
Extracted from:

Pragmatic Unit Testing
in C# with NUnit

This PDF file contains pages extracted from Pragmatic Unit Testing, one of

the Pragmatic Starter Kit series of books for project teams. For more

information, visit http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing).

This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and printer

versions; the content is otherwise identical.

Copyright c© 2003, 2004 The Pragmatic Programmers, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher.

Chapter 1

Introduction

There are lots of different kinds of testing that can and should

be performed on a software project. Some of this testing re-

quires extensive involvement from the end users; other forms

may require teams of dedicated Quality Assurance personnel

or other expensive resources.

But that’s not what we’re going to talk about here.

Instead, we’re talking about unit testing: an essential, if often

misunderstood, part of project and personal success. Unit

testing is a relatively inexpensive, easy way to produce better

code, faster.

Many organizations have grand intentions when it comes to

testing, but tend to test only toward the end of a project, when

the mounting schedule pressures cause testing to be curtailed

or eliminated entirely.

Many programmers feel that testing is just a nuisance: an

unwanted bother that merely distracts from the real business

at hand—cutting code.

Everyone agrees that more testing is needed, in the same way

that everyone agrees you should eat your broccoli, stop smok-

ing, get plenty of rest, and exercise regularly. That doesn’t

mean that any of us actually do these things, however.

But unit testing can be much more than these—while you

might consider it to be in the broccoli family, we’re here to tell

CODING WITH CONFIDENCE 2

you that it’s more like an awesome sauce that makes every-

thing taste better. Unit testing isn’t designed to achieve some

corporate quality initiative; it’s not a tool for the end-users,

or managers, or team leads. Unit testing is done by program-

mers, for programmers. It’s here for our benefit alone, to make

our lives easier.

Put simply, unit testing alone can mean the difference be-

tween your success and your failure. Consider the following

short story.

1.1 Coding With Confidence

Once upon a time—maybe it was last Tuesday—there were

two developers, Pat and Dale. They were both up against

the same deadline, which was rapidly approaching. Pat was

pumping out code pretty fast; developing class after class and

method after method, stopping every so often to make sure

that the code would compile.

Pat kept up this pace right until the night before the deadline,

when it would be time to demonstrate all this code. Pat ran

the top-level program, but didn’t get any output at all. Noth-

ing. Time to step through using the debugger. Hmm. That

can’t be right, thought Pat. There’s no way that this variable

could be zero by now. So Pat stepped back through the code,

trying to track down the history of this elusive problem.

It was getting late now. That bug was found and fixed, but Pat

found several more during the process. And still, there was

no output at all. Pat couldn’t understand why. It just didn’t

make any sense.

Dale, meanwhile, wasn’t churning out code nearly as fast.

Dale would write a new routine and a short test to go along

with it. Nothing fancy, just a simple test to see if the routine

just written actually did what it was supposed to do. It took a

little longer to think of the test, and write it, but Dale refused

to move on until the new routine could prove itself. Only then

would Dale move up and write the next routine that called it,

and so on.

Prepared exclusively for The ServerSide.net

WHAT IS UNIT TESTING? 3

Dale rarely used the debugger, if ever, and was somewhat puz-

zled at the picture of Pat, head in hands, muttering various

evil-sounding curses at the computer with wide, bloodshot

eyes staring at all those debugger windows.

The deadline came and went, and Pat didn’t make it. Dale’s

code was integrated and ran almost perfectly. One little glitch

came up, but it was pretty easy to see where the problem was.

Dale fixed it in just a few minutes.

Now comes the punch line: Dale and Pat are the same age,

and have roughly the same coding skills and mental prowess.

The only difference is that Dale believes very strongly in unit

testing, and tests every newly-crafted method before relying

on it or using it from other code.

Pat does not. Pat “knows” that the code should work as writ-

ten, and doesn’t bother to try it until most of the code has

been written. But by then it’s too late, and it becomes very

hard to try to locate the source of bugs, or even determine

what’s working and what’s not.

1.2 What is Unit Testing?

A unit test is a piece of code written by a developer that ex-

ercises a very small, specific area of functionality of the code

being tested. Usually a unit test exercises some particular

method in a particular context. For example, you might add

a large value to a sorted list, then confirm that this value ap-

pears at the end of the list. Or you might delete a pattern of

characters from a string and then confirm that they are gone.

Unit tests are performed to prove that a piece of code does

what the developer thinks it should do.

The question remains open as to whether that’s the right thing

to do according to the customer or end-user: that’s what ac-

ceptance testing is for. We’re not really concerned with formal

validation and verification or correctness just yet. We’re re-

ally not even interested in performance testing at this point.

