

Professional SharePoint 2007 Development

Chapter 11: Building Document Management Solutions

ISBN-10: 0-470-11756-7
ISBN-13: 978-0-470-11756-9

Copyright of Wiley Publishing, Inc.
Posted with Permission

Building Document
Management Solutions

By John Holliday

The term “document management” has become a catch-all phrase for anything having to do with
documents in an enterprise setting. It is an overly broad term that covers many different aspects of
managing documents, from access control to version control to the auditing, review, and approval
of content. To understand what document management means in the SharePoint environment, it
helps to consider the evolution of document management systems over the last decade or so. It
also helps to appreciate the value that SharePoint provides as a development platform for docu-
ment management solutions.

Early document management systems were focused primarily on keeping track of revisions to docu-
ments that involved multiple authors, and operated in a manner similar to source code control sys-
tems. Individual authors checked out documents, thereby locking them so that other authors could
not overwrite their changes. System administrators could specify who had permission to view or edit
documents, and could generate reports of document activity. Other functions included the ability to
automatically number each major or minor revision and revert at any time to a specific version of the
document, generating the final content from information stored within the database.

The notion of metadata became a key characteristic of legacy document management systems.
Metadata is information about a document, as opposed to the document content itself. For example,
the current version number is an example of metadata, since it is information about the document.
Other examples are the title, subject, comments and keywords associated with the document.

Most document management systems store document metadata in a central database. In fact, many
of the early document management systems were written as database applications. This worked well
at a time when the only business process being modeled was the generic document revision cycle. It
starts to break down, however, when you want to model other business processes.

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 397

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

This is where SharePoint emerges as a superior platform for developing document management solutions.
SharePoint refines the notion of document metadata to distinguish between system, class, and instance
metadata. System-level metadata is maintained internally by SharePoint for all documents. Class-level
metadata is stored within the SharePoint database for a given document library or content type and can
be customized easily to include domain-specific information. Instance-level metadata is stored within each
document instance as a set of document properties, and moves along with the physical document. This is
especially important for managing documents in disconnected environments.

Because the term document management is so imprecise, it follows that the idea of what comprises a
document management solution might be different depending on the context. One solution might imple-
ment a custom document approval process. Another might apply a business rule to determine who has
access to a given set of documents. Yet another might apply a set of business rules that capture informa-
tion about milestones achieved as a document is being edited.

So, what is a document management solution and how do you go about building one in SharePoint? The
best way to answer this question is to examine the tools provided by the SharePoint platform in the con-
text of a real scenario.

This chapter develops a solution for managing project proposals. The solution distinguishes between
fixed-bid and time-and-material projects and provides metadata for controlling the content of each pro-
posal as it evolves through the revision cycle. The solution will include custom fields for specifying the
fixed-bid amount and the estimated hours for time-and-materials projects.

While developing a document management solution, it quickly becomes evident that business rules
control not only the type of metadata that can be associated with a document but the range of accept-
able values for each field. When a document is first created and at any stage during the revision cycle,
the business rules examine the metadata and perform the appropriate actions to ensure that the docu-
ment state is valid. This collection of business rules is often called a content management policy because
it summarizes your policies and procedures for a particular type of document.

As you work through the chapter, developing the proposal management solution, you will explore Share -
Point content types as a way to capture the essential characteristics of a document in one place. Content
types offer tremendous advantages when building document management solutions; they allow you to
encapsulate class-level metadata and associate it with code you can run on the server to implement cus-
tom business rules. The proposal management solution will include two policies: one to limit the accept-
able bid amounts to a certain pre-approved range of values, and another to require a minimum number
of estimated hours for time-and-material projects.

Finally, the chapter develops an extensible framework for defining document management policies using
XML in conjunction with SharePoint event receivers. You also create custom commands that enable system
administrators to use the STSADM command-line tool to administer proposal management policies after
the solution is deployed.

Understanding the Document Lifecycle
Effective document management requires an understanding of the document lifecycle and the trans-
formations that can occur as a document moves from one phase to the next. The basic document life-
cycle consists of three phases: creation, revision, and publication. Each phase can be broken down into

398

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 398

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

sub-phases that describe the different stages through which a typical document progresses over time
(see Figure 11-1).

When a document is created, some information is needed to determine its initial content. You can call
this initiating metadata for lack of a better term. At the very least, the initiating metadata for a SharePoint
document consists of the location of the document template that should be used. Typically, the document
template itself takes care of collecting any additional information that might be required to render the doc-
ument in its initial state. For example, when creating a new proposal in Word, you might popup a dialog
to interrogate the user prior to rendering the default document content.

After the document is created, its content is edited through one or more revision cycles. Throughout
these iterations, various contributors may check out the document for editing and then check it back in
until certain milestones have been achieved. The determination of whether a given milestone has been
reached is often subjective, as there can be many different types of milestones, depending on the type
of document and the kind of solution being developed. Nevertheless, to the extent you can identify
such milestones, you can develop supporting metadata for them.

A typical requirement of a document management solution is to keep track of when changes are made
and by whom. SharePoint supports this directly for all lists and list items. Another typical requirement
is to enforce a particular numbering scheme for tracking versions, enforce checkout/checkin policies, or
customize the way notifications are sent when changes are made.

Publication usually involves moving the finished document into a separate repository or routing it to
one or more people for approval or review. As part of the publication process, it might be necessary to
clean up the document content or convert it to a special file format for publication. For example, after
publishing a document it might be necessary to convert it to PDF to ensure that it can be viewed by users
who don’t have Microsoft Word on their desktops.

Chapter 12 examines the publication phase and SharePoint’s built-in support for automatic document
conversion.

Figure 11-1

Document Management System

Creation

Template

revision cycle revision cycle

Milestone 1 Milestone N

Metadata

Publication

Repository

399

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 399

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Defining Metadata Using Content Types
Metadata is the fuel that drives document management in SharePoint 2007, and the best way to work
with document metadata is to define a content type. There are many benefits to using content types; the
main one being that content types allow us to specify the custom fields needed to manage a document
as it moves through the different stages of its lifecycle.

Solution developers are used to working with classes and objects, and properties and methods, where
each class defines the properties and methods for instances of that class. They then create objects to rep-
resent instances of each class and invoke methods on those objects to apply business rules that retrieve
or modify the state of the properties associated with each instance. Building document management
solutions will be much easier if you can map the core elements (document, metadata, repository, etc.)
onto familiar abstractions like class and object that you are used to working with.

SharePoint 2007 content types provide just such an abstraction. The content type acts as a sort of docu-
ment class, defining the columns and event receivers that comprise each instance. The columns are like
properties, and the event receivers are like methods. Take it one step further and say that the ItemAdding
event receiver acts as a constructor, and the ItemDeleting event receiver acts as a destructor for each
document instance.

The first step in defining a new content type is to determine from which of the built-in content types to
derive the new content type. In object-oriented terms, you are choosing the base class for the new con-
tent type. SharePoint includes a number of default content types, all derived from the System content
type, which serves as the root of the content type hierarchy.

Figure 11-2 shows some of the default content types and their identifiers.

SharePoint employs a special numbering scheme for identifying each content type, which it uses as a
shortcut for creating new content type instances. Without such a numbering scheme, it might have been
prohibitive to enable content type inheritance, since SharePoint would have needed to search through
the database trying to resolve content type dependencies. This way, it only needs to examine the identi-
fier, which it reads from right to left. For example, the Picture content type identifier is 0x010102, which
SharePoint reads as id 02 (Picture) derived from Document (0x0101) derived from Item (0x01) derived
from System (0x).

Figure 11-2

System – 0x

Item – 0x01

Document – 0x0101

XMLDocument – 0x010101

Picture – 0x010102

MasterPage – 0x010105

400

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 400

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

For custom content types that you define yourself, the identifier includes a suffix, which is the globally
unique identifier (GUID) associated with our type, separated by 00 as a delimiter. For example, the proj-
ect proposal content type defined later in this chapter has the ID

0x0101004A257CD7888D4E8BAEA35AFCDFDEA58C

Again, reading from right to left, you have 4A257CD7888D4E8BAEA35AFCDFDEA58C derived from
Document (0x0101) derived from Item (0x01) derived from System (0x). The 00 serves as a delimiter
between the GUID and the rest of the identifier, as shown in Figure 11-3.

Figure 11-3

Each content type references a set of columns (also called fields), which compose the metadata associated
with the type. It is important to note that content types do not declare columns directly. Instead, each con-
tent type includes column references that specify the identifiers of columns declared elsewhere within the
SharePoint site. Column references are declared in XML using FieldRef elements.

