
133

5
Kerberos

This chapter focuses on the Kerberos authentication protocol, the default
authentication protocol of Windows Server 2003. We will look at how the
protocol is works, how it has been implemented in Windows Server 2003,
and some advanced Kerberos topics.

5.1 Introducing Kerberos

In Greek mythology Kerberos is a three-headed dog guarding the entrance
to the underworld. In the context of this book Kerberos refers to the
authentication protocol developed as part of the MIT Athena project.1

Microsoft introduced Kerberos as the new default authentication proto-
col for enterprise environments in Windows 2000. Every Windows 2000,
Windows XP, and Windows Server 2003 OS platform includes a client Ker-
beros authentication provider. Neither Windows 2000 nor Windows Server
2003 includes Kerberos support for other legacy Microsoft platforms. Your
NT4, Windows 95 or 98 clients will not be able to authenticate using Ker-
beros—you’ll need to upgrade these workstations to either Windows 2000
Professional or Windows XP. In the early days of Windows 2000, Microsoft
promised to include Kerberos support for Windows 95 and 98 in the
“Directory Services Client” (dsclient.exe), an add-on for Windows 95 and
98 that can be found on the Windows 2000 Server CD.

A little more about the dog’s three heads: They stand for authentication,
authorization, and auditing. The basic Kerberos protocol (Version 5, as
defined in RFC 1510) only deals with authentication. Microsoft’s imple-
mentation of the protocol also includes extensions for authorization. So far,

1. More historical information on the MIT Athena project is available from the following URL: http://www-tech.mit.edu/
V119/N19/history_of_athe.19f.html.

134 5.1 Introducing Kerberos

no Kerberos implementation covers auditing. Kerberos can also offer more
than the three A’s: Later in this chapter we will explain how one of the secret
keys exchanged during the Kerberos authentication sequence can be used
for packet authentication, integrity, and confidentiality services.

Another analogy to the dog’s three heads is the number of basic entities
the Kerberos protocol is dealing with. There are always three: two entities
that want to authenticate to one another (e.g., a user and a resource server)
and an entity that mediates between the two, a trusted third party, or, in
Kerberos terminology, the key distribution center (KDC).

5.1.1 Kerberos advantages

In this section, we will explain the key differences between the NTLM and
the Kerberos authentication protocols and the advantages that Kerberos
brings to the Windows 2000, Windows XP, and Windows Server 2003
operating systems and their users. Many of the terms used in this section
will be explained in greater detail later on in this chapter.

Faster authentication

The Kerberos protocol uses a unique ticketing system that provides faster
authentication:

Every authenticated domain entity can request tickets from its local
Kerberos KDC to access other domain resources.

The tickets are considered as access permits by the resource servers.

The ticket can be used more then once and can be cached on the cli-
ent side.

When a resource server or the KDC gets a Kerberos ticket and a Ker-
beros authenticator from the client, the server has enough information to
authenticate the client. The NTLM authentication protocol requires
resource servers that are not domain controllers, to contact a domain con-
toller in order to validate a user’s authentication request (this process is
known as pass-through authentication). Thanks to its ticketing system,
Kerberos does not need pass-through authentication. This is why Kerberos
accelerates the authentication process. A downside to the ticketing system is
that it puts a greater workload on the client. On the other hand, it offloads
the resource servers; they must not bother about pass-through authentica-
tion anymore.

5.1 Introducing Kerberos 135

Chapter 5

Mutual authentication

Kerberos supports mutual authentication. This means that the client
authenticates to the service that is responsible for the resource and that the
service also authenticates to the client. This is a big difference from NTLM.
The NTLM challenge-response provides only client authentication: The
server challenges the client, the client calculates a response, and the server
validates that response. Using NTLM, users might provide their credentials
to a bogus server.

Kerberos is an open standard

Microsoft based its Kerberos implementation on the standard defined in RFC
1510 (this is Kerberos Version 5). This is why Kerberos can provide single
sign-on (SSO) between Windows Server 2003 and other OSs supporting an
RFC 1510-based Kerberos implementation. RFC 1510 can be dowloaded
from the Internet Engineering Task Force (IETF) at http://www.ietf.org.

Over the past years, Microsoft has been actively involved in the Ker-
beros standardization process. Microsoft software engineers participated
in the creation of several Kerberos-related Internet drafts (see also http://
www.ietf.org).

Support for authentication delegation

Authentication delegation can be looked at as the next step after imperson-
ation: Thanks to impersonation, a service can access local resources on
behalf of a user; thanks to delegation, a service can access remote resources
on behalf of a user. What delegation really means is that user A can give
rights to an intermediary machine B to authenticate to an application server
C as if machine B was user A. This means that application server C will base
its authorization decisions on user A’s identity rather than on machine B’s
account. Delegation is also known as authentication forwarding. In Ker-
beros terminology this basically means that user A forwards a ticket to
intermediary machine B, and that machine B then uses user A’s ticket to
authenticate to application server C.

You can use delegation for authentication in multitier applications; an
example of such an application is database access using a Web front end. In
such a setup the browser, the Web server, and the database server are all run-
ning on different machines. In a multitier application, authentication hap-
pens on different tiers. In such application if you want to set authorization
on the database using the user’s identity, you should be capable of using the

136 5.1 Introducing Kerberos

user’s identity for authentication both on the web server and the database
server. This is impossible if you use NTLM for authentication on every
link, simply because NTLM does not support delegation. We will come
back to delegation in greater detail later on in this chapter.

Support for the smart card logon feature

Through the Kerberos PKINIT extension, both Windows 2000 and Win-
dows Server 2003 include support for the smart card logon feature. The
smart card logon feature provides much stronger authentication than the
password logon feature does because it relies on a two-factor authentication:
To log on, a user needs to possess a smart card and know its PIN code. The
smart card logon feature also offers other security advantages; for example,
it can block Trojan horse attacks that try to grab a user’s password from the
system memory.

Table 5.1 Kerberos–NTLM Comparison

NTLM Kerberos

Cryptographic
technology

Symmetric cryptography Basic Kerberos: symmetric cryptography

Kerberos PKINIT: symmetric and asymmetric
cryptography

Trusted third
party

Domain controller Basic Kerberos: domain controller with KDC
service

Kerberos PKINIT: domain controller with
KDC service and Enterprise CA

Microsoft-
supported
platforms

Windows 95, Windows 98, Windows ME,
Windows NT4, Windows 2000, Windows XP,
and Windows Server 2003

Windows 2000, Windows XP, and Windows
Server 2003*

* Remember from the previous chapter that Kerberos can only be used for domain logon to a Windows 2000 or Win-
dows Server 2003 domain.

Features Slower authentication because of pass-through
authentication

Faster authentication because of unique ticket-
ing system

No mutual authentication Mutual authentication

No support for delegation of authentication Support for delegation of authentication

No support for smart card logon feature Support for smart card logon feature

Proprietary Microsoft authentication protocol Open standard

No protection for authorization data carried in
NTLM messages†

† This was the case for NTLM version 1; this problem has been resolved in NTLM version 2.

Cryptographic protection for authorization
data carried in Kerberos tickets

5.2 Kerberos: The basic protocol 137

Chapter 5

5.1.2 Comparing Kerberos to NTLM

Table 5.1 compares Kerberos, the default authentication protocol of Win-
dows 2000 and Windows Server 2003, to NTLM, the default authentica-
tion protocol of NT4. It also lists the main features of both protocols
introduced in the previous sections.

5.2 Kerberos: The basic protocol

The following sections explain the basic Kerberos protocol as it is defined in
RFC 1510. Those not familiar with Kerberos may be bewildered by the
need for numerous diverse keys to be transmitted around the network. In
order to break down the complexity of the protocol, we will approach it in
five steps:

Step 1: Kerberos authentication is based on symmetric key cryptogra-
phy.

Step 2: The Kerberos KDC provides scalability.

Step 3: A Kerberos ticket provides secure transport of a session key.

Step 4: The Kerberos KDC distributes the session key by sending it
to the client.

Step 5: The Kerberos Ticket Granting Ticket limits the use of the
entities’ master keys.

Before starting to explore how Kerberos works, we must explain the
notations that will be used in the illustrations:

The u stands for user, s stands for resource server, and k stands for
KDC.

S stands for session key; Sus means the session key shared between the
user and the resource server.

M stands for master key; Mu is the master key of the user.

Drawing (1) in Figure 5.1 represents the session key shared between
the user and resource server.

Figure 5.1
Session keys and
encrypted session

keys.

SSusus

(3)

SSusus

(2)(1)

MMuu

SSusus

138 5.2 Kerberos: The basic protocol

Drawing (2) represents the same session key, but this time encrypted.

Drawing (3) represents the same session key, encrypted using the
master key of the user.

To ease reading we will talk about a “client,” Alice, and a “resource
server” that authenticates using Kerberos. The identities used in this Ker-
beros authentication exchange are Alice’s SID and the SID of the service
account that is used by the application or the service responsible for the
resource. To be fully correct we should talk about the “service account of
the service,” but this would not promote ease of reading. Also, when we
talk about Alice, we really mean the LSA on Alice’s machine impersonat-
ing Alice and acting on her behalf. From now on, the following words are
synonyms: principal and security principal and entity, and domain and
realm.

5.2.1 Kerberos design assumptions

Before diving into the nuts and bolts of the protocol, let’s have a quick look
at some of the design assumptions the Kerberos designers at MIT took. It is
very important to keep these assumptions in mind as we run through the
Kerberos internals.

Kerberos always deals with three entities: users, servers, and a set of
security servers that mediate between the users and the servers for
authentication.

Time is trusted. This is because Kerberos uses timestamps to protect
against replay attacks.

The user trusts its workstation completely. This is because Kerberos
caches authentication tokens on the client side.

The security server must be online all the time. Kerberos requires the
availability of the security server in order to generate new Kerberos
security tokens.

The servers are stateless. Kerberos wants to limit the amount of secu-
rity principal–related information that is kept on the server side.