All we want to do is prove that code does what we intended,

and so we want to test very small, very isolated pieces of func-

tionality. By building up confidence that the individual pieces

Prepared exclusively for The ServerSide.net

WHY SHOULD I BOTHER WITH UNIT TESTING? 4

work as expected, we can then proceed to assemble and test

working systems.

After all, if we aren’t sure the code is doing what we think,

then any other forms of testing may just be a waste of time.

You still need other forms of testing, and perhaps much more

formal testing depending on your environment. But testing,

as with charity, begins at home.

1.3 Why Should I Bother with Unit Testing?

Unit testing will make your life easier. It will make your de-

signs better and drastically reduce the amount of time you

spend debugging.

In our tale above, Pat got into trouble by assuming that lower-

level code worked, and then went on to use that in higher-level

code, which was in turn used by more code, and so on. With-

out legitimate confidence in any of the code, Pat was building

a “house of cards” of assumptions—one little nudge at the

bottom and the whole thing falls down.

When basic, low-level code isn’t reliable, the requisite fixes

don’t stay at the low level. You fix the low level problem, but

that impacts code at higher levels, which then need fixing,

and so on. Fixes begin to ripple throughout the code, getting

larger and more complicated as they go. The house of cards

falls down, taking the project with it.

Pat keeps saying things like “that’s impossible” or “I don’t un-

derstand how that could happen.” If you find yourself think-

ing these sorts of thoughts, then that’s usually a good indica-

tion that you don’t have enough confidence in your code—you

don’t know for sure what’s working and what’s not.

In order to gain the kind of code confidence that Dale has,

you’ll need to ask the code itself what it is doing, and check

that the result is what you expect it to be.

That simple idea describes the heart of unit testing: the single

most effective technique to better coding.

Prepared exclusively for The ServerSide.net

WHAT DO I WANT TO ACCOMPLISH? 5

1.4 What Do I Want to Accomplish?

It’s easy to get carried away with unit testing because it’s so

much fun, but at the end of the day we still need to produce

production code for customers and end-users, so let’s be clear

about our goals for unit testing. First and foremost, you want

to do this to make your life—and the lives of your teammates—

easier.

Does It Do What I Want?

Fundamentally, you want to answer the question: “Is the code

fulfilling my intent?” The code might well be doing the wrong

thing as far as the requirements are concerned, but that’s a

separate exercise. You want the code to prove to you that it’s

doing exactly what you think it should.

Does It Do What I Want All of the Time?

Many developers who claim they do testing only ever write one

test. That’s the test that goes right down the middle, taking

the “one right path” through the code where everything goes

perfectly.

But of course, life is rarely that cooperative, and things don’t

always go perfectly: exceptions get thrown, disks get full,

network lines drop, buffers overflow, and—heaven forbid—we

write bugs. That’s the “engineering” part of software develop-

ment. Civil engineers must consider the load on bridges, the

effects of high winds, of earthquakes, floods, and so on. Elec-

trical engineers plan on frequency drift, voltage spikes, noise,

even problems with parts availability.

You don’t test a bridge by driving a single car over it right

down the middle lane on a clear, calm day. That’s not suffi-

cient. Similarly, beyond ensuring that the code does what you

want, you need to ensure that the code does what you want

all of the time, even when the winds are high, the parameters

are suspect, the disk is full, and the network is sluggish.

Prepared exclusively for The ServerSide.net

WHAT DO I WANT TO ACCOMPLISH? 6

Can I Depend On It?

Code that you can’t depend on is useless. Worse, code that

you think you can depend on (but turns out to have bugs) can

cost you a lot of time to track down and debug. There are

very few projects that can afford to waste time, so you want to

avoid that “one step forward two steps back” approach at all

costs, and stick to moving forward.

No one writes perfect code, and that’s okay—as long as you

know where the problems exist. Many of the most spectacu-

lar software failures that strand broken spacecraft on distant

planets or blow them up in mid-flight could have been avoided

simply by knowing the limitations of the software. For in-

stance, the Arianne 5 rocket software re-used a library from

an older rocket that simply couldn’t handle the larger num-

bers of the higher-flying new rocket.1 It exploded 40 seconds

into flight, taking $500 million dollars with it into oblivion.

We want to be able to depend on the code we write, and know

for certain both its strengths and its limitations.

For example, suppose you’ve written a routine to reverse a

list of numbers. As part of testing, you give it an empty list—

and the code blows up. The requirements don’t say you have

to accept an empty list, so maybe you simply document that

fact in the comment block for the method and throw an ex-

ception if the routine is called with an empty list. Now you

know the limitations of code right away, instead of finding out

the hard way (often somewhere inconvenient, such as in the

upper atmosphere).

Does it Document my Intent?

One nice side-effect of unit testing is that it helps you commu-

nicate the code’s intended use. In effect, a unit test behaves as

executable documentation, showing how you expect the code

to behave under the various conditions you’ve considered.