Our project proposal content type is based on the built-in Document content type, which provides the
following metadata fields:

❑ Name — The name of the file that contains the document content

❑ Title — The title of the document (inherited from the Item content type)

Next, you select from the built-in SharePoint fields to capture the common elements of a project proposal:

❑ Author (Text) — The author of the proposal

❑ Start Date (DateTime) — The date on which the project will start

❑ End Date (DateTime) — The date on which the project will end

❑ Status (Choice) — The current document status

❑ Comments (Note) — Additional comments

❑ Keywords (Text) — Keywords

In addition to the built-in columns, you need a few additional columns to complete the type definition.

❑ ProposalType (Choice) — The kind of proposal

❑ EstimatedCost (Currency) — The total cost of the proposed work

❑ BidAmount (Currency) — The proposed amount of the bid

Project Proposal

Document
Item

System

0x 01 01 00 4A257CD7888D4E8BAEA35AFCDFDEA58C

401

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 401

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

❑ EstimatedHours (Number) — The total number of hours

❑ HourlyRate (Currency) — The proposed hourly rate

SharePoint provides two methods for declaring content types: using XML or using the Windows Share -
Point Services object model. In actual practice, a hybrid approach is often useful. This is because while
XML makes it easier to declare fields and other elements at a high level, it also makes it harder to work
with the content type from elsewhere in your solution. Once the essential elements have been identified,
the object model provides more control over how those elements are used and how they interact with one
another. What you need is an easy way to declare the type while preserving your ability to add enhanced
functionality through code.

The following sections explore both methods. You will use XML to declare the metadata for your custom
project proposal content type and then the object model to control the behavior of each instance. As an
alternative to using XML for the content type declaration, you will also explore ways to create content
types entirely through code.

Declaring Content Types Using XML
To define a content type using XML, the following steps are required:

1. Create a content type definition file.

2. Create a field definition file that describes any custom fields.

3. Create a feature definition file that references the content type definition.

4. Install the feature into SharePoint.

The Content Type Definition File
Listing 11-1 shows the content type definition XML for the project proposal type. The content type ID is
specified and indicates that the project proposal inherits the fields of the built-in Document type. The
content type name “Project Proposal” is used to reference our type from code and from the SharePoint
user interface.

Listing 11-1: Project proposal content type definition

<?xml version=”1.0” encoding=”utf-8”?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>

<!-- _filecategory=”ContentType” _filetype=”Schema”
_filename=”contenttype.xml” _uniqueid=”cff96a1e-6a52-4462-a3d0-d01471b8bfef” -->

<ContentType ID=”0x0101004a257cd7888d4e8baea35afcdfdea58c”
Name=”Project Proposal”
Group=”ProSharePoint2007”
Description=”A Content Type for Managing Project Proposals”
Version=”0”>
<FieldRefs>

<FieldRef ID=”{246D0907-637C-46b7-9AA0-0BB914DAA832}”
Name=”Author”/>

402

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 402

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

<FieldRef ID=”{76A81629-44D4-4ce1-8D4D-6D7EBCD885FC}”
Name=”Subject” />

<FieldRef ID=”{9DC4BA7E-6C50-4e24-9797-355131089A2E}”
Name=”ProposalType” Required=”TRUE”/>

<FieldRef ID=”{24A18FDA-927A-4232-88AE-F713FFD3FBB4}”
Name=”EstimatedCost”/>

<FieldRef ID=”{41495470-9EA3-46e0-9A34-0E0C3DE1A445}”
Name=”BidAmount”/>

<FieldRef ID=”{D46C0900-5617-414c-97E5-E5626DBC1495}”
Name=”EstimatedHours”/>

<FieldRef ID=”{79368859-EAF8-4361-8A9D-C3CBD9C88697}”
Name=”HourlyRate”/>

<FieldRef ID=”{64cd368d-2f95-4bfc-a1f9-8d4324ecb007}”
Name=”StartDate” />

<FieldRef ID=”{8A121252-85A9-443d-8217-A1B57020FADF}”
Name=”EndDate” />

<FieldRef ID=”{1DAB9B48-2D1A-47b3-878C-8E84F0D211BA}”
Name=”Status” />

<FieldRef ID=”{52578FC3-1F01-4f4d-B016-94CCBCF428CF}”
Name=”Comments” />

<FieldRef ID=”{B66E9B50-A28E-469b-B1A0-AF0E45486874}”
Name=”Keywords” />

</FieldRefs>
</ContentType>

</Elements>

Adding fields to a content type requires the use of FieldRef elements. This is because content types do
not declare fields directly but instead refer to site columns that are defined globally within the current
SharePoint execution context.

You will see shortly how site columns are declared, but for now note that each FieldRef element speci-
fies the unique identifier of a separate Field element defined elsewhere within the solution. This includes
both the built-in site columns that are shipped with Windows SharePoint Services, and any custom fields
you define.

This presents a bit of a problem when building content type definition files. You already know the iden-
tifiers of the custom fields because you created them yourself. But for the built-in site columns, you first
have to locate the appropriate identifiers that are recognized by SharePoint. When creating content types
through the user interface, SharePoint looks up the field identifiers automatically. A bit of additional
work is required when building a solution that installs custom content types at runtime.

The built-in site columns are declared in the fieldswss.xml file, which is located in the 12\TEMPLATE\
FEATURES\fields folder. To declare a content type based on built-in site columns, you must search
through this file to find the field you want, and then copy the GUID from the file into your content
type definition XML.

To simplify the process of looking up field identifiers, use a simple XSL style sheet to display the
fieldswss.xml file as an HTML table. The style sheet shown in Listing 11-2 produces the table
shown in Figure 11-4.

403

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 403

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Listing 11-2: XSL style sheet to locate built-In field IDs

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:wss=”http://schemas.microsoft.com/sharepoint/”>
<xsl:output method=”html” version=”1.0” encoding=”utf-8” indent=”yes”/>
<xsl:template match=”wss:Elements”>

<html>
<body>

<h2>SharePoint v3 Built-In Fields</h2>
<table border=”0” width=”100%”

style=”font-size:9pt;”>
<tr bgcolor=”#9acd32”>

<th align=”left”>Group</th>
<th align=”left” width=”100”>Field</th>
<th align=”left”>Type</th>
<th align=”left”>Declaration</th>

</tr>
<xsl:apply-templates>

<xsl:sort select=”@Group”/>
<xsl:sort select=”@Name”/>

</xsl:apply-templates>
</table>

</body>
</html>

</xsl:template>
<xsl:template match=”wss:Field”>

<tr>
<td width=”100”><xsl:value-of select=”@Group”/></td>
<td width=”100”><xsl:value-of select=”@Name”/></td>
<td width=”100”><xsl:value-of select=”@Type”/></td>
<td>

<FieldRef ID="<xsl:value-of select=”@ID”/>"
Name="<xsl:value-of select=”@Name”/>" />

</td>
</tr>

</xsl:template>
</xsl:stylesheet>

This table comes in handy when writing content type definition XML files. In this example, you include
not only the group, field name, and underlying data type but also a text string you can easily copy and
paste into the content type definition file.

The Field Definition File
For the five custom fields of the project proposal, you have to create a set of site columns that will be
deployed along with the solution. Site columns are defined in XML using CAML Field elements. Each
Field element declares the unique identifier, field type, field name, description and other properties.

404

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 404

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Figure 11-4

Listing 11-3 shows the custom field declarations for the project proposal content type.

