, to encapsulate the security processing
logic.

When building secure object handlers, asynchronous integration
requires similar security requirements, such as authenticating the service
requester with the server, as in synchronous integration. The emphasis is on
securing the message instead of securing the service requester or the service
provider. The sender of the message can be authenticated prior to sending
the message. Alternatively the message can be authenticated, digitally
signed with a valid certificate for example, and verified intact or not being
modified upon receipt to ensure that it is a valid message. Having these secu-
rity measures in place would address the risks of message alteration, mes-
sage replay, and repudiation.

Integration Using Enterprise Service Bus

Java EE .NET interoperability using a bridge or an Enterprise Service Bus
(ESB) supports both synchronous and asynchronous integration strategies.
The bridge or ESB acts as an intermediary between the Java and .NET plat-
form. The security requirements of both synchronous and asynchronous
integration strategies discussed earlier also apply to the ESB integration
strategy. 

ESB has recently become a common example of interoperability in a
Service Oriented Architecture (SOA) environment probably because of the
multi-messaging protocol and agility in integrating heterogeneous plat-
forms. Not all ESB products support the implementation of a handler. In the
example of Mule ESB (http://mule.codehaus.org), Mule allows handlers to
be added to an inbound or outbound process. Listing 13-13 shows an exam-
ple of a Mule ESB configuration where the tag inboundTransformer can
specify a secure object handler. The object SecureObjectHandler is a Java
class in the current class path that can be programmed to perform security
processing such as digital signature for the incoming messages or service
requests. Similarly, a secure object handler can be added under the tag
outboundTransformer to embed any security processing for outbound
messages or reply. For example, all replies to the service requests need to be
encrypted and digitally signed using a Secure Object Handler.

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 451

Fisher_CH13  3/24/06  5:05 PM  Page 451



Listing 13-13
Sample Mule ESB Configuration to Specify a Secure Object Handler

<?xml version="1.0" encoding="UTF-8"?>
...

<mule-configuration id="sampleProperties" version="1.0">

<connector name="SystemStreamConnector"

className="org.mule.providers.stream.SystemStreamConnector">

<properties>

...

</properties>

</connector>

<model name="MuleClient">

<mule-descriptor name="ESBClient"

inboundEndpoint="stream://System.in"

inboundTransformer="SecureObjectHandler"

outboundEndpoint="vm://mule/receive"

implementation="com.sun.esb.samples.MuleClient">

</mule-descriptor>

</model>
</mule-configuration>

The technology details for creating a handler vary depending on the ESB
product used. It is important to ensure that the client using the ESB is prop-
erly authenticated. Moreover, the ESB product adopted should allow adding
or modifying Secure Object Handlers without changing the application pro-
cessing logic. 

Creating Handlers

There is no common or standard way to implement handlers. For example,
developers can use a callback handler design approach to include the 
security processing logic. For instance, JWSDP has a sample handler
SecurityEnvironmentHandler.java in the samples directory. Each plat-
form or product may have different mechanisms to implement and cus-
tomize Secure Object Handlers. The following design considerations can
apply regardless of the platform chosen:

452 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 452



• Decouple the security processing logic from the business processing
logic. Factor the common security processing logic, such as digital sign-
ing, into a Secure Object Handler.

• Use the application server infrastructure, such as JWSDP with Sun Java
System Application Server, to support chained handlers if possible.
Refer to earlier sample configuration files.

• Use a policy framework to implement handlers because policy is
declarative and is easier to make changes to when compared to imple-
menting handlers programmatically. Listing 13-14 shows an example 
of specifying the handler in the application configuration file
policyCache.config, which can be generated by using the built-in
WSE policy editor.

Listing 13-14
Sample policyCache.config File

<?xml version="1.0" encoding="utf-8"?>
<policyDocument

xmlns="http://schemas.microsoft.com/wse/2003/06/Policy">

<mappings

xmlns:wse="http://schemas.microsoft.com/wse/2003/06/Policy">

<!--The following policy describes the policy requirements for the

service: http://localhost:8080/OrderService/OrderService .-->

<endpoint uri="http://localhost:8080/OrderService/OrderService">

<defaultOperation>

<request policy="#Sign-X.509" />

<response policy="" />

<fault policy="" />

</defaultOperation>

</endpoint>

</mappings>

<policies

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-utility-1.0.xsd" 

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wssp="http://schemas.xmlsoap.org/ws/2002/12/secext" 

xmlns:wse="http://schemas.microsoft.com/wse/2003/06/Policy" 

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 453

continues

Fisher_CH13  3/24/06  5:05 PM  Page 453



Listing 13-14  (continued)
wss-wssecurity-secext-1.0.xsd" 

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing">

<wsp:Policy 

wsu:Id="Sign-X.509">

<!--MessagePredicate is used to require headers. This assertion

should be used along with the Integrity assertion when the presence of

the signed element is required. NOTE: this assertion does not do 

anything for enforcement (send-side) policy.-->

<wsp:MessagePredicate 

wsp:Usage="wsp:Required"       

Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">

wsp:Body()

wsp:Header(wsa:To) 

wsp:Header(wsa:Action)  

wsp:Header(wsa:MessageID) 

wse:Timestamp()