1For aviation geeks: The numeric overflow was due to a much larger “hor-

izontal bias” due to a different trajectory that increased the horizontal velocity

of the rocket.

Prepared exclusively for The ServerSide.net

HOW DO I DO UNIT TESTING? 7

Team members can look at the tests for examples of how to

use your code. If someone comes across a test case that you

haven’t considered, they’ll be alerted quickly to that fact.

And of course, executable documentation has the benefit of

being correct. Unlike written documentation, it won’t drift

away from the code (unless, of course, you stop running the

tests).

1.5 How Do I Do Unit Testing?

Unit testing is basically an easy practice to adopt, but there

are some guidelines and common steps that you can follow to

make it easier and more effective.

The first step is to decide how to test the method in question—

before writing the code itself. With at least a rough idea of how

to proceed, you proceed to write the test code itself, either

before or concurrently with the implementation code.

Next, you run the test itself, and probably all the other tests

in that part of the system, or even the entire system’s tests

if that can be done relatively quickly. It’s important that all

the tests pass, not just the new one. You want to avoid any

collateral damage as well as any immediate bugs.

Every test needs to determine whether it passed or not—it

doesn’t count if you or some other hapless human has to read

through a pile of output and decide whether the code worked

or not. You want to get into the habit of looking at the test

results and telling at a glance whether it all worked. We’ll talk

more about that when we go over the specifics of using unit

testing frameworks.

1.6 Excuses For Not Testing

Despite our rational and impassioned pleas, some developers

will still nod their heads and agree with the need for unit test-

ing, but will steadfastly assure us that they couldn’t possibly

do this sort of testing for one of a variety of reasons. Here are

some of the most popular excuses we’ve heard, along with our

rebuttals.

Prepared exclusively for The ServerSide.net

EXCUSES FOR NOT TESTING 8

Joe Asks. . .

What’s collateral damage?

Collateral damage is what happens when a new fea-
ture or a bug fix in one part of the system causes a
bug (damage) to another, possibly unrelated part of
the system. It’s an insidious problem that, if allowed to
continue, can quickly render the entire system broken
beyond anyone’s ability to fix.

We sometime call this the “Whac-a-Mole” effect. In
the carnival game of Whac-a-Mole, the player must
strike the mechanical mole heads that pop up on the
playing field. But they don’t keep their heads up for
long; as soon as you move to strike one mole, it re-
treats and another mole pops up on the opposite side
of the field. The moles pop up and down fast enough
that it can be very frustrating to try to connect with
one and score. As a result, players generally flail help-
lessly at the field as the moles continue to pop up
where you least expect them.

Widespread collateral damage to a code base can
have a similar effect.

It takes too much time to write the tests This is the num-

ber one complaint voiced by most newcomers to unit testing.

It’s untrue, of course, but to see why we need to take a closer

look at where you spend your time when developing code.

Many people view testing of any sort as something that hap-

pens toward the end of a project. And yes, if you wait to begin

unit testing until then it will definitely take too long. In fact,

you may not finish the job until the heat death of the universe

itself.

At least it will feel that way: it’s like trying to clear a couple of

acres of land with a lawn mower. If you start early on when

there’s just a field of grasses, the job is easy. If you wait

until later, when the field contains thick, gnarled trees and

dense, tangled undergrowth, then the job becomes impossibly

difficult.

Prepared exclusively for The ServerSide.net

EXCUSES FOR NOT TESTING 9

P
ro

d
u

c
ti

v
it

y
→

P
ro

d
u

c
ti

v
it

y
→

Time → Time →

PAY-AS-YOU-GO SINGLE TEST PHASE

Figure 1.1: COMPARISON OF PAYING-AS-YOU-GO VS. HAVING A

SINGLE TESTING PHASE

Instead of waiting until the end, it’s far cheaper in the long

run to adopt the “pay-as-you-go” model. By writing individual

tests with the code itself as you go along, there’s no crunch

at the end, and you experience fewer overall bugs as you are

generally always working with tested code. By taking a little

extra time all the time, you minimize the risk of needing a

huge amount of time at the end.

You see, the trade-off is not “test now” versus “test later.” It’s

linear work now versus exponential work and complexity try-

ing to fix and rework at the end: not only is the job larger

and more complex, but now you have to re-learn the code you

wrote some weeks or months ago. All that extra work kills

your productivity, as shown in Figure 1.1.

Notice that testing isn’t free. In the pay-as-you-go model,

the effort is not zero; it will cost you some amount of effort

(and time and money). But look at the frightening direction

the right-hand curve takes over time—straight down. Your

productivity might even become negative. These productivity

losses can easily doom a project.

So if you think you don’t have time to write tests in addition to

the code you’re already writing, consider the following ques-

tions:

Prepared exclusively for The ServerSide.net

EXCUSES FOR NOT TESTING 10

1. How much time do you spend debugging code that you

or others have written?