Listing 11-3: Project proposal custom field declarations

<?xml version=”1.0” encoding=”utf-8”?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>

<Field
ID=”{9DC4BA7E-6C50-4e24-9797-355131089A2E}”
Description=”Select the proposal type from the available choices.”
Type=”Choice”
Name=”ProposalType”
DisplayName=”Proposal Type”
StaticName=”_ProposalType”
>
<CHOICES>

<CHOICE>$Resources:ProposalManager,_Choice_FixedBid</CHOICE>
<CHOICE>$Resources:ProposalManager,_Choice_TimeAndMaterials</CHOICE>

405

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 405

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

</CHOICES>
</Field>
<Field

ID=”{24A18FDA-927A-4232-88AE-F713FFD3FBB4}”
Description=”The estimated cost of performing the work.”
Type=”Currency”
Name=”EstimatedCost”
DisplayName=”Estimated Cost”
StaticName=”_EstimatedCost”
/>

<Field
ID=”{41495470-9EA3-46e0-9A34-0E0C3DE1A445}”
Description=”The total bid amount”
Type=”Currency”
Name=”BidAmount”
DisplayName=”Bid Amount”
StaticName=”_BidAmount”
/>

<Field
ID=”{D46C0900-5617-414c-97E5-E5626DBC1495}”
Description=”The estimated person-hours for the project.”
Type=”Number”
Name=”EstimatedHours”
DisplayName=”Estimated Hours”
StaticName=”_EstimatedHours”
/>

<Field
ID=”{79368859-EAF8-4361-8A9D-C3CBD9C88697}”
Description=”The negotiated hourly rate.”
Type=”Currency”
Name=”HourlyRate”
DisplayName=”Hourly Rate”
StaticName=”_HourlyRate”
/>

</Elements>

A Note about Resources
SharePoint uses a special syntax to enable XML definition files to reference strings and
other resources at runtime. This powerful new feature enables developers to create more
robust solutions with built-in localization support. Resource tags can also be used to
keep the code synchronized with the XML definition files, thereby saving time during
development.

The $Resources part of the tag indicates that the string should be retrieved from a
RESX file stored in the 12\Resources folder. The next part of the tag specifies the name
of the RESX file and the resource identifier to retrieve. In this case, the 12\Resources\
ProposalManager.resx file contains a string resource named _Choice_FixedBid that
in turn holds the text “Fixed Bid”.

406

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 406

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

The Feature Definition File
The final step is to create a feature definition that references the content type so you can activate the feature
within the SharePoint environment. Listing 11-4 shows the feature definition file for the Proposal Manage -
ment application.

Listing 11-4: Proposal management feature declaration

<Feature Title=”ProposalManagerFeature”
Id=”63d38c9c-3ada-4e07-873f-a278443e910c”
Description=””
Version=”1.0.0.0”
Scope=”Web”
Hidden=”TRUE”
DefaultResourceFile=”core”
ReceiverAssembly=”ProposalManager, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=9f4da00116c38ec5”
ReceiverClass=”ProSharePoint2007.ProposalManagerFeature”
xmlns=”http://schemas.microsoft.com/sharepoint/”>

</Feature>

Defining Content Types in Code
There are many advantages to using the Windows SharePoint Services 3.0 object model instead of XML
to define content types. These advantages include:

❑ No need to refer to the GUIDs of built-in site columns

❑ The ability to create dynamic types that depend on runtime conditions

❑ The ability to build a library of reusable content type components

Automatic Resolution of Built-In Field Identifiers
Setting up field references for content types declared using XML requires that the unique field identifier
be known ahead of time. When creating field references in code, you only need to supply the associated
field name. SharePoint retrieves the identifier automatically.

For example, the following code segment creates a Project Proposal content type based on the built-in
Document type, and then adds an Author column to the new content type. The Author column is provided
by SharePoint as one of the built-in site columns available in the Document Columns group.

using (SPSite site = new SPSite(“http://localhost”)) {
using (SPWeb web = site.OpenWeb()) {

SPContentType baseType = web.AvailableContentTypes[“Document”];
SPContentType proposal = new SPContentType(

baseType, web.ContentTypes, “Project Proposal”);
web.ContentTypes.Add(proposal);
proposal.FieldLinks.Add(new SPFieldLink(web.AvailableFields[“Author”]));

}
}

407

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 407

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Dynamic Content Type Definitions
With XML content type definitions, the fields are declared statically at design time. Once the content type is
deployed and provisioned, its fields cannot be changed without rewriting the solution. On the other hand,
by using the object model, you can set up the content type differently depending on external conditions.
This way you can build smarter solutions that adjust automatically to accommodate changes in the run-
time environment.

Building a Library of Reusable Content Type Components
When working with the Windows SharePoint Services 3.0 object model, it is useful to create a set of helper
components to simplify solution development. This can greatly reduce the steps needed to build a solution
because the low-level details of working with the object model are tucked away inside higher-level abstrac-
tions that are easier to declare and use. This is especially important when building document management
solutions based on content types because you ultimately want to encapsulate the business rules within
the content type itself. Having a library of core components means that you don’t have to start from scratch
each time you need a new content type.

Listing 11-5 shows a generic ContentType class that is used as a wrapper for the underlying
SPContentType object instance.

Listing 11-5: A generic content type wrapper class

using System;
using Microsoft.SharePoint;

namespace ProSharePoint2007
{

/// <summary>
/// A utility class for manipulating SharePoint content types.
/// </summary>
public class ContentType
{

SPContentType m_contentType = null;

/// <summary>
/// Default constructor.
/// </summary>
public ContentType()
{
}

/// <summary>
/// Creates a wrapper for an existing content type instance.
/// </summary>
/// <param name=”contentType”></param>
public ContentType(SPContentType contentType)
{

m_contentType = contentType;
}

/// <summary>
/// Adds a content type to a SharePoint list.
/// </summary>
public static void AddToList(SPList list, SPContentType contentType)

408

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 408

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

{
list.ContentTypesEnabled = true;
list.ContentTypes.Add(contentType);
list.Update();

}

/// <summary>
/// Removes a content type from a SharePoint list.
/// </summary>
public static void RemoveFromList(SPList list, string contentTypeName)
{

foreach (SPContentType type in list.ContentTypes) {
if (type.Name == contentTypeName) {

list.ContentTypes.Delete(type.Id);
list.Update();
break;

}
}

}

/// <summary>
/// Loads a preexisting[content type.
/// </summary>
public virtual SPContentType Create(SPWeb web, string typeName)
{

try {
m_contentType = web.AvailableContentTypes[typeName];

} catch {
}
return m_contentType;

}

/// <summary>
/// Creates a new content type.
/// </summary>
public virtual SPContentType Create(SPWeb web, string typeName,

string baseTypeName,
string description)

{
try {

SPContentType baseType = (baseTypeName == null
|| baseTypeName.Length == 0) ?
web.AvailableContentTypes[SPContentTypeId.Empty] :
web.AvailableContentTypes[baseTypeName];

m_contentType = new SPContentType(
baseType, web.ContentTypes, typeName);

m_contentType.Description = description;
web.ContentTypes.Add(m_contentType);

} catch {
}
return m_contentType;

}

/// <summary>
/// Conversion operator to access the underlying SPContentType instance.

409

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 409

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

/// </summary>
public static implicit operator SPContentType(ContentType t){

return t.m_contentType;
}

#region Field Methods

/// <summary>
/// Adds a new field having a specified name and type.
/// </summary>
public SPField AddField(string fieldDisplayName,

SPFieldType fieldType, bool bRequired)
{

SPField field = null;
try {

// get the parent web
using (SPWeb web = m_contentType.ParentWeb) {

// create the field within the target web
string fieldName =

web.Fields.Add(fieldDisplayName,
fieldType, bRequired);

field = web.Fields[fieldName];
// add a field link to the content type
m_contentType.FieldLinks.Add(

new SPFieldLink(field));
m_contentType.Update(false);

}
} catch {
}
return field;

}

/// <summary>
/// Adds a new field based on an existing field in the parent web.
/// </summary>
public SPField AddField(string fieldName)
{

using (SPWeb web = m_contentType.ParentWeb) {
SPField field = web.AvailableFields[fieldName];
try {

if (field != null) {
m_contentType.FieldLinks.Add(

new SPFieldLink(field));
m_contentType.Update(false);

}
} catch {
}

}
return field;

}
#endregion

}
}

410

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 410

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

With this helper class in the component library, it’s easy to declare a new project proposal content type.
It can either be instantiated from an XML definition associated with a feature or be created entirely in
code. Listing 11-6 shows the declaration for the project proposal type derived from the generic content
type wrapper class.

Listing 11-6: Using the content type wrapper class

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;

namespace ProSharePoint2007
{

/// <summary>
/// A helper class that encapsulates the ProjectProposal content type.
/// </summary>
class ProjectProposalType : ContentType
{

/// <summary>
/// Creates the type using the XML content type definition.
/// </summary>
public SPContentType Create(SPWeb web)
{

return this.Create(web, “Project Proposal”);
}

/// <summary>
/// Creates the type using the SharePoint object model.
/// </summary>
public override SPContentType Create(SPWeb web, string typeName,

string baseTypeName,
string description)

{
// Call the base method to create the new type.
SPContentType tProposal = base.Create(web, typeName,

baseTypeName, description);

// Create the fields programmatically.
if (tProposal != null) {

// built-in fields
AddField(“Author”);
AddField(“Subject”);
AddField(“StartDate”);
AddField(“EndDate”);
AddField(“Status”);
AddField(“Comments”);
AddField(“Keywords”);
// custom fields
AddField(Strings._Field_ProposalType);
AddField(Strings._Field_EstimatedCost);
AddField(Strings._Field_BidAmount);
AddField(Strings._Field_EstimatedHours);

411

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 411

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

AddField(Strings._Field_HourlyRate);
}
return tProposal;

}
}

}

This code produces the content type definition shown in Figure 11-5.