</wsp:MessagePredicate>

<!--The Integrity assertion is used to ensure that the message is

signed with X.509. Many Web services will also use the token for 

authorization, such as by using the <wse:Role> claim or specific X.509

claims.-->

<wssp:Integrity 

wsp:Usage="wsp:Required">

<wssp:TokenInfo>

<!--The SecurityToken element within the TokenInfo element

describes which token type must be used for Signing.-->

<wssp:SecurityToken>

<wssp:TokenType>

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

x509-token-profile-1.0#X509v3

</wssp:TokenType>

<wssp:TokenIssuer>

CN=Root Agency

</wssp:TokenIssuer>

<wssp:Claims>

<!--By specifying the SubjectName claim, the policy system

can look for a certificate with this subject name in the certificate

store indicated in the application's configuration, such as LocalMachine

454 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 454



or CurrentUser. The WSE X.509 Certificate Tool is useful for finding the

correct values for this field.-->

<wssp:SubjectName 

MatchType="wssp:Exact">

CN=WSE2QuickStartClient

</wssp:SubjectName>

<wssp:X509Extension 

OID="2.5.29.14" 

MatchType="wssp:Exact">gBfo0147lM6cKnTbbMSuMVvmFY4=

</wssp:X509Extension>

</wssp:Claims>

</wssp:SecurityToken>

</wssp:TokenInfo>

<wssp:MessageParts                            

Dialect=

"http://schemas.xmlsoap.org/2002/12/wsse#part">

wsp:Body() wsp:Header(wsa:Action) 

wsp:Header(wsa:FaultTo)   

wsp:Header(wsa:From)

wsp:Header(wsa:MessageID) 

wsp:Header(wsa:RelatesTo) 

wsp:Header(wsa:ReplyTo)  

wsp:Header(wsa:To) 

wse:Timestamp()

</wssp:MessageParts>

</wssp:Integrity>

</wsp:Policy>

</policies>
</policyDocument>

WSE 2.0 provides a configuration editor that reads the input from the
app.config or Web.config file and generates the policy cache file in
Listing 13-14. (Refer to the “Example” section later in the chapter for more
details.) The policy Sign-X.509 and the handler details are referenced in the
app.config or Web.config file. If the incoming SOAP request with the ele-
ment <wsse:BinarySecurityToken> does not contain the appropriate
binary security token that meets the policy defined here, an exception is
thrown. 

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 455

Fisher_CH13  3/24/06  5:05 PM  Page 455



If a developer wants to a add new handler, he can write a custom 
policy assertion handler that is derived from the Microsoft.

Web.Services.Policy.PolicyAssertion class and register it in the
app.config or Web.config file. Refer to Listing 13-15 for an 
example. 

Listing 13-15 
Adding a Custom Handler in the app.config or Web.config Configuration Files

using Microsoft.Web.Services.Policy;
public class MySecureObjectHandler : PolicyAssertion {

// add your customized security processing logic here 

// to override the member functions

}

In the app.config or Web.config configuration file, you need to add an

assertion element to the policy section.  This assertion element maps a

policy assertion element name (such as wsp:MessagePredicate) and 

registers it in the configuration file.

<?xml version="1.0" encoding="utf-8"?>

<configuration>

<configSections>

…

</configSections>

<microsoft.web.services>

<policy>

<receive>

<cache name="policyCache.xml"/>

</receive>

<assertion name="wsp:MessagePredicate"

type="SecureObjectHandler"

xmlns:wsp="…" />

</policy>

</microsoft.web.services>

…
</configuration>

456 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 456



In JWSDP, a handler can be customized to extend a callback handler. Listing
13-16 shows a sample template where you can customize your handlers
under the public method “handle.” For details, please refer to the JWSDP
API documentation to implement a callback handler.

Listing 13-16 
Sample SecurityEnvironmentHandler Callback Handler Template in JWSDP

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import com.sun.xml.wss.impl.callback.CertificateValidationCallback;

import com.sun.xml.wss.impl.callback.DecryptionKeyCallback;

import com.sun.xml.wss.impl.callback.EncryptionKeyCallback;

import com.sun.xml.wss.impl.callback.PasswordCallback;

import com.sun.xml.wss.impl.callback.PasswordValidationCallback;

import com.sun.xml.wss.impl.callback.SignatureKeyCallback;

import com.sun.xml.wss.impl.callback.SignatureVerificationKeyCallback;

import com.sun.xml.wss.impl.callback.UsernameCallback;

import com.sun.org.apache.xml.security.utils.RFC2253Parser;

// insert your additional Java class libraries...

…

public class SecureObjectHandler implements CallbackHandler {

// ...

public SecureObjectHandler() throws Exception {

// define your constructor details

}

public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {

for (int i=0; i < callbacks.length; i++) {

if (callbacks[i] instanceof PasswordValidationCallback) {

// implement your own password validation processing 

// logic

} else if (callbacks[i] instanceof

SignatureVerificationKeyCallback) {

// implement your own digital signature verification 

// processing logic

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 457

continues

Fisher_CH13  3/24/06  5:05 PM  Page 457



Listing 13-16  (continued)
} else if (callbacks[i] instanceof SignatureKeyCallback) {

// implement your own signature key processing logic

} else if (callbacks[i] instanceof DecryptionKeyCallback) {

// implement your own decryption key processing logic

} else if (callbacks[i] instanceof EncryptionKeyCallback) {

// implement your own encryption key processing logic

} else if (callbacks[i] instanceof

CertificateValidationCallback) {

// implement your own digital certificate validation

//  processing logic

} else {

throw unsupported;

}

}

}

// ...
}

It’s best to use known interoperable encryption key or session algorithms.
For example, RSA Optimal Asymmetric Encryption Padding (RSAOREA)
and Triple DES are interoperable between .NET and JWSDP.