Users’ password time on user machine must be minimized. Kerberos
looks at a user password as a weak secret—it should be protected the
best possible. One of the ways to do this is to limit its time on the
user workstation. Another way is to create a key hierarchy.

5.2 Kerberos: The basic protocol 139

Chapter 5

5.2.2 Step 1: Kerberos authentication is based on
symmetric key cryptography

To authenticate entities Kerberos uses symmetric key cryptography.2 In
symmetric key cryptography the communicating entities use the same key
for both encryption and decryption. The basic mathematical formula
behind this process is the following:

DK(EK(M)) = M

If the encryption (E) and decryption (D) processes are both using the
same key K, the decryption of the encrypted text (M) results in the readable
text (M).

This is what happens when Alice wants to authenticate to a resource
server using a symmetric key cipher (illustrated in Figure 5.2):

Alice encrypts her name and the current timestamp using a symmet-
ric key.

The encrypted message and Alice’s name are sent to the resource
server.

The resource server decrypts the message.

The resource server checks Alice’s name and the timestamp (this is
the result of the decryption process). If they are okay, Alice is authen-
ticated to the server.

Why does this process authenticate Alice to the resource server? If the
resource server can successfully decrypt the message, this means if the
decryption process results in Alice’s name and an acceptable timestamp, the
resource server knows that only Alice could have encrypted this information,

Figure 5.2
Kerberos

authentication is
based on symmetric

key cryptography.

2. When the Kerberos design was started, public key cryptography was still patented (by RSA). This explains why the default
Kerberos protocol (as defined in RFC 1510) relies on symmetric key cryptography.

Alice

““Alice” + TimestampAlice” + Timestamp ““Alice” + TimestampAlice” + Timestamp

Secret Channel

Session Key
SSusus

Resource Serve

140 5.2 Kerberos: The basic protocol

because she is the only one, besides the resource server, who also knows the
symmetric key. In this context acceptable means the following: Upon
receipt of Alice’s encrypted packet, the resource server will compare the
timestamp in Alice’s packet against the local time. If the time skew between
these two timestamps is too big, the resource server will reject the authenti-
cation attempt, because a hacker could have replayed Alice’s original
authentication packet.

In this explanation you may have noticed the differences and similarities
with the NTLM authentication protocol. Both Kerberos and NTLM use
symmetric cryptography for authentication: “If you can prove you know
your secret key, I believe you are who you say you are.” In NTLM the
knowledge of the secret key is proven using a challenge-response mecha-
nism. Kerberos uses symmetric encryption of the timestamp and the user’s
name to do the same thing.

The encrypted packet containing Alice’s name and the timestamp is
known in Kerberos as the authenticator, and the symmetric key is called a
session key. A session key exists between all Kerberos principals that want to
authenticate to each other.

A critical element in this exchange is the timestamp: It provides “authen-
ticator uniqueness” and protects against replay attacks. Without the authen-
ticator, a hacker could grab a ticket off the network and use it to
impersonate Alice to a resource server. The timestamp explains the time
sensitivity of the Kerberos protocol and of Windows 2000 and Windows
Server 2003.

Remember from the introduction that Kerberos can provide “mutual”
authentication: To provide this the Kerberos protocol includes an addi-
tional exchange that authenticates the server to the client. In this example,
it means that, in turn, the server will encrypt its name and the current
timestamp and send it to Alice.

A big problem when using a symmetric protocol is the secure distribu-
tion of the secret key. The secret key is generated at one side of the commu-
nication channel and should be sent to the other side of the communication
channel in a secure way. Secure means that the confidentiality and integrity
of the key should be protected. If anybody could read the secret key when it
is sent across the network, the whole authentication system becomes worth-
less: The secrecy of the secret key is a vital part of a symmetric cipher.

Steps 2, 3, and 4 explain how the Kerberos developers have resolved the
problem of secure session key distribution.

5.2 Kerberos: The basic protocol 141

Chapter 5

5.2.3 Step 2: The Kerberos KDC provides scalability

The Kerberos protocol always deals with three entities: two entities that
want to authenticate to one another and one entity that mediates between
these two entities for authentication: the key distribution center (KDC).
Why do we need a KDC?

Suppose that Alice is part of a workgroup consisting of five entities that
all want to authenticate to one another using symmetric key cryptography.
Because every entity needs to share a secret key with every other entity, we
will need 10 keys. The mathematical formula behind this is n (n – 1)/2. In
a 50,000-employee company we would need about 1.5 billion keys. Not
only would we have to deal with an enormous amount of keys, but there
would also be an enormous amount of small authentication databases: On
every client there would be one, containing all the secret keys of the entities
with which the client wants to authenticate. This solution is clearly not
scalable to the level of a big environment. Imagine having to use such a
solution on the Internet.

To make Kerberos more scalable, the Kerberos developers included the
concept of a KDC. KDC is a trusted third party with which every entity
shares a secret key: This key is called the entity’s master key. All entities trust
the KDC to mediate in their mutual authentication. The KDC also main-
tains a centralized authentication database containing a copy of every user’s
master key.

Figure 5.3
A KDC provides

scalability.

10 keys10 keys 5 keys5 keys

KDC

142 5.2 Kerberos: The basic protocol

In Windows Server 2003 the KDC is a service that is installed on every
domain controller as part of the dcpromo Active Directory installation pro-
cess. Every Windows Server 2003 domain controller runs a KDC service3 and
hosts an Active Directory (AD) instance, the central authentication database.4

As a consequence, a domain with multiple domain controllers provides fault
tolerance for the authentication process and the authentication database. If
one DC is down, another one can automatically take over. Also, the AD
authentication database is replicated between domain controllers.

The concept of a master key is not new to Windows 2000, Windows
Server 2003, and Kerberos: It already existed in NT4 and earlier Windows
versions. In Windows the master key is derived from a security principal’s
password.

The password is a secret key that is shared between each individual secu-
rity principal and the central authentication authority (in the Kerberos case
the KDC). Both the entity and the KDC must know the master key before
the actual Kerberos authentication process can take place. For obvious secu-
rity reasons, the AD never stores the plain password but a hashed version
(the hash algorithm used is MD4).

An entity’s master key is generated as part of the domain enrollment
process (e.g, when the administrator enrolls the user and enters a password).
A machine’s master key is derived from the machine password that is auto-
matically created when an administrator joins the machine into a domain.

5.2.4 Step 3: The ticket provides secure transport of
the session key

Figure 5.4 shows the three basic entities with which the Kerberos protocol
deals: a client (Alice), a resource server, and a KDC. Figure 5.4 also shows
the master keys that are shared between the entities participating in the
authentication process and the KDC.

Remember that in the first step we talked about the problem of distrib-
uting the secret key (the session key) when dealing with symmetric key
ciphers. This section explains how Kerberos resolves this problem. It makes

3. The KDC itself is made of two subservices: the Authentication Service (AS) and the Ticket Granting Service (TGS); in
other Kerberos implementations these two subservices can run on different machines, but this is not possible in Windows
2000 and Windows Server 2003.

4. On an interesting note, a standard Kerberos domain is made up of a master KDC and one or more slave KDCs. The mas-
ter KDC is collocated with a read-write copy of the authentication database (single-master model). In Windows 2000 and
Windows Server 2003 every KDC server hosts a read-write copy of the domain portion of the Active Directory (multi-
master model).

5.2 Kerberos: The basic protocol 143

Chapter 5

the link between the session key and the master key (introduced in step 2)
and explains why we really need a master key in the Kerberos protocol.

In Section 5.2.3, we explained that every entity shares a master key with
the KDC. We also said that all entities trust the KDC to mediate in their
mutual authentication. Trust in this context also means that every entity
trusts the KDC to generate session keys. In the scenario shown in Figure
5.4, the resource server would never trust Alice to generate session keys,
because Alice has not authenticated yet to the resource server (the other way
around would not work either).

So far, so good. Alice needs to authenticate to the resource server and
requests a session key from the KDC. The KDC will generate the session
key5 and distribute it to both entities. After the KDC has generated the ses-
sion key, it must communicate it to both Alice and the resource server. To
secure the transport of the session key to a particular entity, Kerberos
encrypts it with the master key of that entity.

Because there are two entities, Alice and the resource server, two
encrypted versions of the session key must be generated:

One encrypted with Alice’s master key

One encrypted with the master key of the resource server

In Kerberos terminology, the session key encrypted with the resource
server’s master key is known as a “ticket.” A Kerberos ticket provides a way
to transport a Kerberos session key securely across the network. Only the

Figure 5.4
Kerberos entities
and master key

concept.

5. The security quality of the session key depends on the quality of the random number generator used to generate the ses-
sion key.

KDC = AS + TGSAlice

Resource Server

Windows Server
2003

Domain Controller

Server’s Master Key

MMss

User’s Master Key
MMuu

Session Key

SSusus
Encrypt

Encrypted
Session Key

SSusus

144 5.2 Kerberos: The basic protocol

destination resource server and a Windows Server 2003 domain controller
can decrypt it.

By securing the transport of the session key using the master key, Ker-
beros creates what is known as a key hierarchy. Figure 5.5 shows the Win-
dows Server 2003 key hierarchy, which consists of:

The session key (or short-term key): A session key is a secret key that is
shared between two entities for authentication purposes. The session
key is generated by the KDC. Because it is a critical part of the Ker-
beros authentication protocol, it is never sent in the clear over a com-
munication channel: It is encrypted using the master key.

The master key (or long-term key): The master key is a secret key that is
shared between each entity and the KDC. It must be known to both
the entity and the KDC before the actual Kerberos protocol commu-
nication can take place. The master key is generated as part of the
domain enrollment process and is derived from a user, a machine, or
a service’s password. The transport of the master key over a commu-
nication channel is secured using a secure channel.

The secure channel: When Windows is using a secure channel, it is
using a master key to secure the transport of another master key. The
following example illustrates the secure channel concept. When you
create a new user, the user’s password will be sent to the domain con-
troller using a secure channel. The secure channel is in this case made
up of the master key shared between the workstation you’re working
on and the domain controller. In other words, the master key is
derived from the workstation’s machine account password. The con-
cept of a secure channel was also explained in Chapter 2.