In order to use the content type in a SharePoint site, you must deploy the type definition and then attach it
to a list or document library for which content types have been enabled. Before you can achieve this, you
need an additional piece of helper code to set up the document library to hold the proposal documents.

Listing 11-7 shows a ProposalLibrary class created for this purpose. When creating the document
library, you remove the default Document content type so that users cannot create or upload standard
documents. Finally, you create a new instance of the ProjectProposal content type and add it to the
document library using the AddToList static method of the ContentType helper class.

Figure 11-5

412

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 412

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Listing 11-7: A custom proposal document library class

/// <summary>
/// A class that represents the proposals document library.
/// </summary>
class ProposalDocumentLibrary
{

SPDocumentLibrary m_docLib = null;
public ProposalDocumentLibrary(SPWeb web)
{

try {
SPListTemplate template =

web.ListTemplates[“Document Library”];
System.Guid guid =

web.Lists.Add(
Strings._ProposalLibrary_Title,
Strings._ProposalLibrary_Desc,
template);

m_docLib = web.Lists[guid] as SPDocumentLibrary;
} catch {
}
// Initialize the base library properties.
m_docLib.OnQuickLaunch = true;
m_docLib.EnableVersioning = true;
m_docLib.EnableModeration = true;
m_docLib.EnableMinorVersions = true;

// Remove the default “Document” content type.
ContentType.RemoveFromList(m_docLib, “Document”);

// Add the custom proposal content type.
ContentType.AddToList(m_docLib, new ProjectProposalType().Create(web));

}
}

The easiest way to deploy a new content type is to include it as part of a custom feature. Here, you create
a ProposalManagement feature to enable all of the proposal management tools on a site. As part of the
feature implementation, you create an SPFeatureReceiver class for the FeatureActivated event that
handles the deployment details for your custom content types. Listing 11-8 illustrates this process.

Listing 11-8: Provisioning a content type upon feature activation

using System;
using System.Runtime.InteropServices;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebPartPages;

413

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 413

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

namespace ProSharePoint2007
{

[Guid(“63d38c9c-3ada-4e07-873f-a278443e910c”)]
partial class ProposalManagerFeature : SPFeatureReceiver
{

[SharePointPermission(SecurityAction.LinkDemand, ObjectModel = true)]
public override void FeatureActivated(

SPFeatureReceiverProperties properties)
{

if (properties == null) {
return;

}

SPWeb web = properties.Feature.Parent as SPWeb;

// Create a library to hold the proposals and add a
// default list view to the left Web Part zone.

AddListViewWebPart(web,
new ProposalDocumentLibrary(web),
“Left”, PartChromeType.Default);

}

/// <summary>
/// Creates a ListViewWebPart on the main page.
/// </summary>
private void AddListViewWebPart(SPWeb web, SPList list,

string zoneId,
PartChromeType chromeType)

{
// Access the default page of the web.
SPFile root = web.RootFolder.Files[0];

// Get the Web Part collection for the page.
SPLimitedWebPartManager wpm = root.GetLimitedWebPartManager(
System.Web.UI.WebControls.WebParts.PersonalizationScope.Shared);

// Add a list view to the bottom of the zone.
ListViewWebPart part = new ListViewWebPart();
part.ListName = list.ID.ToString(“B”).ToUpper();
part.ChromeType = chromeType;
wpm.AddWebPart(part, zoneId, 99);

}
}

Now you have a site definition that includes the ProposalManager feature. When a site is created based
on this site definition, the FeatureActivated event receiver creates a document library called Project
Proposals that is automatically associated with your Project Proposal content type. Figure 11-6 shows
the home page of a site created from the site definition.

414

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 414

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Figure 11-6

Managing Document Creation
In any document management solution, it’s important that each new document adhere to organizational
standards. This is especially true when metadata is being used to drive business processes. Even with a
well-defined set of metadata fields and established guidelines for filling them out, busy knowledge work-
ers often forget to provide this information because they are too focused on the document content. If the
metadata is incomplete or inconsistent, then automated business processes that depend on it will fail. This
leads to inefficiency and additional costs associated with finding and correcting the missing data.

Windows SharePoint Services 3.0 provides an enhanced callback mechanism that enables solution devel-
opers to control the document creation process and take prescriptive action based on the current state of
the document. By implementing event receivers, you can write custom code that is called during document
creation.

415

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 415

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Document creation occurs in three stages:

1. The document template is opened in the appropriate editor program. The user edits the content
and metadata and then saves the document into the library,

2. SharePoint retrieves the metadata and places it in a property bag, which it passes to the
ItemAdding event receivers that have been registered for the library.

3. Unless one of the ItemAdding receivers cancels the document as noted below, SharePoint uses
the properties to construct a new document list item, which is then added to the library. Next it
calls the ItemAdded event receivers that have been registered for the library.

The ItemAdding event is called synchronously, suspending the document creation process until the event
receiver returns control to SharePoint. By contrast, the ItemAdded event is called asynchronously after
the document has been added to the library. Using this architecture, you can implement an ItemAdding
event receiver to cancel the Add operation if the document metadata does not meet your requirements.

The key issues to address are:

1. Have all required metadata fields been supplied with the document?

2. Are the values of the required metadata fields consistent with each other?

3. Is the metadata consistent with our document management policy?

Checking for Required Metadata
First, ensure that all of the required metadata fields have been supplied. For the project proposal, you
want to ensure that the user has selected a project type, because the other business rules depend on this
value. If it is not supplied, then you reject the document and notify the user.

The usual way to ensure that required metadata fields have been filled out is to set the Required attribute
to “TRUE” when defining the content type. This works well for simple document types but not in more
complex scenarios, where the set of required fields may change depending on an externally defined pol-
icy. It may still be necessary to use the Required attribute for documents that are created on the client.
For instance, Microsoft Word will throw a generic exception instead of displaying a user-friendly error
message when the ItemAdding event is canceled. Using the Required attribute forces the user to enter
the item and also enables Word to display a visual cue indicating required fields, as shown in Figure 11-7.

When the ItemAdding event receiver is called, SharePoint passes a SPItemEventProperties object as a
parameter. This object holds the property values for all of the metadata supplied by the user when creating
the document. Using this object is a bit tricky because the same type of object is also passed to the other
event receiver methods. However, different fields are supplied at different stages of the document lifecycle.
The following table shows the relationship between selected fields of the SPItemEventProperties object
and the Add/Update pairs of event receiver methods.

416

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 416

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Figure 11-7

Continued

Method Description Field Available? Comments

ItemAdding Called before an item
is added to the list.

ListId Yes Identifies the list that will
contain the new item.

ListItem No The list item has not yet
been created.

Before -
Properties

No Item properties are only
available after the item is
created.

After -
Properties

Yes Item properties that will be
used to populate the new
item.

417

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 417

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

To make things easier and to simplify the code, you can declare a static class that takes these dependen-
cies into account. Listing 11-9 shows how to implement the ItemAdding event receiver to check for the
required metadata using a static wrapper class to process the raw SPItemEventProperties object.

Method Description Field Available? Comments

ItemAdded Called after an item
is added to the list.

ListId Yes Identifies the containing list.

ListItem Yes Identifies the new list item.

Before -
Properties

No No item properties existed
prior to item creation.

After -
Properties

Yes Item properties that
were used to populate
the new item.

Item Updating Called before an item
is updated.

ListId Yes Identifies the containing list.

ListItem Yes Identifies the list item.

Before -
Properties

Yes Holds a hashtable of item
properties before the update.

After -
Properties

Yes Holds a hashtable of item
properties that will be
applied when the update
is processed.

ItemUpdated Called after an item
is updated.

ListId Yes Identifies the containing list.

ListItem Yes Identifies the list item.

Before -
Properties

Yes Holds a hashtable of item
properties before the
update.