Example

This example illustrates a .NET client (Retailer) placing a purchase order
with the service provider (Manufacturer). The .NET client invokes a pur-
chase order Web service from a Java application service with the details of
the account number, SKU number, supplier item number, and quantity.
Upon completion of the purchase order submission, the service provider
returns a receipt number. 

The .NET client uses the installed X.509 certificate to sign the service
request and encrypt the business data. The JWSDP server validates the mes-
sage digest and decrypts the business data. This example demonstrates the
interoperability of the digital signature and the encryption/decryption
between the .NET client and the JWSDP server using Web services security. 

Gates provides a comprehensive example for Java EE .NET interoper-
ability. See [SGuest] for more details.

458 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 458



Assumptions

The following software components need to be installed and configured on
the same machine:

• Java Web Services Developer Pack (JWSDP) version 1.5
(http://java.sun.com/webservices/downloads/webservicespack.html)
A Tomcat container customized for JWSDP (http://java.sun.com/
webservices/containers/tomcat_for_JWSDP_1_5.html) also must be
installed. Please note that the standard Apache Tomcat server is not
compatible here. In this example, the product is installed under
C:\Tools\Tomcat. Please refer to the product installation documenta-
tion for details.  

• Web Services Enhancement 2.0 SP1 (http://msdn.microsoft.com/web-
services/) In this example, the product is installed under the default
directory C:\Program Files\Microsoft WSE\v2.0. Please refer to
the product installation documentation for details.

• .NET Framework SDK version 1.1 (http://msdn.microsoft.com/net-
framework/downloads/framework1_1) In this example, the product
is installed under the default directory C:\Program

Files\Microsoft.NET\SDK\v1.1. Please refer to the product instal-
lation documentation for details.

• Java 2 Standard Edition SDK version 1.5.0_03 http://java.sun.com/
j2se/1.5.0/download.jsp)

Prerequisites

To illustrate security interoperability using Web services security, this exam-
ple requires the following:

• .NET client installs a sample X.509 certificate entitled
WSE2QuickStartClient ("Client Private.pfx") from the WSE 2.0
(under C:\Program Files\Microsoft WSE\v2.0\Samples\

Sample Test Certificates).  The public key of the client certificate
also must be imported into the Java Keystore via Microsoft
Management Console (mmc.exe) as the name “wse2client.cer”
under C:\Tools\JWSDP\xws-security\etc.

• Using the WSE2QuickStartClient certificate, the root agency must be
exported to a file wse2ca.cer under C:\Tools\JWSDP\xws-secu-
rity\etc.

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 459

Fisher_CH13  3/24/06  5:05 PM  Page 459



• JWSDP server uses the sample X.509 certificates from the JWSDP distri-
bution.  Export the JWSDP server (server.cer) and root agency
(ca.cer) certificates from the keystores server-keystore.jks
and server-truststore.jks under the same directory
C:\Tools\JWSDP\xws-security\etc).

• Install a JCE RSA provider. In this example, the latest Bouncy Castle
JCE provider (BCP) for Java 2 SE SDK (aka JDK) version 1.5
(www.bouncycastle.org/latest_releases.html) is used. Ensure that the
BCP version (such as BCP for JDK 1.5) matches the same JDK version
number (such as JDK 1.5) for compatibility. 

• The .NET client is configured with a WS-Security setting of XML signa-
ture and encryption using the built-in WSE Configuration Editor.

• The JWSDP server is configured with the default
SecurityEnvironmentHandler to provide XML signature and
decryption/encryption.

Procedures

1. Install .NET Client Certificate.
Go to C:\Program Files\Microsoft WSE\v2.0\Samples\
Sample Test Certificates and double-click the file Client
Private.pfx. This should start the Certificate Import Wizard to
install the certificate and private key. The Certificate Import Wizard
prompts you for the password (which is wse2qs). Select the target
folder location as “Personal.”  

To verify the import operation, you can open Microsoft Management
Console (mmc.exe) to browse the entry WSE2QuickStartClient
from the Personal folder. This can be done by running the command
mmc.exe from the Start/Run of the Windows environment. Then
select File/Add/Remove Snap-in…/Add/Certificates/My User
Account. Microsoft Management Console (MMC) should then show a
hierarchy of certificates folders under “Console Root”/“Certificates –
Current User” (refer to Figure 13-6).

460 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 460



Figure 13-6
Verifying client certificate that is imported

Now you can export the public part of the WSE2QuickStartClient
certificate to the Java keystore under C:\Tools\Tomcat\xws-
security\etc. Open the Microsoft Management Console (as
depicted earlier in Figure 13-6). From the MMC, right-click the
WSE2QuickStartClient entry and select “All Tasks | Export” to
export the private key in “Base 64 CER” export type under the file
name C:\Tools\Tomcat\xws-security\etc\wse2client.cer.

After that, double-click the WSE2QuickStartClient certificate
again, select the Certification Path tab and double-click the Root
Agency certificate. Then click the Details tab and select the 
Copy to File button to save the root agency certificate as
C:\Tools\Tomcat\xws-security\etc\wse2ca.cer.