In this key hierarchy the following are also true:

Higher-level keys protect lower-level keys.

Figure 5.5
Windows Server

2003 key hierarchy.

Session Key

Master Key

Secure
Channel

ProtectionProtection LifetimeLifetime

5.2 Kerberos: The basic protocol 145

Chapter 5

Higher-level keying material has a longer lifetime than lower-level
keying material.

Lower-level keying material is used more frequently for sending
encrypted packets across the network. As a consequence, there is a
higher risk for brute-force attacks on these packets. In other words,
the associated keys should be changed more often.

5.2.5 Step 4: The KDC distributes the session key by
sending it to the client

The KDC can distribute the encrypted session keys to Alice and the
resource server in two ways:

Method 1: The KDC could send it directly to both Alice and the
resource server (as shown in Figure 5.6).

Method 2: The KDC could send the two encrypted session keys to
Alice. Alice could then send out the resource server’s encrypted copy
of the session key later on in the Kerberos authentication sequence (as
shown in Figure 5.7).

The first method has the following disadvantages:

The resource server has to cache all the session keys: one session key
for each client that wants to access a resource on the server. This
would impose a huge security risk on the server side.

Synchronization problems could occur: The client could already be
using the session key, while the resource server has not even received
its copy yet.

Figure 5.6
Kerberos ticket

distribution
Method 1.

KDC = AS + TGS

Alice

SSusus

MMuu

SSusus

MMss MMuu MMss

Resource Server

MMuu

Windows Server
2003

Domain Controller

MMss

146 5.2 Kerberos: The basic protocol

Because of the disadvantages associated with Method 1, Kerberos uses
the alternative explained next as Method 2 (see Figure 5.7):

Both the encrypted session keys (the one for Alice, encrypted with
Alice’s master key, and the one for the resource server, encrypted with
the resource server’s master key) are sent to Alice.

Alice can decrypt the packet encrypted with her master key and get
out the session key. Alice’s system can now cache both Alice’s copy of
the session key and the server’s copy of the session key (contained in
the ticket).

When Alice needs to authenticate to the resource server, the client
will send out the server’s copy of the session key.

The key advantage of Method 2 lies in its unique caching architecture:
Alice’s machine can cache tickets and reuse them. Also, it takes away the
need for the server to cache the tickets: It receives them from the clients as
needed. This architecture makes the Kerberos protocol stateless on the
server side. This has obvious advantages if you want to implement a load
balancing or redundancy solution on the server side: There is no need to
bother about keeping the session keys synchronized between the different
domain controllers.

On the client side, tickets are kept in a special system memory area,
which is never paged to disk. The reuse of the cached tickets is limited
because of a ticket’s limited lifetime and renewal time. Windows 2000, XP,
and Windows Server 2003 maintain a ticket cache for every security princi-
pal logon session. The ticket cache is purged when the logon session ends.
The cache is preserved and written to disk when a system goes into hiberna-
tion mode.

Figure 5.7
Kerberos ticket

distribution
Method 2.

KDC = AS + TGS

Alice

Resource Server

MMuu

SSusus

MMuu

SSusus

MMss

MMuu MMss

MMss

Windows Server
2003

Domain Controller

5.2 Kerberos: The basic protocol 147

Chapter 5

5.2.6 Step 5: The Ticket Granting Ticket limits the use
of the master keys

There is yet another important weakness in the protocol that we have not
addressed so far: The session key that is sent back from the KDC to Alice is
encrypted using Alice’s master key (as shown in Figure 5.8). This encrypted
packet is sent over the network every time Alice needs a session key to
authenticate to a resource server. This means that every time there is an
opportunity for hackers to intercept the encrypted packet and to perform—
possibly offline—a brute-force attack on the encrypted packet and derive
the user’s master key.

In a brute-force attack, a hacker tries to guess the key that was used to
encrypt a packet by trying out all the possible keys and looking at the result.
Such attacks are not unrealistic: Remember some of the tools that were
mentioned in Chapter 2 (L0phtcrack, John the Ripper…) to do brute-force
attacks on the SAM or AD database or on the authentication packets sent
across the network?

There is clearly a need here for a strong6 secret to replace Alice’s master
key: This will be the role of the session key that is shared between each entity
and the KDC. This session key will replace Alice’s password, and it will be
used to authenticate Alice to the KDC after the initial authentication.7

Figure 5.8
The use of the

master key.

6. Strong means less susceptible to brute-force attacks. To resist these attacks there are two possibilities: (1) Use longer
keys—longer keys create bigger key spaces and make it more difficult to guess the right key; (2) change the keys more
often—this limits the chance for brute-force attacks. In other words, limit the lifetime of the keys; this principle is often
referred to as perfect forward secrecy (PFS). The Kerberos developers have chosen the latter solution.

7. There are also other reasons why the concept of a session key shared between every Kerberos entity and the KDC is impor-
tant: it allows for the KDC’s AS and TGS services to be hosted on different machines (this cannot be done in Windows, but
is often done in UNIX Kerberos implementations), and it enables cross-domain authentication referrals (explained later).

KDC = AS + TGS

SSusus

MMuu

SSusus

MMss MMuu MMssMMkk

Alice

Windows Server
2003

Domain Controller

148 5.2 Kerberos: The basic protocol

Although it has an identical function (authentication), the session key
introduced in this step is not the same as the one used in the previous sec-
tions. This session key is shared between Alice and the KDC, and the other
session key is shared between Alice and the resource server.

Just like Alice’s master key, both Alice and the KDC must know this ses-
sion key. To securely transport this session key, we will use the same mecha-
nism as the one described in steps 3 and 4:

Step 3: Kerberos uses a ticket to provide secure transport of the ses-
sion key. The special ticket used here is known as the Ticket Granting
Ticket (TGT).

Step 4: Kerberos distributes the tickets by sending them out via Alice.
The KDC sends the TGT to Alice; Alice caches the TGT and can
send it to the KDC when needed. Again, there is no need for the
KDC to cache the TGTs of every client, and once more this makes
the Kerberos protocol stateless on the server side. If you do not con-
sider these arguments, it may sound silly that the KDC generates the
session key and sends it out to the client to get it back from the client
at a moment later in time.

Figure 5.9 shows how this new session key (Sku) and the associated TGT
are used in the basic Kerberos protocol exchange:

Alice sends a logon message to the domain controller. This message is
secured using Alice’s master key, derived from Alice’s password.8

The KDC will then send out a secured copy of the session key to be
used for authentication between Alice and the KDC for the rest of
the logon session (this session key will replace the user’s master key).
The copy of the session key encrypted with the KDC’s master key is
called the TGT.

The session key and the TGT will be cached in Alice’s local Kerberos
ticket cache.

Later on, when Alice wants to access a resource on the resource server,
the security process acting on Alice’s behalf will send out a request for
a ticket to the KDC using the locally cached TGT. The request for
the resource will be secured using the session key Sku.

Finally, the KDC will send back a ticket and a new session key to
Alice, which she can use later on to authenticate to the resource

8. The encryption of this request is not a part of the basic Kerberos protocol as defined in RFC 1510; it is based on a Ker-
beros extension known as Kerberos preauthentication. It will be explained later on in this chapter.

5.2 Kerberos: The basic protocol 149

Chapter 5

server. Notice that in Figure 5.9 the new session key is not encrypted
using Alice’s master key, but using the newly created session key Sku.

This sequence shows how in the basic Kerberos exchange:

The TGT is reused to request tickets for other application or resource
servers. The reuse of the TGT is limited by its lifetime. The lifetime
of the TGT not only limits the usage of the TGT itself but of all the
tickets that were obtained using a particular TGT. For example, if I
have a TGT that is about to expire in a half-hour, every new ticket I
get will also expire at the same point in time (even though the default
lifetime of a ticket may be one hour).

Ticket requests do not require further use of the client’s master key.9

During the logon session, a weak secret (the master key derived from
a client’s password) is exchanged for a strong secret (the session key
contained within the TGT). In other words, at logon time and at
each TGT renewal the user will authenticate to the KDC with his
master key; in subsequent ticket requests he will authenticate using
the session key, which is contained in the TGT.

The newly created session key (Sku) doesn’t need to be cached on the
KDC: The KDC gets it from the client each time the client requests a
new service ticket. Sku is encrypted using the KDC’s master key
(remember: this is what they call the TGT). This feature makes
Kerberos stateless on the KDC side, which has, as for resource serv-

Figure 5.9
The role of the
Kerberos TGT.

9. This also means that once you have a session key, in a standard Kerberos implementation there’s no more need to
cache the master key on the client, which is very good from a security point of view. Microsoft Windows 2000, XP, and
Windows Server 2003 still cache the master key because they need it to perform NTLM authentication to downlevel
clients.

KDC = AS + TGS

MMuu MMssMMkk

MMuu
SSkuku

MMkk

SSkuku

MMuu

SSkuku SSkuku

MMkkI want that resource +

SSususSSusus
SSkukuMMssSSusus

I want to logon to the domainI want to logon to the domain

Windows Server
2003

Domain Controller

150 5.2 Kerberos: The basic protocol

ers, obvious advantages if some load balancing or redundancy tech-
nology has to be implemented on the KDC side.

5.2.7 Bringing it all together

In this section we will bring together all the elements that were brought up
in the previous five steps. Figure 5.10 shows the complete Kerberos proto-
col: It consists of three subprotocols (or phases), each one made up of two
steps. In the following list, the cryptic names between parentheses are the
names of the Kerberos protocol messages as they are called in the Kerberos
standard documents.

Phase 1: Authentication Service Exchange (occurs once for every
logon session)

Step 1: Authentication Server Request (KRB_AS_REQ). Alice
logs on the domain from her local machine. A TGT request is
sent to a Windows KDC. Ntsecurity.nu makes available two
tools (kerbsniff and kerbcrack) to retrieve a user’s password from
the KRB_AS_REQ network exchange. To capture the
KRB_AS_REQ packets, use kerbsniff. Then use kerbcrack to per-
form a brute-force or dictionary attack on the captured packets.
The tools can be downloaded from http://www.ntsecurity.nu/
toolbox/kerbcrack/.
Step 2: Authentication Server Reply (KRB_AS_REP). The Win-
dows KDC returns a TGT and a session key to Alice.