After -
Properties

Yes Holds a hashtable of item
properties after the update.

418

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 418

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Listing 11-9: ItemAdding event receiver

/// <summary>
/// A helper class for testing various conditions on SharePoint list items.
/// </summary>
public class ItemCondition
{

public static bool HasProposalType(SPItemEventProperties properties)
{

object value = properties.AfterProperties[“Proposal Type”];
return value != null && value.ToString() != string.Empty;

}
}

/// <summary>
/// Synchronous before event that occurs when a new item is added
/// to its containing object.
/// </summary>
/// <param name=”properties”>
/// A Microsoft.SharePoint.SPItemEventProperties object
/// that represents properties of the event handler.
/// </param>
[SharePointPermission(SecurityAction.LinkDemand, ObjectModel = true)]
public override void ItemAdding(SPItemEventProperties properties)
{

try {
ValidateItemProperties(properties);

} catch (Exception x) {
properties.ErrorMessage = x.Message;
properties.Cancel = true;

}
}

/// <summary>
/// Helper method to determine whether an item meets validation requirements.
/// </summary>
/// <param name=”properties”></param>
private void ValidateItemProperties(SPItemEventProperties properties)
{

if (!ItemCondition.HasProposalType(properties))
throw new SPItemValidationException(properties, “You must select a proposal

type.”);
}

Checking Metadata Consistency
In the case of the project proposal, you check for different field values depending on the type of project
that was selected. For instance, time-and-material projects require the user to provide an initial estimate
of the hours needed to complete the project, while fixed-bid projects require an estimate of the total bid
amount. You will use these values later when implementing other business rules, so it is vital that the
appropriate values are entered correctly.

419

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 419

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

When an item is added to a list, SharePoint calls the ItemAdding event receiver, but it does not call
the ItemUpdating event receiver. Conversely, when an item is edited, SharePoint calls only the
ItemUpdating event receiver. Therefore, any consistency checking code should be called from both
the ItemAdding and the ItemUpdating event receivers.

Postprocessing of Metadata
After a document has been added to the library, it is often useful to perform postcreation tasks such as
making entries into a tracking log or notifying users that a new document has been created. In the pro-
posal-tracking system, you want to keep a running record of the progress each proposal makes through-
out its lifecycle. You can do this easily by setting up a SharePoint list to record the date and time a given
event occurs.

You begin by defining a second content type called a ProposalTrackingRecord and enable it for a custom
list called “Proposal History.” The ProposalTrackingRecord is derived from the built-in Item content
type, and consists of only the title field. Use the title to display the text of the tracking event.

<ContentType ID=”0x0100a0cada319e714c1fab64c519c065d421”
Name=”Proposal Tracking Record”
Group=”ProSharePoint2007”
Description=”A list item for tracking proposal-specific events.”
Version=”0”>
<FieldRefs/>

</ContentType>

You can use a ProposalTrackingEvent enumeration to model the different kinds of events you wish
to track. In addition to the standard document lifecycle events, you can also capture important proposal-
specific milestones such as when a proposal is approved for submission to the client, or when a proposal
is accepted by the client.

enum ProposalTrackingEvent
{

Created,
Modified,
MajorRevision,
MinorRevision,
CheckedOut,
CheckedIn,
ApprovedForSubmission,
AcceptedByClient,
Published,
Deleted,
Archived,

}

Finally, in the same way that you created the Proposals document library, you now create the Proposal
History custom list and an associated ListView in the right Web Part zone.

// Create a custom list to hold the proposal history and
// add a default list view to the right Web Part zone.

AddListViewWebPart(web, new ProposalHistoryList(web),
“Right”, PartChromeType.TitleOnly);

420

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 420

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

To capture postcreation events, implement an ItemAdded event receiver for the ProjectProposal con-
tent type. This event is fired after the metadata has been validated and the new document has been added
to the library. When the event receiver is called, you obtain a reference to the Proposal History list and
make the appropriate entries using the AddRecord helper method:

[SharePointPermission(SecurityAction.LinkDemand, ObjectModel = true)]
public override void ItemAdded(SPItemEventProperties properties)
{

// Add an entry to the proposal history list.
SPWeb web = properties.ListItem.ParentList.ParentWeb;
ProposalHistoryList history = ProposalHistoryList.FromWeb(web);
history.AddRecord(ProposalTrackingEvent.Created,

properties.AfterProperties);
}

Now, whenever a project proposal is added to the proposals library, a new tracking record is created
based on the type of event (in this case, ProposalTrackingEvent.Created) and the properties stored
in the new item. Depending on the event type, you can use these properties to capture a more detailed
picture of the context surrounding the event. This analysis could be recorded separately or could cause a
custom workflow to be initiated. Figure 11-8 shows the project history list with a tracking record entry.

Figure 11-8

421

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 421

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Managing the Document Revision Cycle
Referring back to the generic model of the document lifecycle, note that all documents follow the general
pattern of creation/revision/publication. Unlike the creation phase, which happens only once, the revision
phase occurs repeatedly until the document is ready for publication. During the revision phase, many differ-
ent types of events can occur, depending on the state of the document metadata and the status of its content.

The SharePoint object model defines eight pairs of events that can occur during the document revision
cycle. These are captured by the following elements of the SPItemEventReceiverType enumeration.
Using these events, you can control all aspects of document revision.

❑ ItemUpdated/Updating

❑ ItemCheckedIn/CheckingIn

❑ ItemCheckedOut/CheckingOut

❑ ItemUncheckedOut/UncheckingOut

❑ ItemAttachmentAdded/Adding

❑ ItemAttachmentDeleted/Deleting

❑ ItemFileMoved/Moving

❑ ItemDeleted/Deleting

We shall ignore the ItemFileConverted event and the ItemFileMoved/Moving event pair
because they happen outside the document revision cycle.

During each stage of the revision cycle, you can use document metadata to analyze the current state of
the document in terms of the problem domain and then update the metadata in the appropriate way.
This revised metadata can be used to further constrain the behavior of the document or to control the
actions of the people involved in editing it.

The following sections explore the construction of both generic and domain-specific tools for analyzing
metadata to assist in answering the question “what happens next?” in the context of these events.

Building Custom Tools for Metadata Analysis
Sometimes it is useful to distinguish between metadata maintained by the system and custom metadata
you defined within the problem domain. For the former, it’s easy to create a library of reusable tools that
can be used to quickly analyze system-defined properties. For instance, SharePoint can automatically track
major and minor versions of each document in a library and can enforce moderation (approval) and check-
out policies. Using the object model components associated with these properties, you can create compo-
nents that perform useful functions, such as:

❑ Determine if the major or minor version number exceeds a certain limit

❑ Determine the current approval status of the document

422

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 422

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

❑ Compute the average length of time a document remains checked out

❑ Count the number of times a given user has checked in or reviewed a document

You can take the same approach for domain-specific metadata such as, in this example, where you might
want to define a set of high-level methods for working with project proposals. These general and specific
methods can make it much easier to build custom business rules. For example, you might need the fol-
lowing two rules:

❑ Compare the estimated cost of a fixed-bid proposal to a predefined limit.

❑ Compare the estimated man-hours of a time-and-materials proposal to a predefined minimum.

To support these rules, you can create a wrapper class for retrieving the bid amount and estimated hours
from a set of project proposal properties. The properties are passed to the SPItemEventReceiver as
described earlier. Listing 11-10 shows the ProjectProposal wrapper class that is derived from a generic
wrapper for SharePoint list items.

Listing 11-10: A project proposal wrapper class

/// <summary>
/// A wrapper class for a project proposal instance.
/// </summary>
class ProjectProposal : SharePointListItem
{

/// <summary>
/// Constructs a wrapper for the underlying list item.
/// </summary>
public ProjectProposal(SPListItem item):base(item)
{
}

#region Property Value Accessors

/// <summary>
/// Retrieves the proposal type as reflected by the item properties.
/// </summary>
public static ProposalType GetProposalType(SPItemEventDataCollection

properties)
{

ProposalType type = ProposalType.TimeAndMaterials;
try {

object value = properties[Strings._Field_ProposalType];
string choice = value.ToString();
if (choice.Equals(Strings._Choice_FixedBid))

type = ProposalType.FixedBid;
} catch {
}
return type;

}

423

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 423

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

/// <summary>
/// Retrieves the proposal bid amount.
/// </summary
public static decimal GetBidAmount(SPItemEventDataCollection properties)
{

decimal amount = 0M;
try {

object value = properties[Strings._Field_BidAmount];
amount = Decimal.Parse(value.ToString());

} catch {
}
return amount;

}

/// <summary>
/// Retrieves the estimated person hours for a proposal.
/// </summary>
public static decimal GetEstimatedHours(SPItemEventDataCollection properties)
{

decimal amount = 0M;
try {

object value = properties[Strings._Field_EstimatedHours];
amount = Decimal.Parse(value.ToString());

} catch {
}
return amount;

}
#endregion

}

Ensuring Metadata Consistency between Revisions
Using your library of metadata analysis components, you can easily test for a range of conditions when-
ever a proposal document is updated. First, you perform the same metadata consistency check as when
adding an item, rejecting the update from the ItemUpdating event receiver if a problem exists. Then,
you use the project proposal wrapper to test for the two conditions you defined in the business rules.