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 461

Fisher_CH13  3/24/06  5:05 PM  Page 461



To import these client certificates into Java keystore server-trust-
store.jks so that the JWSDP server application can process the
XML signature and decryption using the public key, invoke the fol-
lowing commands:

keytool –import –file wse2client.cer –alias wse2client
–keystore server-truststore.jks

keytool -import -file wse2ca.cer -alias wse2ca -key-
store server-truststore.jks

You can verify the import operation by the following commands
(refer to Listing 13-17):

Listing 13-17  
Verifying Import of .NET Client Certificate

C:\Tools\Tomcat\xws-security\etc>keytool -printcert -file
wse2client.cer
Owner: CN=WSE2QuickStartClient

Issuer: CN=Root Agency

Serial number: -3abb68e8ca769e74b1998659471cf56e

Valid from: Tue Jul 08 11:47:59 PDT 2003 until: Sat Dec 31 15:59:59 PST

2039

Certificate fingerprints:

MD5:  72:52:48:7C:00:45:53:94:38:BE:47:5B:15:00:80:37

SHA1:

CA:76:01:38:1B:45:78:50:2B:62:B8:80:98:25:66:4F:1E:78:DF:A2

C:\Tools\Tomcat\xws-security\etc>keytool -printcert -file wse2ca.cer

Owner: CN=Root Agency

Issuer: CN=Root Agency

Serial number: 6376c00aa00648a11cfb8d4aa5c35f4

Valid from: Tue May 28 15:02:59 PDT 1996 until: Sat Dec 31 15:59:59 PST

2039

Certificate fingerprints:

MD5:  C0:A7:23:F0:DA:35:02:6B:21:ED:B1:75:97:F1:D4:70
SHA1:

FE:E4:49:EE:0E:39:65:A5:24:6F:00:0E:87:FD:E2:A0:65:FD:89:D4

462 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 462



2. Install JWSDP Server Certificate.
Go to C:\Tools\Tomcat\xws-security\etc and run the following com-
mands to export the sample JWSDP server certificates:

keytool –export –file server.cer –alias s1as –keystore
server-keystore.jks

keytool -export -file ca.cer -alias certificate-
authority -keystore server-truststore.jks

To verify the export operation, you can use the following commands
(refer to Listing 13-18):

Listing 13-18
Verifying Export of JWSDP Server Certificate

C:\Tools\Tomcat\xws-security\etc>keytool -printcert -file server.cer
Owner: CN=Server, OU=JWS, O=SUN, ST=Some-State, C=AU

Issuer: CN=RootCA 2005, OU=JWS, O=SUN, ST=Some-State, C=IN

Serial number: 2

Valid from: Mon Apr 11 22:37:29 PDT 2005 until: Tue Apr 11 22:37:29 PDT

2006

Certificate fingerprints:

MD5:  5E:F1:DB:6F:66:22:C6:AC:E8:C3:D9:73:35:C7:2C:AC

SHA1:

F0:67:9A:4E:1C:FD:F5:F0:C7:39:F7:94:08:3A:EF:54:B3:14:71:12

C:\Tools\Tomcat\xws-security\etc>keytool -printcert -file ca.cer

Owner: CN=RootCA 2005, OU=JWS, O=SUN, ST=Some-State, C=IN

Issuer: CN=RootCA 2005, OU=JWS, O=SUN, ST=Some-State, C=IN

Serial number: 0

Valid from: Mon Apr 11 22:28:27 PDT 2005 until: Thu Apr 09 22:28:27 PDT

2015

Certificate fingerprints:

MD5:  3D:B5:3C:93:F5:65:D5:3D:B5:C5:2E:23:F5:2E:3A:E9
SHA1:

98:5F:43:96:C0:ED:A5:88:19:DC:D2:1A:2F:8A:5E:0E:44:42:D7:A1

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 463

Fisher_CH13  3/24/06  5:05 PM  Page 463



3. Install JCE RSA Provider.
Install the Bouncy Castle JCE provider under the Java 2 SE SDK (JDK)
directory. In this example, install under C:\Tools\JDK15\jre\
lib\ext. Edit your java.security policy file under the JDK instal-
lation to add the new JCE provider. Please note that the order of the
JCE provider may cause compatibility issues. From experience, add
the Bouncy Castle JCE provide after the Sun RSA provider (refer to
Listing 13-19).

Listing 13-19 
Adding Bouncy Castle JCE Provider in java.security

#
# List of providers and their preference orders (see above):

#

security.provider.1=sun.security.provider.Sun

security.provider.2=sun.security.rsa.SunRsaSign

security.provider.3=com.sun.net.ssl.internal.ssl.Provider

security.provider.4=com.sun.crypto.provider.SunJCE

security.provider.5=org.bouncycastle.jce.provider.BouncyCastleProvider

security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider

4. Configure .NET Client Policy.
Open the .NET WSE configuration file app.config or Web.config
using the WSE Configuration Editor (refer to Figure 13-7). This should
enable the .NET client side to support XML signature and XML
encryption for Web services security. 

5. Configure JWSDP Security Handler.
On the JWSDP server side, edit the wsse.xml configuration file that
JWSDP uses to configure Web services security. The previous shows
an example of the configuration file content with both XML signature
and XML encryption turned on.

464 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 464



Figure 13-7
Using WSE Configuration Editor to define XML signature and XML encryption

6. Compile and Deploy JWSDP Application.
After the Web services security features are turned on in the JWSDP
server application, you can compile and deploy your server applica-
tion. This example uses an ant script to compile and deploy to
JWSDP. For example

C:\Dev\Lab\wsi-wse\wsdp\service>ant build-all
Buildfile: build.xml
…
build-all:

BUILD SUCCESSFUL
Total time: 19 seconds

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 465

Fisher_CH13  3/24/06  5:05 PM  Page 465



7. Compile and Invoke .NET Client.

Once the Web services security features are turned on in the .NET
client, you can compile your client application, for example:

C:\Dev\Lab\wsi-wse\dotnet\Client>csc /out:Client.exe
*.cs proxy\OrderProxy.cs /r:"c:\program
files\microsoft wse\v2.0\Microsoft.Web.Services2.dll"
Microsoft (R) Visual C# .NET Compiler version
7.10.6310.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All
rights reserved.