Phase 2: Ticket-Granting Service Exchange (occurs once for every
resource server)

Step 3: TGS Request (KRB_TGS_REQ). Alice wants to access an
application on a server. A ticket request for the application server
is sent to the Windows KDC. This request consists of Alice’s TGT
and an authenticator.
Step 4: TGS Reply (KRB_TGS_REP). The Windows KDC
returns a ticket and a session key to Alice.

Phase 3: Client-Server Authentication Exchange (occurs once for
every server session)

Step 5: Application Server Request (KRB_AP_REQ). The ticket
is sent to the application server. Upon receiving the ticket and the
authenticator, the server can authenticate Alice.

5.2 Kerberos: The basic protocol 151

Chapter 5

Step 6: Application Server Reply (KRB_AP_REP). The server
replies to Alice with another authenticator. On receiving this
authenticator, Alice can authenticate the server.

During these exchanges the following keys and tickets are cached on
Alice’s computer: the TGT, the ticket used to authenticate to the resource
server, and two session keys—one to authenticate to the KDC and one to
authenticate to the resource server.

5.2.8 Kerberos data confidentiality, authentication,
and integrity services

Windows 2000, XP, and Windows Server 2003 all include the Kerberos
extensions that can be used to provide data confidentiality, authentication,
and integrity for messages that are sent after the initial Kerberos exchange
outlined in the previous sections. These extensions are known as the
KRB_PRIV (providing data confidentiality) and the KRB_SAFE (provid-
ing data authentication and integrity) Kerberos extensions. They are based
on the existence of a session key between two entities at the end of a Ker-
beros authentication protocol exchange:

The session key can be used to sign a message. A hash, which is the
result of applying a hash function to a message, can be encrypted
using the session key. A hash encrypted with a session key is also
referred to as a message authentication code (MAC).

The session key can be used to seal a message by encrypting the mes-
sage using the session key.

Figure 5.10
The complete

Kerberos protocol. Request Ticket + Auth

Ticket + Session Key

Request Service + Auth

Server
Authentication

TGT + Session Key

Request TGT

Alice

Resource
server

KDC = AS + TGS

Windows Server
2003

Domain Controller

152 5.3 Logging on to windows using Kerberos

5.3 Logging on to windows using Kerberos

Now that we have explained the basic Kerberos protocol, we can discuss
some real-world Windows Kerberos logon examples. In this section we will
look in detail at both local and network logon features in single and multi-
ple domain environments and in a multiple forest scenario.

5.3.1 Logging on in a single domain environment

Typical examples of logon method in a single domain environment are:

Alice is logging on from a machine that is a member of the domain
where Alice’s user account has been defined (this is a local logon
method).

Alice accesses a resource located on a machine that is a member of
Alice’s logon domain (this is a network logon method).

Local logon process

Figure 5.11 shows what happens during a local logon process in a single
domain environment.

Everything starts when Alice presses <CTRL><ALT> and
chooses to log on to the domain.

1. The client Kerberos package acting on behalf of Alice tries to
locate a KDC service for the domain; it does so by querying the
DNS service.10 The Kerberos package will retry up to three times
to contact a KDC. At first it waits 10 seconds for a reply; on each
retry it waits an additional 10 seconds. In most cases a KDC ser-
vice for the domain is already known. The discovery of a domain
controller is also a part of the secure channel setup that occurs
before any local logging on.

2. Once the DC is found, Alice sends a Kerberos authentication
request to the DC. This request authenticates Alice to the DC
and contains a TGT request (KRB_AS_REQ).

3. The Authentication Service authenticates Alice, generates a TGT,
and sends it back to the client (KRB_AS_REP).

10. Windows 2000 and Windows Server 2003 publish two Kerberos-specific SRV records to DNS: _kerberos and _kpasswd.
The list of all published SRV records can be found on a domain controller in the “%windir%\system32\config\netlogon.dns”
file. The SRV DNS records are created automatically during the domain controller setup (as part of the dcpromo process).

5.3 Logging on to windows using Kerberos 153

Chapter 5

4. The local machine where Alice logged on is—just like any other
resource—a resource for which Alice needs a ticket. Alice sends a
ticket request to the DC using her TGT (together with an
authenticator) (KRB_TGS_REQ).

5. The TGS of the DC checks the TGT and the authenticator, gen-
erates a ticket for the local machine, and sends it back to Alice
(KRB_TGS_REP).

6. On Alice’s machine, the ticket is presented to the Local Security
Authority, which will create an access token for Alice. From then
on, any process acting on behalf of Alice can access the local
machine’s resources.

Network logon process

When Alice is already logged onto a domain and wants to access a resource
located on a server within the same domain, a network logon process will take
place. In this case, the logon sequence is as follows (see Figure 5.12):

1. Alice sends a server ticket request to the DC using her TGT
(together with an authenticator) (KRB_TGS_REQ).

2. The TGS of the DC checks the authenticator, generates a server
ticket, and sends it back to Alice (KRB_TGS_REP).

3. Alice sends the ticket (together with an authenticator) to the
application server (KRB_AP_REQ).

4. The application verifies the ticket with the authenticator and
sends back his or her authenticator to Alice for server authentica-
tion (KRB_AP_REP).

Figure 5.11
Local logon process
in a single domain

environment.

Key Distribution
Center (KDC)

<CTRL><ALT>

TGT

DNS Query

Alice

Windows Server
2003

Domain Controller

Ticket

154 5.3 Logging on to windows using Kerberos

Disabling Kerberos in migration scenarios

In certain migration scenarios it may be necessary to disable the Kerberos
authentication protocol on your Windows Server 2003 domain controllers.
Remember from Chapter 4 that for Windows 2000 Professional and later
clients, the first authentication protocol of choice is always Kerberos—at
least if the client is talking to a Windows 2000 or later DC.

Imagine the following migration scenario: You have migrated all your
client platforms to Windows XP and you upgraded one of your Windows
NT4.0 DCs to Windows Server 2003—all the remaining DCs are still on
NT4.0. In this scenario the one and only Windows Server 2003 DC may
become overloaded by Kerberos authentication traffic because all Windows
XP clients try to authenticate against it. Also, if this DC becomes unavail-
able, the clients cannot be authenticated anymore. Once a client has been
authenticated by a Kerberos KDC it will not fall back to NTLM and NT4
DCs. This is a typical scenario where you may want to temporarily disable
the Kerberos authentication protocol on the Windows Server 2003 DC.

To disable Kerberos, Microsoft provides a registry hack (the hack is
available from Windows 2000 Service Pack 2 onward). The hack is called
NT4Emulator (REG_DWORD) and should be added to the
HKEY_LOCAL_MACHINE/System/CurrentControlSet/Services/Netlogon/
Parameters registry key of the Windows 2000 SP2 or later DC and set to
value 1.

The creation of this key on the Windows 2000 SP2 or later DC creates
another problem because it will make it impossible to manage the AD using
any of the MMC-based AD management tools. To get around this problem,

Figure 5.12
Network logon

process in a single
domain

environment.

Key Distribution
Center (KDC)

Ticket

TGT

Ticket
Alice

Resource Server

Windows Server
2003

Domain Controller

5.3 Logging on to windows using Kerberos 155

Chapter 5

you must make a registry change on the clients from which you want to use
the AD management tools. Add the NeutralizeNT4Emulator registry value
(REG_DWORD) in the HKEY_LOCAL_MACHINE/System/Current-
ControlSet/Services/Netlogon/Parameters registry key and set it to value 1.

The role of SPNs

One of the great features of Kerberos is its support for mutual authentica-
tion. The enabling technologies for mutual authentication are the Kerberos
protocol itself, User Principal Names (UPNs), and Service Principal Names
(SPNs). The UPN and SPN concepts were introduced in Chapter 2. In the
following we will look at how SPNs are used during the Kerberos authenti-
cation exchanges.

Let’s take the example of a network logon process: A user decides to
access a file on another server during his or her logon session. In this exam-
ple the following SPN-related events will occur during the authentication
exchanges:

The Kerberos software on the client side constructs a Kerberos
“KRB_TGS_REQ” message, containing the user’s TGT and the SPN
of the service that is responsible for the file the user wants to access.
This message is sent to the user’s domain controller. A Kerberos client
can always construct a service’s SPN—how this works was explained
in Chapter 2.

The KDC queries the AD11 to find an account that has a matching
SPN (this process is also known as “resolving” the SPN). The service’s
SPN must be unique in the AD. If more than one account is found
with a corresponding SPN, the authentication will fail.

Given the service account corresponding to the SPN and the associ-
ated master key, the KDC can construct a service ticket and send it
back to the client. (This is the ”KRB_TGS_REP” message.)

In the next step the client sends a “KRB_AP_REQ” message to the
file server (including the service ticket and a Kerberos authenticator).

Finally, the service will authenticate back to the client (this is the
“KRB_AP_REP” message). This is where the real mutual authentica-
tion happens.

11. In the first place it will query the local domain Naming Context of the user’s authentication DC; after that, it will query the
global catalog.

156 5.3 Logging on to windows using Kerberos

5.3.2 Logging on in a multiple domain environment

Typical examples of scenarios where a multiple domain logon process
occurs are the following:

Alice is logging on from a machine member of a different domain
than the one where Alice’s account has been defined (this is a local
logon process).

Alice is accessing a resource located on a machine that is a member of
a different domain than the one where Alice initially logged on (this
is a network logon process).

In the following examples, we will frequently use the concepts “referral
ticket” and “inter-realm key.” These concepts will be explained in more
detail in the section on “multiple domain logon: under the hood.”

Local logon process

Figure 5.13 shows a typical multidomain environment, consisting of a par-
ent domain hp.com and two child domains, North America (NA) and
Europe. In the local logon example, Alice’s account is defined in the Europe
domain. Alice logs on from a workstation whose account is defined in the
NA domain.