[SharePointPermission(SecurityAction.LinkDemand, ObjectModel = true)]
public override void ItemUpdating(SPItemEventProperties properties)
{
const decimal MinimumBid =5000M;
const decimal MinimumHours = 300M;
try {

ValidateItemProperties(properties);
switch (ProjectProposal.GetProposalType(

properties.AfterProperties)
{
case ProposalType.FixedBid: {

if (ProjectProposal.GetBidAmount(
properties.AfterProperties) < MinimumBid) {
throw new ApplicationException(

424

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 424

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

“Bids must be higher than “ +
MinimumBid.ToString());

}
break;

case ProposalType.TimeAndMaterials: {
if (ProjectProposal.GetEstimatedHours(

properties.AfterProperties) < MinimumHours) {
throw new ApplicationException(

“Hours must be greater than “ +
MinimumHours.ToString());

}
break;

}
} catch (Exception x) {

properties.ErrorMessage = x.Message;
properties.Cancel = true;

}
}

At this point, you can perform other tests suitable for proposal documents. As more conditions are
added, you can easily extend the framework to accommodate them by implementing the appropriate
static methods on the ProjectProposal class and making the corresponding call from the event
receiver.

Managing Checkin and Checkout
SharePoint supports enforced checkout for document libraries and lists. Setting the ForceCheckout prop-
erty to true causes SharePoint to require that users check out a document before editing it. However, you
may need to place additional constraints on document items. For example, you may need to control which
users are allowed to check out a document, or keep track of which users checked out which documents, or
calculate the average length of time a given user keeps documents checked out, and so on.

A good example of when this might be necessary is in a document library that is set up to enforce approval
via the built-in _ModerationStatus field. After the document has been approved, you might wish to
prevent users other than the approver from making further changes. You can do this by implementing a
CheckingOut event receiver, checking the moderation status and then comparing the moderator to the
current user. If they do not match and the document has been approved, then you abort the checkout
with an appropriate message to the user.

Developing XML-Driven Document
Management Solutions

Writing code whenever you want to change the policies associated with a content type can become a tedious
operation. It would be better if you could define the more volatile aspects of the policy in an external file and
then process that file during execution in order to determine if metadata has been provided consistently and
completely. The problem is where should you put the file?

425

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 425

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

You could certainly put the file in a well-known location, but that would require too much knowledge of
the operating environment. What you are really trying to do is separate the policy from your content type
implementation so that you can change it more easily.

This section shows how to control the behavior of a class of documents using rules defined in an XML
schema associated with a content type. After developing a simple project proposal management schema
you create a default policy based on the schema and then attach it to the content type definition. As events
are generated by SharePoint during the document revision cycle, you retrieve the policy from the content
type and apply the policy.

Developing a Proposal Management Policy Schema
Referring back to the document lifecycle diagram, you can see how policies will affect the overall docu-
ment revision cycle. Figure 11-9 shows the revision cycle with policies attached. You want to ensure that
the total bid amount for fixed-bid proposals is never less than $5000. On the other hand for time-and-
materials proposals, you want to reject any revision where the estimated hours are less than 300. And
you want to be able to change these values without recoding the solution.

Figure 11-9

You can meet these needs by defining a simple schema to manage project proposals. The schema will dis-
tinguish between the two different types of proposals and provide elements for specifying acceptable bid
amounts and estimated hours. In addition, you need a way to control what happens when the policy has
been violated. This example shows how to display an error message to the user stating the condition and
the expected values. Figure 11-10 depicts the proposal management policy schema shown in Listing 11-11.

Creation

Template Metadata

Publication

Repository

Revision

Policy A Policy B
Fixed Bid
proposals must
be greater than
5000

Time and
Materials
proposals must
have at least 300
estimated hours

426

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 426

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Figure 11-10

Listing 11-11: Proposal management policy schema

<xs:element name=”ProposalManagementPolicy”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:complexType>
<xs:sequence>

<xs:element name=”FixedBid”>
<xs:complexType>

<xs:sequence>
<xs:element name=”BidAmount”>

<xs:complexType>
<xs:sequence>

<xs:element
name=”ErrorMessage”
type=”xs:string” />

</xs:sequence>
<xs:attribute name=”MinimumValue”

type=”xs:decimal”
use=”required” />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”TimeAndMaterials”>

<xs:complexType>
<xs:sequence>

<xs:element name=”EstimatedHours”>

ProposalManagementPolicy

FixedBid

BidAmount
MinimumValue Type : xs:decimalTimeAndMaterials

ErrorMessage

Type xs:string
EstimatedHours

MinimumValue Type : xs:decimal

ErrorMessage

Type xs:string

427

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 427

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

<xs:complexType>
<xs:sequence>

<xs:element
name=”ErrorMessage”
type=”xs:string” />

</xs:sequence>
<xs:attribute name=”MinimumValue”

type=”xs:decimal”
use=”required” />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

Using this schema definition, you can create a default policy for new project proposals. To make it easier
for system administrators who will be editing these files, the example uses a simple value substitution
scheme that looks for tokens in the error message text and replaces them with attribute values.

<ProposalManagementPolicy
xmlns=”http://schemas.johnholliday.net/proposalmanagementpolicy.xsd”>

<FixedBid>
<BidAmount MinimumValue=”5000”>

<ErrorMessage>The bid amount must be at least $$MinimumValue$$
.</ErrorMessage>

</BidAmount>
</FixedBid>
<TimeAndMaterials>

<EstimatedHours MinimumValue=”300”>
<ErrorMessage>The estimated hours must be at least $$MinimumValue$$

.</ErrorMessage>
</EstimatedHours>

</TimeAndMaterials>
</ProposalManagementPolicy>

Attaching the Policy to a Content Type
In order for this to work, you need to associate the default policy with the project proposal content type.
As it turns out, SharePoint has a built-in facility for doing this.

SharePoint maintains a collection of XML documents for each content type. These documents are accessible
through the XmlDocuments Element in the content type definition. There are two ways to associate an
XmlDocument with a content type: in the content type definition XML, used to provision the content
type, and through the Windows SharePoint Services 3.0 object model. Which method to use depends
on when the information is required and whether it will change.

If the information is static or is needed during the provisioning process, then the best option is to include
it in the content type definition XML. On the other hand, if the information is dynamic, then the object
model is probably the best choice. That way, you can drive other behaviors or control user interactions
based on the contents of the associated XML document.

428

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 428

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

In this example, both conditions are true. You need the information from the default policy during the
provisioning process so you can accept or reject new proposals, and you also need the policy information
to be dynamic because you want to enable administrative users to modify the policy at any given time.

Adding the default policy to the content type definition XML requires that you insert an XmlDocuments
element that contains a child XmlDocument element. You then place the contents of the custom XML doc-
ument inside the XmlDocument element.