In this example, the .NET client application is called Client.exe,
which is compiled from the existing C# programs in the directory
C:\Dev\Lab\wsi-wse\dotnet\Client.

Result

The .NET client generates a service request to create a purchase order and
renders the following XML message (refer to Listing 13-20). The header 
contains the key Web Services Security information <wsse:Security>,
which includes the elements <wsse:BinarySecurityToken /> and
<ds:Signature />. The body contains the core business data
<submitOrderResponse />.

Listing 13-20
Service Request to Create a Purchase Order from a .NET Client

<?xml version="1.0" encoding="utf-8"?>
<log>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"  

xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"  

xmlns:ns0="http://wss.samples.microsoft.com"  

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Header>

<wsse:Security

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-secext-1.0.xsd" 

466 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 466



env:mustUnderstand="1">

<wsse:BinarySecurityToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd"

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-soap-message-security-1.0#Base64Binary" 

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-x509-token-profile-1.0#X509v3" 

wsu:Id="Id-4853980734745059755">

MIIC8zCCAlygAwIBAgIBAjAN

…

Q3u1+58HZRLS97o+vmKy84OE

</wsse:BinarySecurityToken>

<ds:Signature 

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod 

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

<ds:SignatureMethod    

Algorithm=

"http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<ds:Reference 

URI="#Id-1069588494982330250">

<ds:Transforms>

<ds:Transform 

Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#" />

</ds:Transforms>

<ds:DigestMethod   

Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>

FD+aZWI8zxgIuqsE9/LbHeGkiuI=

</ds:DigestValue>

</ds:Reference>

<ds:Reference 

URI="#Id1298574802901223328">

<ds:Transforms>

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 467

continues

Fisher_CH13  3/24/06  5:05 PM  Page 467



Listing 13-20  (continued)
<ds:Transform 

Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#" />

</ds:Transforms>

<ds:DigestMethod 

Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />         

<ds:DigestValue>

0joA2wLLMj9ZzPMRPEufAv14keI=

</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>

qeYG9xwdSxIMYXi7c4wby5bQkPsqVdOIgi0RbQHW237 …

</ds:SignatureValue>

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference 

URI="#Id-4853980734745059755" 

ValueType=

"http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-x509-token-profile-1.0#X509v3" />

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

<wsu:Timestamp 

xmlns:wsu=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"   

wsu:Id="Id1298574802901223328">

<wsu:Created>

2005-06-28T14:46:42Z

</wsu:Created>

<wsu:Expires>

2005-06-28T14:51:42Z

468 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 468



</wsu:Expires>

</wsu:Timestamp>

</wsse:Security>

</env:Header>

<env:Body

xmlns:wsu=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd" 

wsu:Id="Id-1069588494982330250">

<ns0:submitOrderResponse>

<result>2233444</result>

</ns0:submitOrderResponse>

</env:Body>

</env:Envelope>
</log>

The JWSDP server application receives the service request and returns a
receipt number in XML (refer to Listing 13-21):

Listing 13-21
Response to the Purchase Order Request by JWSDP Server Application

<?xml version="1.0" encoding="utf-8"?>
<log>

<soap:Envelope 

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"   

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing" 

xmlns:wsse=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd" 

xmlns:wsu=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd">

<soap:Header>

<wsa:Action 

wsu:Id="Id-8f3d108c-3186-4eac-bd30-8584e82fa38d">

</wsa:Action>

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 469

continues

Fisher_CH13  3/24/06  5:05 PM  Page 469



Listing 13-21  (continued)
<wsa:MessageID 

wsu:Id="Id-c00ca163-3d7b-4cec-8e7a-791546d41e15">

uuid:119831ce-58be-4cd1-b70f-77e7ad96552f

</wsa:MessageID>

<wsa:ReplyTo 

wsu:Id="Id-42f224be-c812-473e-b243-eea1f2dd7e66">

<wsa:Address>

http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous

</wsa:Address>

</wsa:ReplyTo>

<wsa:To 

wsu:Id=

"Id-1f1db802-65c0-43d3-9af1-167208ce98e4">

http://localhost:8080/OrderService/OrderService

</wsa:To>

<wsse:Security soap:mustUnderstand="1">

<wsu:Timestamp wsu:Id=

"Timestamp-d65bb998-7c43-4efc-808c-2304d8a13d79">

<wsu:Created>2005-06-28T14:45:59Z</wsu:Created>

<wsu:Expires>2005-06-28T14:50:59Z</wsu:Expires>

</wsu:Timestamp>

<wsse:BinarySecurityToken 

ValueType=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

x509-token-profile-1.0#X509v3" 

EncodingType=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

soap-message-security-1.0#Base64Binary" 

xmlns:wsu=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd" 

wsu:Id=

"SecurityToken-1ecd5e58-9ba6-4239-a9fb-

250e15dc3769">MIIBxDCCAW6gAwIBAgIQxUSXFzWJYYtOZnmmuOMKkjANBgkqhkiG9w0BA

Q...F5qkh6sSdWVBY5sT/txBnVJGziyO8DPYdu2fPMER8ajJfl

</wsse:BinarySecurityToken>

470 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 470



<Signature 

xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<ds:CanonicalizationMethod 

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" 

xmlns:ds="http://www.w3.org/2000/09/xmldsig#" />

<SignatureMethod 

Algorithm=

"http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<Reference 

URI="#Id-8f3d108c-3186-4eac-bd30-8584e82fa38d">

<Transforms>

<Transform Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod 

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>

yHqfuGhCwnU/guHlvPy5j8vZDC0=

</DigestValue>

</Reference>

<Reference 

URI="#Id-c00ca163-3d7b-4cec-8e7a-791546d41e15">

<Transforms>

<Transform Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod 

Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>

yM82YC9rZzfb3AWD0iYbNmBT4UM=

</DigestValue>

</Reference>

<Reference 

URI="#Id-42f224be-c812-473e-b243-eea1f2dd7e66">

<Transforms>

<Transform Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod 

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 471

continues

Fisher_CH13  3/24/06  5:05 PM  Page 471



Listing 13-21  (continued)
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>