The local logon process can be broken down into the four following
steps:

Step 1: AS exchange (KRB_AS_REQ and KRB_AS_REP):

To log on Alice, a TGT request is sent to a KDC in
Europe.hp.com.
The AS Request is sent to a KDC in Europe.hp.com. The selected
KDC will sent back the AS Reply. Only a KDC of Alice’s account
domain can authenticate Alice (Windows credentials are never
replicated between the domain controllers of different domains).

Steps 2, 3, and 4: TGS exchanges (KRB_TGS_REQ and
KRB_TGS_REP):

To request a ticket for Alice to work on the NA workstation, a
TGS request is sent to the KDC of Europe.hp.com.
The KDC of Europe.hp.com cannot issue a ticket that allows
Alice to work on a workstation in NA. Only a KDC of NA can
return such a ticket.12 Therefore, the TGS reply contains a referral

12. This is because only a KDC of NA knows the workstation’s master key.

5.3 Logging on to windows using Kerberos 157

Chapter 5

ticket to the domain closest to NA.hp.com (from a DNS point of
view) and with which NA.hp.com has a real (nontransitive) Ker-
beros trust. In this example, this is hp.com.
On receiving the referral ticket, Alice locates a KDC of the inter-
mediary domain hp.com and sends a TGS request including the
referral ticket to that KDC.
The KDC in hp.com decrypts the referral ticket using an interdo-
main key shared between Europe.hp.com and hp.com. The KDC
detects that the referral ticket contains a ticket request for a ticket
for a workstation in NA. The KDC checks on the domain closest
to NA.hp.com from hp.com’s point of view and sends Alice a
referral ticket to this domain.
Alice asks a KDC of NA.hp.com for a ticket for the local worksta-
tion. Finally, the KDC of NA.hp.com will send Alice a TGS reply
with a valid ticket for the workstation.

The amount of interdomain authentication traffic occurring in this sce-
nario should not be overestimated for several reasons:

The size of Kerberos tickets is relatively small.

Tickets have a lifetime and are cached.

The referral traffic does not occur for every resource access.

An interesting side note is to look at what happens if at some point in
this exchange, the administrator of the Europe domain decides to disable
Alice’s account. The answer to this question is pretty straightforward: The
KDC of Europe will continue to issue tickets as long as the original TGT is
valid. The disabled account will only be detected when Alice tries to get a
new TGT.

Figure 5.13
Local logon in a

multiple domain
environment.

HP.com

NA.HP.com

AS Req/Rep
TGS Req

TGS Referral

TGS Referral

TGS Req

TGS Req

TGS Rep

KDC

KDC

Europe.HP.com

KDC

158 5.3 Logging on to windows using Kerberos

Network logon process

Let’s look at what happens with a local logon process in a multidomain envi-
ronment. Again, we are using the example of a parent domain and two child
domains. In the following network logon example, Alice is logged on to the
NA domain (Alice and computer account are defined in the NA domain).
Alice wants to access a resource hosted on a server in the Europe domain.

The network logon process can be split into the following four steps (as
illustrated in Figure 5.14):

Steps 1, 2, and 3: TGS exchanges:

Before Alice can contact the KDC in realm Europe.hp.com, she
must have a valid ticket to talk to the KDC of that domain.
Because there is no direct trust between Europe.hp.com and
NA.hp.com, Alice must request the ticket via an intermediary
domain.
Alice first tries to request a ticket for the KDC of the domain clos-
est to the Europe.hp.com domain; this is hp.com. Because there is
a direct trust between NA.hp.com and hp.com, Alice can request
this ticket to her own KDC. The KDC will return a referral ticket
that is encrypted with the interdomain key shared between
NA.hp.com and hp.com.
Armed with this referral ticket, Alice can send a TGS request to
the KDC of the hp.com domain, requesting a ticket for the KDC
of the Europe.hp.com domain. Because there is a direct trust
between hp.com and Europe.hp.com, the KDC of hp.com can
answer this request. The returned referral ticket will be encrypted
with the interdomain key shared between hp.com and
Europe.hp.com.

Figure 5.14
Network logon in a

multiple domain
environment.

KDC
KDC

TGS Rep

TGS Req

TGS Rep

TGS Req

AP Req

AP Rep

TGS Req
TGS Rep

KDC

HP.com

NA.HP.com Europe.HP.com

5.3 Logging on to windows using Kerberos 159

Chapter 5

With this referral ticket, Alice finally can send a TGS request to a
KDC of the Europe.hp.com domain to request a ticket for the tar-
get file server.

Step 4: Application Server Exchange:

With the ticket she received from the target server’s KDC, Alice
can send an authentication request (consisting of the ticket and an
authenticator) to the target server.
During the last step, the target server will also authenticate back to
Alice.

The effect of shortcut trusts on multiple domain logon traffic

A typical scenario where you would create a shortcut trust is a Windows
Server 2003 domain tree where a massive amount of authentication traffic
occurs between two domains that are logically linked together using a tran-
sitive trust (such as the example shown in Figure 5.15). The shortcut trust
example illustrated in Figure 5.15 shows how the number of referrals is
reduced and how the trust path used during authentication is shortened.
Note that the KDC in the user domain can detect the existence of shortcut
trust when querying the AD. It has enough intelligence to refer Alice
directly to the KDC in the resource domain.

In the example illustrated in Figure 5.14, Alice would go through the
following steps to access the resource located in the Europe domain when a
shortcut trust is defined between the Europe and the NA domains:

Step 1: Alice uses her TGT to obtain a ticket from the KDC in the
NA domain for the resource server in the Europe domain. The KDC
in the NA domain is not the authoritative KDC for the resource
server’s Europe domain, so the KDC in the NA domain refers Alice

Figure 5.15
Effect of a shortcut

trust on multiple
domain logon

traffic.

User
Domain

Resource
Domain

User
Domain

Resource
Domain

Trust Relationship

Referral

160 5.3 Logging on to windows using Kerberos

to the domain closest to the target domain with which the NA
domain has a Kerberos trust relationship. This domain is Europe.

Step 2: The KDC in the Europe domain is the authority for the
resource server’s Europe domain, so The KDC in the Europe domain
can generate a ticket for Alice.

Step 3: Alice uses the ticket from the KDC in the Europe domain to
access the resource server.

Transitive Trusts in Domains Containing Windows 2000, Windows Server
2003, and NT 4.0 DCs Be careful when relying on transitive trust in domains contain-
ing both Windows 2000 or Windows Server 2003 and NT 4 DCs. Because NT4 domain
controllers do not support Kerberos, transitive trust will only work if a user is authenticated
by a Windows 2000 or later DC.

Consider the network logon example illustrated in Figure 5.16. A user defined in NA
logged on from a Windows 2000 workstation in NA is accessing a resource in the “Bel-
gium” domain (be.emea.compaq.com). There is a transitive trust between the NA and
Europe and between the NA and Be domains. In this scenario, authentication will fail if the
DC authenticating the user in the Be domain is an NT4 DC. Because of the NT4 DC,
authentication will fall back to NTLM. NTLM does not understand transitive trust and
requires a “real” trust.

What does this mean? When the NT4 domain controller receives the authentication
request from the user in NA, it cannot create a trust path back to the Be domain because
NT4 and NTLM can only deal with “single hop” trusts. NTLM would work in this sce-
nario if an “explicit” trust relationship was defined between the NA and Be domains.

Figure 5.16
Transitive trusts in

mixed-mode
domains.

NA.hp.com
EMEA.hp.com

hp.com

NT4, W2K,
W2K3 DCs

Be.EMEA.hp.com

Explicit Trust

5.3 Logging on to windows using Kerberos 161

Chapter 5

Multiple domain logon process: Under the hood

In this section we will explain some of the concepts behind the multiple
domain logon process: referral tickets and the KDC’s Authentication Ser-
vice (AS) and Ticket Granting Service (TGS). To fully understand the mul-
tiple domain logon process, we will also introduce a special Kerberos
principal—the krbtgt principal.

We will not come back to the concepts of trusteddomain account object
(TDO) and interdomain secret. To enable interdomain authentication,
every domain that is trusted by another domain is registered in the domain’s
AD domain naming context as a security principal. These principals are
also known as TDOs. The TDO’s master key is often referred to as an
interdomain secret. TDOs were also explained in Chapter 3.

Interdomain authentication traffic (the referral tickets mentioned
before) are secured using the master key and the session key of the TDO
principals. Like for any other account, the domain trust account’s master
key is derived from the account’s password. The creation of the TDOs and
their master keys can happen automatically during the dcpromo process or
manually when an administrator explicitly defines a trust relationship.

To explain the use of the krbtgt account, we must first explain why the
Kerberos KDC is made up of two subservices: the Authentication Service
(AS) and the Ticket Granting Service (TGS). The services offered by a Ker-
beros KDC can be split into two service categories; each subservice has a set
of different tasks:

The Authentication Service authenticates accounts defined in the
domain where the AS is running and issues TGTs for these accounts.

The Ticket Granting Service issues service tickets for resources
defined in the domain where the TGS is running.

The AS and TGS share a secret that is derived from the password of the
krbtgt principal, which is the security principal used by the KDC. Its mas-
ter key will be used to encrypt the TGTs that are issued by the KDC. The
krbtgt account is created automatically when a Windows 2000 or Windows
Server 2003 domain is created. It cannot be deleted and renamed. Like for
any other account, its password is changed regularly. In the Windows 2000
and Windows Server 2003 Users and Computers snap-in, this account is
always shown as disabled.

Now that we have explained the TDO, interdomain secret, and krbtgt
concepts, let’s look once more at how the multiple domain logon process
works. A basic rule in Kerberos is that to access a resource a user needs a

162 5.3 Logging on to windows using Kerberos

ticket. How can Alice get a ticket for a resource contained in a domain dif-
ferent from Alice’s definition domain? Let’s once more take the example of
Alice defined and logged on in domain na.hp.com, who decides to access a
resource in europe.hp.com (as illustrated in Figure 5.17).