<?xml version=”1.0” encoding=”utf-8”?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
<!-- _filecategory=”ContentType” _filetype=”Schema” _filename=”contenttype.xml”
_uniqueid=”cff96a1e-6a52-4462-a3d0-d01471b8bfef” -->
<ContentType ID=”0x0101004a257cd7888d4e8baea35afcdfdea58c”

Name=”Project Proposal”
Group=”ProSharePoint2007”
Description=”A Content Type for Managing Project Proposals”
Version=”0”>
<FieldRefs>

<FieldRef ID=”{246D0907-637C-46b7-9AA0-0BB914DAA832}” Name=”Author”/>
<FieldRef ID=”{76A81629-44D4-4ce1-8D4D-6D7EBCD885FC}” Name=”Subject” />
<FieldRef ID=”{9DC4BA7E-6C50-4e24-9797-355131089A2E}” Name=”ProposalType”

Required=”TRUE”/>
<FieldRef ID=”{24A18FDA-927A-4232-88AE-F713FFD3FBB4}” Name=”EstimatedCost”/>
<FieldRef ID=”{41495470-9EA3-46e0-9A34-0E0C3DE1A445}” Name=”BidAmount”/>
<FieldRef ID=”{D46C0900-5617-414c-97E5-E5626DBC1495}” Name=”EstimatedHours”/>
<FieldRef ID=”{79368859-EAF8-4361-8A9D-C3CBD9C88697}” Name=”HourlyRate”/>
<FieldRef ID=”{64cd368d-2f95-4bfc-a1f9-8d4324ecb007}” Name=”StartDate” />
<FieldRef ID=”{8A121252-85A9-443d-8217-A1B57020FADF}” Name=”EndDate” />
<FieldRef ID=”{1DAB9B48-2D1A-47b3-878C-8E84F0D211BA}” Name=”Status” />
<FieldRef ID=”{52578FC3-1F01-4f4d-B016-94CCBCF428CF}” Name=”Comments” />
<FieldRef ID=”{B66E9B50-A28E-469b-B1A0-AF0E45486874}” Name=”Keywords” />

</FieldRefs>
<XmlDocuments>

<XmlDocument NamespaceURI=”$Resources:ProposalManager,
ProposalManagementPolicyNamespace”>

<ProposalManagementPolicy>
<FixedBid>

<BidAmount MinimumValue=”5000”>
<ErrorMessage>The bid amount must be at least $$MinimumValue$$

.</ErrorMessage>
</BidAmount>

</FixedBid>
<TimeAndMaterials>

<EstimatedHours MinimumValue=”50”>
<ErrorMessage>The estimated hours must be at least

$$MinimumValue$$.</ErrorMessage>
</EstimatedHours>

</TimeAndMaterials>
</ProposalManagementPolicy>

</XmlDocument>
</XmlDocuments>

</ContentType>
</Elements>

429

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 429

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

SharePoint uses the NamespaceURI attribute to index the collection of XML documents associated with a
content type. This means that you must specify a namespace attribute for the XmlDocument element or
you will not be able to locate the document when calling the SharePoint object model from your code.

The SharePoint SDK states that you can add any number of XML documents to the XmlDocuments
collection, and that any XML document can be used as long as it is valid XML. In practice, I’ve found
that not only must the XML be valid, but it must not cause an exception to be thrown while SharePoint
is deserializing the XML fragment. For instance, if namespaces are used, they must resolve properly.
Also, it must be an XML fragment and not an XML document. In other words, it must not include an
xml directive. If an exception occurs, then SharePoint will silently consume the exception but will not
completely load the content type. One side effect of this is that the content type will be created, but with-
out the expected metadata fields. Similarly, if the NamespaceURI attribute is missing, SharePoint will
abort the load.

Processing the Policy in Response to Events
The logical place to process policy files is in the synchronous event receiver methods ItemAdding and
ItemUpdating, because you can cancel the operation and display an error message to the user. In order
for this to work, you need to add a static method to the ProjectProposalType wrapper class.

The ApplyPolicy method extracts the XML document containing our default policy and then uses the
XmlSerializer to deserialize it into a C# class. The ProposalManagementPolicy class is shown in
Listing 11-12. By passing the SPItemEventProperties parameter along, you can then invoke the
appropriate methods on the deserialized class to analyze the properties of the new or modified item in
the context of the policy values. You use an extra parameter to specify the context in which the policy is
to be applied (add, update, delete, etc.).

public static void ApplyPolicy(SPItemEventProperties properties,
ProposalManagementPolicy.PolicyContext context)

{
ProposalManagementPolicy policy = null;
ProjectProposalType proposalType = new ProjectProposalType();
using (SPWeb web = properties.OpenWeb())

{
if (proposalType.Create(web) != null) {

string xml = proposalType.GetXmlString(
Strings.ProposalManagementPolicyNamespace);

policy = ProposalManagementPolicy.FromXml(xml);
} else {

policy = ProposalManagementPolicy.ReadFrom(
Strings.DefaultPolicy);

}
}
if (policy != null) {

policy.ApplyPolicy(properties.AfterProperties, context);
}

}

430

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 430

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Listing 11-12: Proposal management policy class

using System;
using System.IO;
using System.Data;
using System.Text;
using System.Diagnostics;
using System.ComponentModel;
using System.Xml;
using System.Xml.Serialization;
using Microsoft.SharePoint;

namespace ProSharePoint2007
{

[Serializable]
[XmlType(AnonymousType=true)]
[XmlRoot(Namespace=””, IsNullable=false)]
public class ProposalManagementPolicy {

/// <summary>
/// Specifies the context in which a given policy is being applied.
/// </summary>
public enum PolicyContext
{

Add,
Update,
CheckIn,
CheckOut,
Delete

}

/// <summary>
/// Loads a ProposalManagementPolicy object from a file.
/// </summary>
public static ProposalManagementPolicy ReadFrom(string fileName)
{

XmlSerializer ser = new XmlSerializer(
typeof(ProposalManagementPolicy), “”);
return (ProposalManagementPolicy)ser.Deserialize(
new StreamReader(fileName));

}

/// <summary>
/// Loads a ProposalManagementPolicy object from an xml string.
/// </summary>
public static ProposalManagementPolicy FromXml(string xml)
{

xml = xml.Replace(Strings.XmlDirective_Utf16,
Strings.XmlDirective_Utf8).Trim();

431

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 431

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

if (!xml.StartsWith(Strings.XmlDirective_Utf8))
xml = Strings.XmlDirective_Utf8 + xml;

XmlSerializer ser = new XmlSerializer(
typeof(ProposalManagementPolicy), “”);

return (ProposalManagementPolicy)ser.Deserialize(
new StringReader(xml));

}

/// <summary>
/// Loads a ProposalManagementPolicy object from a content type.
/// </summary>
/// <param name=”contentType”>the containing content type instance</param>
public static ProposalManagementPolicy FromContentType(

ContentType contentType)
{

string xml = contentType.GetXmlString(
Strings.ProposalManagementPolicyNamespace);

XmlSerializer ser = new XmlSerializer(
typeof(ProposalManagementPolicy), “”);

return (ProposalManagementPolicy)ser.Deserialize(new
StringReader(xml));

}

/// <summary>
/// Applies the policy to a given set of proposal properties.
/// </summary>
public void ApplyPolicy(SPItemEventDataCollection properties,

PolicyContext context)
{

// Check the properties to determine if the policy was satisfied.
switch (ProjectProposal.GetProposalType(properties)) {

case ProposalType.FixedBid: {
ApplyFixedBidPolicy(properties, context);
break;

}
case ProposalType.TimeAndMaterials: {

ApplyTimeAndMaterialsPolicy(properties, context);
break;

}
}

}

/// <summary>
/// Converts this instance to a text string.
/// </summary>
/// <remarks>
/// Uses the XmlSerializer to produce an XML string representing
/// the policy.
/// </remarks>
public override string ToString()
{

// Generate the XML string.
StringBuilder policy = new StringBuilder();

432

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 432

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

XmlSerializer ser = new XmlSerializer(GetType(), “”);
ser.Serialize(new StringWriter(policy), this);

// Check for and remove the xml directive.
string xml = policy.ToString();
xml = xml.Replace(Strings.XmlDirective_Utf8, “”);
xml = xml.Replace(Strings.XmlDirective_Utf16, “”);

return xml.Trim();
}

/// <summary>
/// Updates the policy associated with a given content type.
/// </summary>
/// <param name=”contentType”></param>
public void UpdatePolicy(ContentType contentType)
{

// Attach the policy to the content type.
contentType.AddXmlString(Strings.ProposalManagementPolicyNamespace,

this.ToString());
}

/// <summary>
/// Applies policies that pertain to fixed bid proposals.
/// </summary>
/// <param name=”properties”></param>
void ApplyFixedBidPolicy(SPItemEventDataCollection properties,

PolicyContext context)
{

if (ProjectProposal.GetBidAmount(properties)
< FixedBid.BidAmount.MinimumValue) {

switch (context) {
case PolicyContext.Update:

throw new ProposalManagementPolicyException(
FixedBid.BidAmount.FormattedErrorMessage);
}

}
}

/// <summary>
/// Applies policies that pertain to time and materials proposals.
/// </summary>
/// <param name=”properties”></param>
void ApplyTimeAndMaterialsPolicy(SPItemEventDataCollection properties,