5GDwT3MA0YOx4GqugDBtWUyjMnw=

</DigestValue>

</Reference>

<Reference 

URI="#Id-1f1db802-65c0-43d3-9af1-167208ce98e4">

<Transforms>

<Transform 

Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod 

Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>

nG7Lkpn0W1pMB/BRWiQGltfbyRA=

</DigestValue>

</Reference>

<Reference 

URI=

"#Timestamp-d65bb998-7c43-4efc-808c-2304d8a13d79">

<Transforms>

<Transform 

Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod 

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>

9udH1FbnHV0eq6BQ8wJUof3V+UA=

</DigestValue>

</Reference>

<Reference 

URI="#Id-42767f08-d88f-4394-a4f3-06bf14b00916">

<Transforms>

<Transform 

Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

472 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 472



<DigestMethod 

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>

g1QqF2amKSwrGc4EHjgvhpvI4jE=

</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

KlJ1j0…POB6KzPO00=

</SignatureValue>

<KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference 

URI=

"#SecurityToken-1ecd5e58-9ba6-4239-a9fb-

250e15dc3769" 

ValueType=

"http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-x509-token-profile-1.0#X509v3" />

</wsse:SecurityTokenReference>

</KeyInfo>

</Signature>

</wsse:Security>

</soap:Header>

<soap:Body 

wsu:Id="Id-42767f08-d88f-4394-a4f3-06bf14b00916">

<submitOrder 

xmlns="http://wss.samples.microsoft.com">

<OrderImpl_1 xmlns="">

<accountNumber>LUCKY-200-300-101</creditCardExpM>

<quantity>200</quantity>

<supplierItemNumber>99882388</supplierItemNumber>

<SKU>2233888</SKU>

</OrderImpl_1>

</submitOrder>

</soap:Body>

</soap:Envelope>
</log>

SE C U R E OB J E C T HA N D L E R ST R AT E G Y 473

Fisher_CH13  3/24/06  5:05 PM  Page 473



Benefits and Limitations

Secure Object Handler is a generic implementation approach to abstract
common security processing logic and decouple from the application pro-
cessing logic. It can be used with various Java EE .NET interoperability tech-
nologies and has the following benefits:

Maintainability

Common security processing logic can be refactored into Secure Object
Handlers to perform pre-processing or post-processing tasks. Developers
just need to maintain the handlers centrally instead of modifying massive
numbers of applications that have security processing logic embedded.

Scalability

The Java EE .NET interoperability solution can be more manageable if the
security processing logic is decoupled from the business processing logic.
This allows Java and .NET applications to extend their security processing
logic by either extending existing handler functionality or adding a chain of
handlers (if the underlying platform or product supports the handlers).

Limitations

There are a few limitations when using handlers. First, there may be exist-
ing legacy applications that do not support the use of handlers. For exam-
ple, .NET applications that do not use WSE do not benefit from the
WS-Policy framework. Developers have to modify the applications to add
custom handlers, which may cause considerable change on impact and
implementation risks.

Second, some integration strategies’ implementations can only support
one single handler and not multiple handlers. Thus developers need to con-
solidate all security processing logic into a single handler. This will overload
the handler design in one single implementation. 

474 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 474



Secure Tracer Strategy

Problems

Audit control and compliance requirements always expect a good collection
of transaction logging information. Sometimes a copy of the SOAP messages
may be retained so that raw data can be available for complicated security
analysis and reporting when needed. In practice, too much data may not be
helpful if administrators need to find out whether there is any suspicious
identity theft from signs of identity spoofing or man-in-the-middle attacks.
Further, many security audit reports do not correlate the business transac-
tions into sender/recipient pairs or provide the flexibility to apply specific
security processing rules, such as a recipient’s message timestamp should be
later than the sender’s message timestamp.

If the sender and the recipient are operating on different platforms, the
security reporting and tracing of suspicious business transactions are more
complicated because administrators need to collate the service requester and
the response messages together to correlate them. If the business data are
encrypted, administrators are not able to scan and trace raw data manually.
They need to rely on some tools to identify whether there are any sender’s or
recipient’s messages that have invalid user credentials, such as invalid X.509
certificates, or suspicious message timestamp, for example, recipient’s mes-
sage timestamp is earlier than sender’s message timestamp, which may sug-
gest a message alteration or spoofing. 

The Secure Tracer strategy is intended to address the challenge of tracing
business transactions for suspicious activities. It allows administrators to
correlate the sender’s and recipient’s messages in pairs and applies some
security processing rules to identify any suspicious messages or to trace the
source details from the central logging repository.

Solution

The Secure Tracer Strategy applies to both synchronous, asynchronous, and
bridge interoperability strategies that utilize Web services. It intercepts serv-
ice requests and replies in SOAP messages (whether synchronous or asyn-
chronous) and correlates them in pairs. This also includes bridge strategy
that supports Web services. In either strategy, a central logging mechanism
needs to be in place.