2. How much time do you spend reworking code that you

thought was working, but turned out to have major, crip-

pling bugs?

3. How much time do you spend isolating a reported bug to

its source?

For most people who work without unit tests, these numbers

add up fast, and will continue to add up even faster over the

life of the project. Proper unit testing dramatically reduces

these times, which frees up enough time so that you’ll have

the opportunity to write all of the unit tests you want—and

maybe even some free time to spare.

It takes too long to run the tests It shouldn’t. Most unit

tests should execute extremely quickly, so you should be able

to run hundreds, even thousands of them in a matter of a

few seconds. But sometimes that won’t be possible, and you

may end up with certain tests that simply take too long to

conveniently run all of the time.

In that case, you’ll want to separate out the longer-running

tests from the short ones. Only run the long tests once a day,

or once every few days as appropriate, and run the shorter

tests constantly.

It’s not my job to test my code Now here’s an interesting

excuse. Pray tell, what is your job, exactly? Presumably your

job, at least in part, is to create working code. If you are

throwing code over the wall to some testing group without any

assurance that it’s working, then you’re not doing your job.

It’s not polite to expect others to clean up our own messes,

and in extreme cases submitting large volumes of buggy code

can become a “career limiting” move.

On the other hand, if the testers or QA group find it very

difficult to find fault with your code, your reputation will grow

rapidly—along with your job security!

Prepared exclusively for The ServerSide.net

EXCUSES FOR NOT TESTING 11

I don’t really know how the code is supposed to behave so

I can’t test it If you truly don’t know how the code is sup-

posed to behave, then maybe this isn’t the time to be writing

it. Maybe a prototype would be more appropriate as a first

step to help clarify the requirements.

If you don’t know what the code is supposed to do, then how

will you know that it does it?

But it compiles! Okay, no one really comes out with this as

an excuse, at least not out loud. But it’s easy to get lulled

into thinking that a successful compile is somehow a mark of

approval, that you’ve passed some threshold of goodness.

But the compiler’s blessing is a pretty shallow compliment. It

can verify that your syntax is correct, but it can’t figure out

what your code should do. For example, the C# compiler can

easily determine that this line is wrong:

statuc void Main() {

It’s just a simple typo, and should be static, not statuc.

That’s the easy part. But now suppose you’ve written the

following:

public void Addit(Object anObject) {

List myList = new List();

myList.Add(anObject);

myList.Add(anObject);

// more code...

} M
a

in
.c

s

Did you really mean to add the same object to the same list

twice? Maybe, maybe not. The compiler can’t tell the differ-

ence, only you know what you’ve intended the code to do.2

I’m being paid to write code, not to write tests By that

same logic, you’re not being paid to spend all day in the de-

bugger, either. Presumably you are being paid to write work-

ing code, and unit tests are merely a tool toward that end, in

the same fashion as an editor, an IDE, or the compiler.

2Automated testing tools that generate their own tests based on your ex-

isting code fall into this same trap—they can only use what you wrote, not

what you meant.

Prepared exclusively for The ServerSide.net

ROADMAP 12

I feel guilty about putting testers and QA staff out of work

Not to worry, you won’t. Remember we’re only talking about

unit testing, here. It’s the barest-bones, lowest-level testing

that’s designed for us, the programmers. There’s plenty of

other work to be done in the way of functional testing, accep-

tance testing, performance and environmental testing, valida-

tion and verification, formal analysis, and so on.

My company won’t let me run unit tests on the live sys-

tem Whoa! We’re talking about developer unit-testing here.

While you might be able to run those same tests in other con-

texts (on the live, production system, for instance) they are no

longer unit tests. Run your unit tests on your machine, using

your own database, or using a mock object (see Chapter 6).

If the QA department or other testing staff want to run these

tests in a production or staging environment, you might be

able to coordinate the technical details with them so they can,

but realize that they are no longer unit tests in that context.

1.7 Roadmap

Chapter 2, Your First Unit Tests, contains an overview of test

writing. From there we’ll take a look at the specifics of Writing

Tests in NUnit in Chapter 3. We’ll then spend a few chapters

on how you come up with what things need testing, and how

to test them.

Next we’ll look at the important properties of good tests in

Chapter 7. We then talk about what you need to do to use

testing effectively in your project in Chapter 8. This chap-

ter also discusses how to handle existing projects with lots

of legacy code. Chapter 9, Design Issues. then looks at how

testing can influence your application’s design (for the better).

The appendices contain additional useful information: a look

at common unit testing problems, a note on installing NUnit,

and a list of resources including the bibliography. We finish

off with a summary card containing highlights of the book’s

tips and suggestions.

So sit back, relax, and welcome to the world of better coding.

Prepared exclusively for The ServerSide.net