In this scenario, the KDC of na.hp.com would issue a referral ticket to
Alice to access hp.com. What exactly is a referral ticket? A referral ticket is a
TGT that Alice can use in domain hp.com to get a ticket for the resource in
that domain. The KDC of na.hp.com can issue such a TGT because
hp.com is a security principal [it has a TDO, Trusted Domain Object,
account (see Chapter 3)] in his or her domain. How can the KDC of
hp.com trust a TGT that was issued not by itself, but by the KDC of
na.hp.com? The KDC of hp.com will decrypt the TGT with the interdo-
main secret of its TDO account in na.hp.com to retrieve the session key—it
will then use this session key to validate the associated Kerberos authentica-
tor. If the authenticator is valid, the KDC will consider the TGT trustwor-
thy. The same things will happen when hp.com issues a referral ticket for
Alice to authenticate to a domain controller in europe.hp.com.

The referral process we just explained relies heavily on the AD and more
particularly on the global catalog (GC). First, it uses the GC to find out,
given the SPN, in which domain the resource is located, and thus which
domain controller can issue a ticket to access the resource. Then it uses the
AD to find out the domain closest to the target domain to which Alice
should be referred.

Figure 5.18 explains the process outlined in the previous sections a bit
more in detail and using UNIX Kerberos terminology: It illustrates an
inter-realm (interdomain) Kerberos authentication exchange between the

Figure 5.17
Multiple domain

logon process
revisited.

Domain Trust
Account

for hp.com

Domain Trust
Account

for hp.com

Domain Trust
Account

for na.hp.com

Domain Trust
Account

for europe.hp.com

HP.com

NA.HP.com Europe.HP.com

5.3 Logging on to windows using Kerberos 163

Chapter 5

North and the South realms. In the example of Figure 5.18, Alice wants to
access a resource service in the North realm. In the UNIX Kerberos termi-
nology, they call the Windows TDO accounts from the previous example
Remote Ticket Granting Service (RTGS) accounts: Figure 5.18 shows that
there is an RTGS account for North in the South realm and vice versa.

5.3.3 Multiple forest logon process

In Windows Server 2003, Microsoft has added additional information in
the TDO account objects to enable interforest authentication traffic. Let’s
look at an example that shows how Windows Server 2003 uses the extra
information stored in the TDO to route Kerberos authentication requests
during a cross-forest resource access.

In the example (illustrated in Figure 5.19), a user that is logged on to the
emea.compaq.com domain (the user and machine accounts are defined in
emea.compaq.com) wants to access a resource located on a server in the
us.hp.com domain. Both forests are at functionality level 2, and a bidirec-
tional forest trust relationship has been set up between them. From a Ker-
beros point of view, the user is already logged on to the emea.compaq.com
domain and has a valid TGT. The remote resource is identified using an
SPN of the following format: <servicename>/us.hp.com.

In this example the authentication requests will be routed as follows:

1. The user’s machine contacts the local DC to request a Kerberos
service ticket for the resource in the us.hp.com domain. The DC
in emea.compaq.com cannot find an entry for the remote service
in its local domain database and asks a GC server in the
emea.compaq.com for help. The GC suspects (based on the DNS
suffix) that the service is located in the hp.com forest, and it sends

Figure 5.18
Multiple domain

logon process:
under the hood.

Cross-realm: Behind the scenes

AS TGS

RTGS
South

Alice

KDC

North Realm

AS TGS

RTGS
North

Resource
Service

KDC

South Realm

TGT
North

TGT
South

Ticket
Resource

Mutual
Auth

Auth TGT
North

TGT
South

Ticket
Resource

164 5.4 Advanced Kerberos topics

this routing hint to the DC and tells the DC to refer the user to a
DC in the compaq.com root domain.

2. The user’s machine contacts a DC in the root domain of the com-
paq.com forest. This DC refers the user to a DC in the root
domain of the hp.com forest.

3. The user’s machine contacts a DC in the root domain of the
hp.com forest. The DC of the hp.com forest double-checks with
the local GC whether the service is in his or her forest. After vali-
dation it refers the user to a DC in the us.hp.com domain.

4. The user’s machine contacts a DC in the us.hp.com domain. This
DC can issue a service ticket to the user for the resource in the
us.hp.com domain.

5. The user uses the service ticket to authenticate to the resource
server in the us.hp.com domain.

5.4 Advanced Kerberos topics

In this section we will focus on some advanced Kerberos topics: delegation
of authentication, the link between authentication and authorization, the
content of Kerberos tickets and authenticators, the details behind the smart
card logon process, Kerberos transport protocol, and port usage.

5.4.1 Delegation of authentication

Delegation refers to the facility for a service to impersonate an authenti-
cated client in order to relieve the user of the additional burden of authenti-

Figure 5.19
Forest trust

authentication
flow.

compaq.com hp.com

emea.compaq.com us.hp.com

5.4 Advanced Kerberos topics 165

Chapter 5

cating to multiple services. To the latter services it will look as if they are
communicating directly with the user, whereas in reality another service will
sit between them and the user.

A classical example of where delegation is a very useful feature is when a
user asks a print server to print a file that is located on another server. In
today’s Internet world there are many more examples. Basically, any Web-
based multitier application can take advantage of delegation. Examples are
Web sites launching user queries against a database located on some back-
end server, or a user accessing his or her mailbox from a Web interface [a
good example is Microsoft’s Outlook Web Access (OWA)]. In the future,
when Web services become widespread, the need for authentication dele-
gation support will only become bigger. Web services are rooted on highly
distributed architectures that can make data and other resources available to
a wide range of users. Web services are typically accessed using open Inter-
net protocols (such as HTTP and SMTP). In such environments it would
not be a very smart idea to host the data on the Web servers. Web services
require multitier application designs and the ability to reuse the user iden-
tity end-to-end.

The ability to refer to a user’s identity end-to-end in a multitier appli-
cation scenario is one of the key advantages of the Kerberos delegation
support. It means that administrators can enforce authorization settings
at the different tiers using a single user identity. This not only simplifies
management but also facilitates user tracking and auditing on the differ-
ent levels of a multitier application. Finally, because of its ability to trans-
parently authenticate a user on multiple tiers, delegation provides SSO
support.

Kerberos’ ability to support delegation is a consequence of its unique
ticketing mechanism. When sending a ticket to a server, the Kerberos client
can add additional information to it so the server can reuse it to request
other tickets on the user’s behalf to the Kerberos KDC.

Delegation: Behind the scenes

The Kerberos delegation uses specific flags that can be set in a Kerberos
ticket. The Kerberos standard (RFC 1510) defines four types of flags,
shown in Table 5.2. Windows 2000 and Windows Server 2003 currently
only support the “forwardable” and “forwarded” flags. Notice in Table 5.2
that “forwardable” is a much more powerful concept than “proxiable”: A
forwardable ticket is a TGT, a proxiable ticket is a plain ticket; a ticket can
be used for one single application, and a TGT can be used for multiple
applications.

166 5.4 Advanced Kerberos topics

What’s missing in Windows 2000 Kerberos delegation?

One of the reasons why Kerberos delegation in Windows 2000 is only used
rarely is because few people really know and understand it. Another reason
is that the Windows 2000 implementation lacks some important security-
related configuration options.

In Windows 2000, when a computer is “trusted for delegation,” it can
impersonate a user to any other service on any other computer in the Win-
dows 2000 domain. In other words, when a Windows 2000 administrator
trusts a computer for delegation, the delegation is “complete”; there are no
configuration options to make the delegation more granular.

Another obstacle is that Kerberos delegation in a Windows 2000 Web
scenario only works if the user has authenticated to the Web server using
Kerberos or Basic authentication. There is no way to use delegation when
you prefer to use the more secure digest authentication protocol to authen-
ticate your users to the Web server. We also have to keep in mind that the
use of Kerberos between a browser and a Web server is only possible when
the browser supports Kerberos and the Kerberos KDC is accessible from the
browser. The latter is clearly a problem in Internet scenarios: Very few com-
panies are willing to expose their KDC to Internet users. Also, on the Inter-
net, not every user has a Kerberos-enabled Web browser. So far, only
Microsoft’s Internet Explorer (from version 5.0 on) is Kerberos-enabled.

In Windows Server 2003, Microsoft embedded a set of Kerberos proto-
col extensions to remedy these problems. These extensions are referred to as
the “Service-for-User” (S4U) Kerberos extensions. There are two new
extensions: the Service-for-User-to-Proxy extension (S4U2Proxy) and the
Service-for-User-to-Self extension (S4U2Self). Microsoft is planning to

Table 5.2 Kerberos Ticket Delegation Flags

Flag Meaning

Proxiable Tells the TGS that a new service ticket with a different network address
may be issued based on this ticket

Proxy Indicates that the ticket is a proxy ticket

Forwardable Tells the TGS that a new TGT with a different network address may be
issued based on this TGT

Forwarded Indicates that this ticket has been forwarded or was issued based on an
authentication using a forwarded TGT

5.4 Advanced Kerberos topics 167

Chapter 5

submit the specifications of both Kerberos extensions to the IETF some
time in the near future.

The new Kerberos extensions are only available if your Windows Server
2003 domain is in Functionality Level 2 (which is the native Windows
Server 2003 functionality level).

The S4U2Proxy Kerberos extension

The way that delegation works in Windows 2000 is by letting a Kerberos
client forward a user’s TGT to a service. In Kerberos-speak, a TGT is a
very powerful security token: It is a digital piece of evidence that proves
that a user’s identity has been validated by the Kerberos KDC. A service
can use a TGT to get many other service tickets on the user’s behalf. This
is why in Windows 2000 delegation is considered “complete.” What makes
the possessor of a TGT even more powerful is the fact that in Windows
2000 Microsoft uses the TGT to transport user-related authorization data
[embedded in the Privilege Attribute Certificate (PAC) field].

The S4U2Proxy Kerberos Extension allows a service to reuse a user’s
“service ticket” to request a new service ticket to the KDC. In other words,
there is no more need to forward a user’s TGT to the service. The simple
fact that the service can present a user’s ticket to a KDC is enough to prove
a user’s identity. The Kerberos exchanges occurring in a typical S4U2Proxy
scenario are illustrated in Figure 5.20.