SE C U R E TR AC E R ST R AT E G Y 475

Fisher_CH13  3/24/06  5:05 PM  Page 475



The secure tracer strategy depends on a central logging mechanism to
pull both the sender and the recipient log messages together. This can be
implemented by a variety of middleware such as a basic file transfer facility,
ftp, for example, or ESB.

Once the central logging mechanism is implemented, a simple message
matching application can be built to correlate the sender and the recipient
messages that refer to the same service request together. Figure 13-8 depicts a
sequence diagram that illustrates a secure tracer strategy.

• Administrators start secure tracing activities (Step 1).

• Upon sending the service request (Step 2), the Sender issues a log mes-
sage to the central logging system (Step 3).

• Central Logging creates a message correlation identifier for easy identi-
fication and mapping of the service request and the corresponding
reply messages (Step 4).

• Upon completion of processing the service request (Step 5), the
Recipient issues a log message to the central logging system (Step 6).

• The central logging system correlates the sender’s message with the
recipient’s message by message id, message timestamp, and reference
and creates a grouping between the two (Step 7).

• The central logging system also applies some security processing rules
to ensure the message is authentic and genuine (Step 8). For example, it
verifies the digital signature of both the sender’s and recipient’s mes-
sages and checks whether the recipient’s timestamp is earlier than the
sender’s timestamp.

• Suspicious messages are flagged for administrator’s attention by put-
ting these messages under the alert queue (Step 9). Optionally, the
central logging system should notify the administrator by e-mail or
other predefined communication mechanism (such as fax or instant
messaging).

476 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 476



Figure 13-8
Secure Tracer sequence diagram

Example

Figure 13-9 shows WSE Trace Tool (downloadable from
www.gotdotnet.com/workspaces/workspace.aspx?id=ab938e2f-cabf-4145-
b0e9-dbeeaf51dbe5), which correlates the incoming service request message
with the outgoing reply message. It is not an implementation of the secure
tracer strategy, but it illustrates a good example of correlating the service
request and reply messages for manual inspection.

Administrator

Sender Recipient

1: Start secure tracing

2: Send service request

3: Log service request event

6: Log message reply event

5: Reply to service request

4: Create message correlation ID

7: Locate correlation ID

8: Apply security processing rules

9: and identity any suspicious message

CentralLogging

SE C U R E TR AC E R ST R AT E G Y 477

Fisher_CH13  3/24/06  5:05 PM  Page 477



Figure 13-9
WSE Trace tool correlates the service requester and the response messages together.

Benefits and Limitations

Secure tracer strategy is a simple audit log reporting function that is intended
to address basic security auditing, such as track and trace the secure transac-
tions, and compliance requirements. It has the following benefits:

Support Compliance Requirements

With the changing requirements of local compliance, it is crucial to provide a
secure tracing capability to meet audit control and compliance needs.

478 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 478



Proactive Reporting of Suspicious Activities

The capability to identify suspicious messages that may have been tampered
with or to scan for any problematic digital signature in the messages 
can allow suspicious or potential security vulnerabilities to be detected
proactively.

Limitations

The extensibility of the secure tracer implementation depends on the central
logging mechanism and the processing logic for the message correlation. Not
all messages can be correlated. For example, the secure tracer implementa-
tion has no clue how to correlate a collection of encrypted SOAP messages,
given that the message identifiers and message digest do not show any
correspondence. 

Related Patterns

• Chain of Responsibility Pattern The Chain of Responsibility pattern
(refer to [CoR1] and [CoR2] for details) allows a handler object to han-
dle the service request without coupling the sender of the service
request to the recipient. By using the handler object, this pattern chains
together the receiving objects and passes the service request along the
chain of processes. The Chain of Responsibility pattern is generic to
Java or .NET platforms and can be applied to security processing logic
specific to Java EE .NET interoperability, assuming that the technical
details need to be hashed out.

• Message Inspector Pattern The Message Inspector pattern (refer to
[CSP] for details) introduces the concept of a message handler chain of
security processing actions to pre-process and post-process SOAP mes-
sages. These actions can include verifying user identity, validating mes-
sages for compliance with Web services standards, validating digital
signatures, encrypting and decrypting business data, and auditing and
logging. This design strategy is specialized for Web services running on
the Java platform and does not cover the details of Java EE .NET inter-
operability or related technologies.

RE L AT E D PAT T E R N S 479

Fisher_CH13  3/24/06  5:05 PM  Page 479



• Secure Logger Pattern The Secure Logger pattern (refer to [CSP] for
details) introduces some best practices to create secure logs for business
transactions using message digest, cipher, signature, and UID genera-
tor classes. This pattern is targeted for Java applications developed for
the Web tier and does not cover the details of Java EE .NET
interoperability or related technologies. 

Best Practices and Pitfalls

The following recapitulates some best practices and pitfalls regarding the use
of WS-Security for interoperability.

Best Practices

• Use compatible or certified software component versions. Don’t
assume the latest version of open source components always work with
the existing code base.

• Use specific encryption and digest algorithms that are proven to work
for Java EE .NET interoperable products. Use Triple DES for session key
encryption to enable WSE in the app.config for interoperability.

<binarySecurityTokenManager 
valueType=

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-

profile-1.0#X509v3">

<sessionKeyAlgorithm name="TripleDES" />
</binarySecurityTokenManager>

• Use Optimal Asymmetric Encryption Padding (RSAOAEP RSA) as the
encryption key algorithm to enable WSE in the app.config file for
interoperability.