PolicyContext context)
{

if (ProjectProposal.GetEstimatedHours(properties)
< TimeAndMaterials.EstimatedHours.MinimumValue) {

switch (context) {
case PolicyContext.Update:

throw new ProposalManagementPolicyException(
TimeAndMaterials.EstimatedHours.FormattedErrorMessage);
}

}
}

433

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 433

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

private ProposalManagementPolicyFixedBid fixedBidField;
private ProposalManagementPolicyTimeAndMaterials timeAndMaterialsField;

/// <remarks/>
public ProposalManagementPolicyFixedBid FixedBid {

get {
return this.fixedBidField;

}
set {

this.fixedBidField = value;
}

}

/// <remarks/>
public ProposalManagementPolicyTimeAndMaterials TimeAndMaterials {

get {
return this.timeAndMaterialsField;

}
set {

this.timeAndMaterialsField = value;
}

}
}

#region XML Serialization Support

/// <remarks/>
[Serializable]
[XmlType(AnonymousType=true)]
public class ProposalManagementPolicyFixedBid {

private ProposalManagementPolicyFixedBidBidAmount bidAmountField;

/// <remarks/>
public ProposalManagementPolicyFixedBidBidAmount BidAmount {

get {
return this.bidAmountField;

}
set {

this.bidAmountField = value;
}

}
}

/// <remarks/>
[Serializable]
[XmlType(AnonymousType=true)]
public class ProposalManagementPolicyFixedBidBidAmount {

private string errorMessageField;
private decimal minimumValueField;

/// <remarks/>

434

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 434

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

public string ErrorMessage {
get {

return this.errorMessageField;
}
set {

this.errorMessageField = value;
}

}

/// <summary>
/// Builds the actual error message by performing field substitutions.
/// </summary>
public string FormattedErrorMessage
{

get
{

return ErrorMessage.Replace(
“$$MinimumValue$$”, MinimumValue.ToString());

}
}

/// <remarks/>
[XmlAttribute]
public decimal MinimumValue
{

get {
return this.minimumValueField;

}
set {

this.minimumValueField = value;
}

}
}

/// <remarks/>
[Serializable]
[XmlType(AnonymousType=true)]
public class ProposalManagementPolicyTimeAndMaterials {

private ProposalManagementPolicyTimeAndMaterialsEstimatedHours
estimatedHoursField;

/// <remarks/>
public ProposalManagementPolicyTimeAndMaterialsEstimatedHours

EstimatedHours {
get {

return this.estimatedHoursField;
}
set {

this.estimatedHoursField = value;
}

}
}

435

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 435

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

/// <remarks/>
[Serializable]
[XmlType(AnonymousType=true)]
public class ProposalManagementPolicyTimeAndMaterialsEstimatedHours {

private string errorMessageField;
private decimal minimumValueField;

/// <remarks/>
public string ErrorMessage {

get {
return this.errorMessageField;

}
set {

this.errorMessageField = value;
}

}

/// <remarks/>
[XmlAttribute]
public decimal MinimumValue
{

get {
return this.minimumValueField;

}
set {

this.minimumValueField = value;
}

}

/// <summary>
/// Builds the actual error message by performing field substitutions.
/// </summary>
public string FormattedErrorMessage
{

get
{

return ErrorMessage.Replace(
“$$MinimumValue$$”, MinimumValue.ToString());

}
}

}

public class StringCollection : System.Collections.Generic.List<string> {
}
#endregion

}

436

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 436

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Now you can modify the ItemUpdating event receiver to process the attached policy:

[SharePointPermission(SecurityAction.LinkDemand, ObjectModel = true)]
public override void ItemUpdating(SPItemEventProperties properties)
{

try {
// Apply the current proposal management policy.
ProjectProposalType.ApplyPolicy(properties,

ProposalManagementPolicy.PolicyContext.Update);
} catch (Exception x) {

properties.ErrorMessage = x.Message;
properties.Cancel = true;

}
}

If an exception is thrown during the application of the policy, you set the ErrorMessage field and cancel
the operation. SharePoint will then display an Error page whenever an attempt is made to update a pro-
posal that does not conform to the established policy, as shown in Figure 11-11.

Figure 11-11

437

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 437

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Creating Policy Administration Tools
Associating a custom policy file with a content type is powerful, but administrative users will not be
able to change the policy unless they can associate a different file with the content type at runtime. Two
approaches come to mind. You could provide a custom user interface for entering the acceptable bid
amount and estimated hours and then generate an XML file, or you could create a command-line tool.

Working with XML files via command-line utilities is a lot easier than developing a UI, especially if the
schema is changing frequently during development. In addition, you might like to enable a machine-
driven process or a script to modify the policy rather than require human interaction. Fortunately, the wise
and benevolent SharePoint gods made it quite easy to extend the stsadm command-line tool with your
own custom commands. Listing 11-13 shows a custom stsadm extension for setting the proposal manage-
ment policy that will be applied to new or existing proposals based on your project proposal content type.

Listing 11-13: A custom STSADM command to apply proposal management policy

using System;
using System.IO;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;
using Microsoft.SharePoint.StsAdmin;
using ProSharePoint2007;

namespace ProposalManager.Admin
{

/// <summary>
/// Implements a custom STSADM command to display the proposal management
/// policy specification for a given site.
/// </summary>
public class GetProposalPolicy : ISPStsadmCommand
{

#region ISPStsadmCommand Members

string ISPStsadmCommand.GetHelpMessage(string command)
{

string msg = “Displays the current Proposal Management policy.”;
return msg + “\n” + “-url <url>\t\tthe url of the site to process”;

}

int ISPStsadmCommand.Run(string command,
System.Collections.Specialized.StringDictionary keyValues,
out string output)

{
int result = 1;
const string ProposalContentTypeName = “Project Proposal”;

try {
// validate the arguments
if (keyValues[“url”] == null)

throw new ApplicationException(“No url supplied.”);

438

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 438

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

// open the website
using (SPSite site = new SPSite(keyValues[“url”])){

using (SPWeb web = site.OpenWeb()){
// load the Project Proposal content type
ContentType ctProjectProposal

= new ContentType();
if (ctProjectProposal.Create(web,

ProposalContentTypeName) == null) {
throw new ApplicationException(
string.Format(
“Failed to locate Content Type ‘{0}’”,

ProposalContentTypeName));
}

// load the policy
ProposalManagementPolicy policy

= ProposalManagementPolicy.FromContentType(
ctProjectProposal);

// convert to text and return result
output = policy.ToString();
result = 0;

}
}} catch (Exception x) {

output = x.ToString();
}

return result;
}

#endregion
}

}

To deploy the command, you simply install the assembly into the Global Assembly Cache and create a
command definition file named stsadmcommands.proposalmanager.xml in the 12\CONFIG folder.

<?xml version=”1.0” encoding=”utf-8” ?>
<commands>

<command name=”setproposalpolicy”
class=”ProposalManager.Admin.SetProposalPolicy,
ProposalManager.Admin, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=3c6b2ee283bb579c”/>

<command name=”getproposalpolicy”
class=”ProposalManager.Admin.GetProposalPolicy,
ProposalManager.Admin, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=3c6b2ee283bb579c”/>

</commands>

Figure 11-12 shows the new command being executed.

439

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 439

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

Figure 11-12

Summary
Managing the document lifecycle depends on metadata. Content types are the way to manage metadata
within SharePoint. You can encapsulate document metadata by combining it with custom behaviors imple-
mented in content type event receivers. You then use those custom behaviors to control all aspects of the
document creation and revision phases. Constructing reusable libraries of document-specific components
can greatly simplify the task of building document management solutions.

You can extend the notion of encapsulation to include high-level document management policies declared
using XML. First you create a custom document management policy schema and then use it to create a
default set of policies for your content type. Using the Windows SharePoint Services object model, you can
attach a default policy to the content type at runtime and then retrieve it, using XML deserialization, to
process the policy against individual document items. Finally, you can extend the stsadm command line
tool with custom commands specific to your document management solution.

440

Chapter 11: Building Document Management Solutions

17569c11.qxd:17569c11 5/7/07 9:12 AM Page 440

Excerpted from Professional SharePoint 2007 Development, Wrox Press, www.wrox.com

	ADP30E.tmp
	Professional SharePoint 2007 Development
	Chapter 11: Building Document Management Solutions
	ISBN-10: 0-470-11756-7
	ISBN-13: 978-0-470-11756-9