In Figure 5.20 steps 1 through 3 illustrate the Kerberos exchanges
related to a user authenticating to server 1.

Step 1: The user requests a service ticket for server 1 to the KDC
(Kerberos TGS_REQ message).

Step 2: The KDC returns a service ticket for server 1 to the user (Ker-
beros TGS_REP message).

Step 3: The user presents the service ticket for server 1 to server 1
(Kerberos AP_REQ message).

Server 1 then needs to access a resource on server 2 on the user’s
behalf. Server 1 is running Windows Server 2003 and thus supports
the S4U2Proxy extension.

Step 4: The S4U2Proxy extension on server 1 requests a service ticket
for server 2 to the KDC on the user’s behalf. To prove the user’s iden-
tity to the KDC, server 1 presents the user’s service ticket for server 1
(Kerberos TGS_REQ message).

168 5.4 Advanced Kerberos topics

Step 5: The KDC returns a service ticket for server 2 to server 1. Even
though this new ticket is passed to server 1, it contains the user’s
authorization data (Kerberos TGS_REP message).

Step 6: Server 1 presents the service ticket for server 2 to server 2
(Kerberos AP_REQ message).

If a service could do this with any user ticket it receives, the S4U2Proxy
feature would create a security hole: The service would be allowed to access
any other service on the user’s behalf. That is why Microsoft has added sup-
port for fine-grain delegation configuration. In Windows Server 2003 an
administrator can configure which services a machine or service is allowed
to access on a user’s behalf. How to set this constrained delegation up is
explained in the next section.

Configuring constrained delegation

When you open the properties of a machine or a service account in Win-
dows Server 2003 (from the Users and Computers MMC snap-in), you will
notice the new “Delegation” tab. This tab is not available in the properties of
a plain user account. It only shows up if the account has an associated SPN.

From the Delegation tab you can configure delegation in three different
ways (as illustrated in Figure 5.21):

Disallowed: This is done by checking the “Do not trust this computer
for delegation” option.

Allowed for all services: This can be done by checking the “Trust this
computer for delegation to any service (Kerberos only)” option. This

Figure 5.20
Basic S4U2Proxy

operation. Server 1

KDC

Server 2ST
Server 1

ST
Server 2

S4U2ProxyAC client

ST
Server 1

AC client

ST
Server 1

AC client AC client

ST
Server 2

AC client

TGS_REP Kerberos Reply

TGS_REQ Kerberos

AP_REQ Kerberos Request

Ticket request for Server 1

TGS_REP Kerberos Reply

TGS_REQ Kerberos

Ticket request for Server 2

AP_REQ Kerberos Request

Client

ST
Server 1

AC client

Service
Ticket for
Server 1

Access
Control
Data
of Client

=

=

5.4 Advanced Kerberos topics 169

Chapter 5

is the default option and refers to delegation the way it was available
in Windows 2000.

Only allowed for a limited set of services: This can be done by checking
the “Trust this computer for delegation to specified services only”
option. This is the new “constrained” delegation option coming with
Windows Server 2003.

When selecting the latter option (constrained delegation), you can select
the SPNs of the services for which the delegation is allowed. You can do so
using the “Add…” push button. Pushing this button will bring up the “Add
Services” dialog box. Initially, the available services list in this dialog box
appears empty. To fill the list, press the “User or Computers…” push
button. The latter will bring up the Active Directory object picker dialog
box, which will allow you to select the appropriate SPNs. You can only
select the SPNs of machines that are a member of the machine’s domain.

The SPNs for which delegation is allowed are stored in a new AD
account object attribute called “msDS-AllowedToDelegateTo.” You can
examine the content of this multivalued attribute using the Support Tools
“AdsiEdit” tool (as illustrated in Figure 5.22). When the Kerberos authenti-
cation service receives a delegation request for a ticket for a particular ser-
vice, it compares the SPNs listed in the Kerberos ticket request with the
ones listed in the computer or service account’s “msDS-AllowedToDele-

Figure 5.21
Configuring

delegation in
Windows Server

2003.

170 5.4 Advanced Kerberos topics

gateTo” attribute. If there are no matches, the delegation request is denied.
Remember that an account’s SPNs are stored in the “servicePrincipalName”
attribute.

In the scenario illustrated in Figure 5.20, you would set up constrained
delegation in the account properties of server 1. You would trust server 1
for delegation to the SPN of server 2.

The S4U2Self Kerberos extension

An important problem when using Kerberos delegation in a Web-based
Windows 2000 environment is that it can only be used when the client uses
Kerberos or Basic authentication to authenticate to the Web server. The
Web server (IIS 6.0) that ships with Windows Server 2003 comes with
many other interesting authentication options, such as MS Passport–based,
Digest-based, or certificate-based authentication. In Windows Server 2003
you can use the latter authentication options together with Kerberos delega-
tion thanks to the combination of the S4U2Proxy (explained earlier) and
another new Windows Server 2003 Kerberos extension called Service-for-
User-to-Self (S4U2Self).

The service provided by the S4U2Self extension provides a service
known as “protocol transition.” It allows for the combination of any of the

Figure 5.22
The new “msDS-

AllowedToDelegate
To” AD account

attribute enabling
constrained
delegation.

5.4 Advanced Kerberos topics 171

Chapter 5

IIS authentication protocols listed earlier on the IIS front end with the Ker-
beros authentication protocol on the IIS back end. In other words, the Web
server can use Kerberos authentication and delegation with a user’s identity
to a back-end server independently of how the user authenticated to the
Web server. Behind this new extension there is nothing else than the ability
for an application or service to request to the Kerberos KDC a new service
ticket on behalf of a user account defined in the domain or the forest. If this
appears to you as a dangerous password-less logon process, keep in mind
that before an application or service is allowed to request a service ticket on
a user’s behalf, it must already have authenticated the user. Also, the appli-
cation or service itself must hold a valid Kerberos TGT. The basic operation
of the S4U2Self Kerberos extension is illustrated in Figure 5.23.

In Figure 5.23, step 1 illustrates the user authenticating to server 1.
When server 1 is an IIS6.0 Web server, he or she can do so using Digest-
based, Basic-based, MS Passport–based, or client certificate–based authenti-
cation. In steps 2 through 3 server 1 requests a Kerberos ticket for server 1
on the user’s behalf.

Step 2: The S4U2Proxy extension on server 1 requests a service ticket
for server 1 to the KDC on the user’s behalf (Kerberos TGS_REQ
message).

Step 3: The KDC returns a service ticket for server 1 to server 1. Even
though this new ticket is passed to server 1, it contains the user’s
authorization data (Kerberos TGS_REP message).

This clearly illustrates the authentication “transition”: A user who was
initially authenticated to server 1 using another authentication protocol is

Figure 5.23
Basic S4U2Self

operation. Server 1
Client

KDC

Server 2
S4U2Self

ST
Server 1

AC client

Ticket request for Server 1

User Authenticates
to Server 1 (any protocol)

TGS_REP Kerberos Reply

TGS_REQ Kerberos

ST
Server 1

AC client

Service
Ticket for
Server 1

Access
Control
Data
of Client

=

=

172 5.4 Advanced Kerberos topics

transparently authenticated to server 1 using the Kerberos protocol. Once
the user has authenticated using Kerberos to server 1 and the KDC has
issued a service ticket for server 1, server 1 (in fact, the S4U2Proxy exten-
sion) can reuse this ticket to request a ticket for server 2 on the user’s behalf.
This combined S4U2Self and S4U2Proxy operation is shown in Figure 5.24.

Configuring protocol transition

Configuring protocol transition is relatively easy. So far I did not explain
the “Use Kerberos only” and “Use any authentication protocol” configura-
tion options (as illustrated in Figure 5.21). These are exactly the options
that enable or disable the S4U2Self Kerberos extension. If you select “Use
any authentication protocol,” protocol transition will be possible; if you
select the other one, it will not.

In order for protocol transition to function correctly, the following two
conditions should also be met. They are both related to the service account
of the service or application that is requesting a new ticket on the user’s
behalf.

1. In order for the service to obtain an impersonation token, its ser-
vice account should have the “act as part of the operating system”
privilege. If this is not the case, the service will only get an identi-
fication token.

2. In order to get the user’s authorization data into the newly con-
structed user ticket, the service account also needs permission to
enumerate the user’s group memberships. This can be done by

Figure 5.24
Combined

S4U2Self operation
and S4U2Proxy

operation.

Server 1

KDC

Server 2
S4U2
Proxy

S4U2
Self

Ticket request for Server 1

User Authenticates
to Server 1

TGS_REP Kerberos Reply

ST
Server 1

AC client

ST
Server 2

ST
Server 1

AC client

AC client

ST
Server 2

AC client

TGS_REQ Kerberos

Client

TGS_REP Kerberos Reply

TGS_REQ Kerberos

AP_REQ Kerberos Request

Ticket request for Server 2
ST

Server 1

AC client

Service
Ticket for
Server 1

Access
Control
Data
of Client

=

=

5.4 Advanced Kerberos topics 173

Chapter 5

adding the service account to the ACL of the “TokenGroupsGlo-
balAndUniversal” user object attribute or by adding the service
account to the “Pre-Windows 2000 Compatible Access” group.

In the scenario illustrated in Figures 5.23 and 5.24, you would set up
protocol transition in the account properties of server 1. If in this scenario
the service impersonating the user is the IIS Web service, you would give
the extra permissions and privileges mentioned earlier to the IIS Web serv-
ice account.

A sample scenario

You can test the new Kerberos services in a small lab environment. Figure
5.25 shows the test scenario that I used. This scenario consists of a simple
Web application that queries an SQL Server database on the back end. The
database query is defined in a COM+ application that is running on the
Web server. The query is called from an ASP page. The Web server and
SQL server are members of the same domain. The client machine need not
necessarily be a domain member.