<binarySecurityTokenManager 
valueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

x509-token-profile-1.0#X509v3">

<keyAlgorithm name="RSAOAEP" />
</binarySecurityTokenManager>

480 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 480



• Use built-in handlers or security policies wherever possible, instead of
rewriting your own security processing logic. If you want to customize
your own security processing logic, you may consider extending the
existing handlers.

Pitfalls

• Certificate management on both platforms can be problematic For
example, if the digital certificate is expired, the error messages may dis-
guise the problem as being invalid credentials or keys but not the
expired certificates.

• Use of security exception Don’t just catch the exception. Make the
error message meaningful. For example, the exception “no policy
found” can be ambiguous and does not tell what the root cause is.

Summary

Interoperability for security is a challenging subject, and dealing with secu-
rity on one single platform is already complex. Making two different applica-
tion platforms interoperate on the security is more complicated. Thus
adopting open standards for security interoperability would be a good
approach. Web services security certainly is a turning point for Java EE .NET
security interoperability. With the availability of Web SSO MEX specification,
security interoperability would be viable for users to keep the best of both
identity federation infrastructures. 

There are many reference materials and documentation about Java EE
and .NET security. Nevertheless, the availability of references for the security
interoperability is limited probably because the interoperability standards
and the supporting technologies are evolving. The good news is that free
interoperability software kits (such as WSE and JWSDP) are available for
public download.

In this chapter, Secure Object Handler and secure tracer strategies intro-
duce essential best practices to managing interoperability. These two strate-
gies can be implemented in both Java and .NET platforms.

SU M M A RY 481

Fisher_CH13  3/24/06  5:05 PM  Page 481



References
[Anne2] Anne Anderson. “IEEE Policy 2004 Workshop 8 June 2004—Comparing
WSPL and WS-Policy.” IEEE Policy 2004.

http://www.policy-workshop.org/2004/slides/Anderson-WSPL_vs_
WS-Policy_v2.pdf 

[Anne3] Anne Anderson. “An Introduction to the Web Services Policy Language
(WSPL).” Sun Microsystems Laboratories, 2004.

http://research.sun.com/projects/xacml/Policy2004.pdf

[BSP] Web Services Interoperability Organization. Basic Security Profile Version
1.0. Working Group Draft. May 15, 2005.

www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html 

[CoR1] Mark Grand. “Pattern Summaries: Chain of Responsibility.”
www.developer.com

and

www.developer.com/java/other/article.php/631261 

[CoR2] data & object factory. “Chain of Responsibility.”
www.dofactory.com/Patterns/PatternChain.aspx 

[CSI] Computer Security Institute. CSI/FBI Computer Crime and Security Survey.
Computer Security Institute 2005.

[CSP] Chris Steel, Ramesh Nagappan, Ray Lai. Core Security Patterns: Best Practices
and Strategies for J2EE, Web Services, and Identity Management. Boston: Prentice Hall,
2006.

[J2EE14] Bill Shannon. “JavaTM 2 Platform Enterprise Edition Specification, v1.4.”
Proposed Final Draft 3. Sun Microsystems, April 2003. 

http://java.sun.com/j2ee/j2ee-1_4-pfd3-spec.pdf

[J2EE14Tutor] Eric Armstrong, et al. “The J2EE 1.4 Tutorial.”  Sun Microsystems,
2003.   

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/ 

[JavaVMFlaw] Security Focus. “Security Vulnerability in Sun’s Java Virtual
Machine Implementation.” Security Focus. October 23, 2003. 

www.securityfocus.com/archive/1/342147 

[LibertyWSFed] Liberty Alliance. “Liberty Alliance & WS-Federation: A
Comparative Overview.” Liberty Alliance Project White Paper. October 14, 2003.

www.projectliberty.org/resources/whitepapers/wsfed-liberty-overview-10-13-
03.pdf 

482 CH A P T E R 13 ◗ JAVA EE .NET SE C U R I T Y IN T E RO P E R A B I L I T Y

Fisher_CH13  3/24/06  5:05 PM  Page 482



[LiGong] Li Gong. “Java Security Architecture.” in “Java 2 SDK, Standard Edition
Documentation Version 1.4.2.” Sun Microsystems, 2003. 

http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/securityspec.doc1.
html 

and

http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/securityspec.doc2.
html. 

[SGuest] Simon Guest. “WS-Security Interoperability Using WSE 2.0 and Sun
JWSDP 1.5.” Microsoft, May 2005.

http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnbda/
html/wssinteropjwsdp15.asp 

[Watkins] Dr. Demien Watkins. “An Overview of Security in the .NET
Framework.” MSDN Library, January 2002.

http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnnetsec/html
/netframesecover.asp 

[WindowsAuthFlaw] Microsoft. “MS02-011: An Authentication Flaw Could Allow
Unauthorized Users to be Authenticated on the SMTP Service.” Article 310669.
Revision 7. Microsoft Support, April 13, 2004.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q310669 

[WSI-countermeasure] Jerry Schwarz, et al., ed. “Security Challenges, Threats and
Countermeasures Version 1.0” Final Material. Web Services Interoperability
Organization, May 7, 2005.

http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf

[XACML2] OASIS. eXtensible Access Control Markup Language (XACML)
Version 2.0. February 1, 2005.

http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-ALL.zip

RE F E R E N C E S 483

Fisher_CH13  3/24/06  5:05 PM  Page 483



Fisher_CH13  3/24/06  5:05 PM  Page 484



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Web Coated \050Ad\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