The goal of this test scenario from an authentication point of view is to
let the user use any authentication protocol (with the exception of Ker-
beros) to authenticate to the Web server. On the back end, to authenticate
to the COM+ application and the SQL Server database, we would like to
use Kerberos and Kerberos delegation. This can only be set up if the new
Kerberos services (S4U2Proxy and S4U2Self) are available on the Web
server. Table 5.3 summarizes the software requirements and configuration
options you need to keep in mind when setting this up.

Figure 5.25
Sample scenario.

Web Server
+

COM+
Application

Database
Server

Web Browser

Basic Auth
Certificate-based Auth

Digest Auth
MS Passport

Kerberos Auth

174 5.4 Advanced Kerberos topics

5.4.2 From authentication to authorization

In this section we will explain the link between Windows Server 2003
authentication and authorization in the context of a Kerberos authentica-
tion exchange. Figure 5.26 illustrates the link between these two core oper-
ating system security services.

Next we will explain how we get from the Kerberos ticket (the basic
entity used for authentication) to the access token (the basic entity used for
authorization). An important component in this process is the Kerberos
Privilege Attribute Certificate (PAC). Microsoft extended the base Kerberos
protocol to include authorization data (e.g., global group memberships). A
Windows Server 2003 ticket and TGT both contain a PAC.

Let us start off with a normal Kerberos authentication sequence. We are
once more dealing with three entities: a user (Alice), a resource server, and a

Table 5.3 Configuration of Different Components

Component Software Requirements and/or Configuration Settings

Web Browser Support for Basic authentication, Digest authentication, certificate-based authentication
(SSL), or MS Passport–based authentication.

The user account is a member of the domain.

Web Server Delegation settings for computer account:

Trust this computer for delegation to specified services only.
Use any authentication protocol.
Add the SQL service of the database server’s Service Principal Name (SPN) (A).
Web application is set to support Basic authentication, Digest authentication, certifi-
cate-based authentication (SSL), or MS Passport–based authentication.
The user has the appropriate access permissions to the Web site.
The Web server is a member of the domain.
Web server is running Windows Server 2003.

COM+ Application The impersonation level of COM+ application must be set to “delegate.”

The user has the appropriate access permission to the COM+ dll.

Database Server The SQL Server is configured to support Windows Integrated authentication.

The SQL Server service has a registered SPN that is the one referred to in the Web server’s
computer account delegation settings [see (A) above].

The user has the appropriate access permissions to the database.

The database server is a member of the domain.

The database server is running Windows 2000 or Windows Server 2003 and SQL Server
2000.

5.4 Advanced Kerberos topics 175

Chapter 5

Kerberos KDC. Once Alice’s workstation has located a domain controller, it
will request a TGT. The KDC will generate the PAC, embed the authoriza-
tion data listed next, put the PAC into a TGT, and send the TGT to Alice.

Alice’s global group memberships and domain local group member-
ships: These are available from the KDC’s local Active Directory
(Domain NC).

Alice’s universal group memberships: These are available:

In the global catalog. If the KDC server himself or herself does
not host a global catalog, the KDC service will need to query a
global catalog on another domain controller.
In the domain naming context of Alice’s logon domain. This is
only true if the site of Alice’s authenticating DC has universal
group caching enabled (see following side note). The GC-less
logon process or universal group caching is a new Windows Server
2003 feature that caches a user’s universal group membership in
the msDs-Cached-Membership attribute of a user account. Uni-
versal group memberships are cached in this attribute at the first
user logon instance and are by default refreshed every 8 hours.

The user rights assigned to Alice or any of her groups (universal, glo-
bal, and domain local). These are available from the domain control-
ler’s LSA database.

Table 5.4 gives an overview of which group memberships are available
where.

Figure 5.26
From Windows

Server 2003
authentication to

authorization.

PACPAC
Ticket

PAC
TGT

Universal Groups

Query GC

DC

DC + GC

AS_REQ-REP

TGS_REQ-REP

AP_REQ-REP

Access
Token

PAC
Ticket

Local Authorization
Information

SAM

Ticket

176 5.4 Advanced Kerberos topics

Alice then decides she wants to access a resource hosted on a member
server. Alice sends a request for a ticket to the KDC. This ticket will contain
the same PAC as the one contained in the TGT. The ticket is sent back to
Alice.

Alice authenticates to the resource server using the ticket. The LSA on
the resource server will generate Alice’s access token (for use in subsequent
authorization decisions). In the access token the LSA will embed:

Alice’s authorization data found in the ticket’s PAC (her universal,
global, and domain local group memberships and user rights,
assigned to her or any of the groups of which she is a member)

Alice’s authorization data found in the local security database (SAM):
These are the local group memberships of Alice, the local group
memberships of the groups (universal, global, or domain local) of
which Alice is a member, and the user rights of Alice and Alice’s
groups.

To look at the contents of your access token, use the whoami tool (with
the /all switch) that comes with the Windows Server 2003 code.

Key things to remember from this section are the following:

The PAC data are added to a ticket on the KDC level and are inher-
ited between subsequent TGT and ticket requests and renewals. The
PAC data are not refreshed at ticket-request time. This means that if a
user’s group memberships change during its logon session, he or she
will have to log off-log on (just as in NT4), wait for an automatic
TGT renewal to occur, or purge the Kerberos ticket cache (using the
klist or kerbtray utilities explained next). Note that even though

Table 5.4 Windows Server 2003 Groups: Group Membership and Definition Storage Locations

Group Type Group: Available Where? Group Membership: Available Where?

Universal group AD: Global catalog AD: Global catalog

AD: Domain NC: only if Universal
Group Caching (GC-less logon) is
enabled.

Global group AD: Global catalog AD: Domain NC

Domain local group AD: Domain NC AD: Domain NC

Local group Local machine: SAM Local machine: SAM

5.4 Advanced Kerberos topics 177

Chapter 5

Enabling a GC-Less Logon Process A GC-less logon or universal group caching is a
new Windows Server 2003 feature that enables Windows Server 2003 domain controllers to
cache a user’s universal group memberships in the msDS-Cached-Membership attribute of a
user account. It is enabled in the NTDS settings properties of a site object—as illustrated in
Figure 5.27.

Windows 2000 requires the availability of a GC server to retrieve a user’s universal
group membership when logging on to a domain. In Windows 2000 Microsoft provides a
workaround for this requirement by enabling DCs to ignore GC failures, when a GC
could not be contacted to find out about a user’s universal group memberships. This
workaround was based on a registry key called IgnoreGCFailures, which had to be added
to the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa registry folder
of every DC. This hack also took away the possibility to use universal groups in a Window
2000 forest. (This is documented in Microsoft Knowledge Base article Q241789.)

The new Windows Server 2003 feature does not fully take away the need to put a GC in
every site—or at least to have one reachable GC for every site. Although GCs are not
needed anymore to find out about a user’s universal group memberships, you still need
them to resolve UPN names when users are logging on using a UPN.*

* This UPN resolution process will only occur when using alternate UPN suffixes. These are suffixes that are different
from the standard suffixes as they occur in the Windows DNS domain names.

Figure 5.27
Enabling a GC-less

logon process.

178 5.4 Advanced Kerberos topics

Windows does not refresh the authorization data it will check
whether the account hasn’t been disabled (see also the sidenote on
“Kerberos and disabled accounts”).

Unless you have enabled the GC-less logon process (see the previous
side note), the presence of at least one domain controller hosting a
global catalog per domain tree is mandatory to log on a normal user.
An exception to this rule is accounts that are member of the Adminis-
trators or Domain Administrators groups: They can log on even
when a global catalog server is not available.

Kerberos and Disabled Accounts The following example illustrates how the fact
that Kerberos TGTs are reusable as long as they are valid, together with the action of dis-
abling a Windows account can lead to security holes in a Windows multi-domain environ-
ment. The AD environment illustrated in Figure 5.28 consists of a single forest with a single
domain tree. A user’s Windows account and machine account are defined in domain emea,
a file server is part of the asiapac domain. When the user logs on to emea, he or she will
receive a TGT for the emea domain. When the user accesses the file server in asiapac he or
she will in addition get a TGT for the asiapac domain (see also Section 5.3.2). When the
administrator disables the user account in emea, he or she won’t be able to get any more
tickets for resources in emea. The user will however still be able to get new tickets for
resources in the asiapac domain—this will be possible as long as the user’s TGT for asiapac
remains valid. The reason for this is that the DCs in the asiapac domain don’t check the
user’s account status when they issue tickets.

Figure 5.28
Kerberos and

disabled accounts:
Example

emea.hp.com asiapac.hp.com

hp.com

TGT for emea

TGT for asiapac

5.4 Advanced Kerberos topics 179

Chapter 5

5.4.3 Analyzing the Kerberos ticket and authenticator

This section provides some inside information on the Kerberos ticket and
authenticator. The concepts of a ticket and an authenticator and the rela-
tionship between the two are illustrated in Figure 5.29.

Remember that the primary purpose of a ticket is to securely transport
the session key to be used for authentication between two entities. A ticket
can only be decrypted by a KDC and the destination resource server. This
way the client cannot decrypt and change its own authorization data (the
information contained in the PAC). An authenticator is the Kerberos object
that is providing the actual authentication. An authenticator can be
checked by anyone possessing the corresponding session key. A detailed
overview of the content of both the ticket and the authenticator is given in
the following sections.

Ticket content

Table 5.5 shows the ticket fields, their meaning, and whether they are sent
in encrypted format across the network.

Kerberos encryption types

Windows Server 2003 Kerberos supports the following cryptographic algo-
rithms: RC4-HMAC, DES-CBC-CRC, and DES-CBC-MD5. The default
encryption algorithm is “RC4-HMAC”—it was defined in an Internet draft
called draft-brezak-win2k-krb-rc4-hmac-05.txt.

The default Kerberos encryption type can be changed using the “Use
DES encryption types for this account” AD account property. The property
can be set in the account options, which are available from the account tab
in the account properties. Enabling this property is required when you’re
looking after UNIX and Windows Kerberos interoperability. DES encryp-
tion is the default in most UNIX Kerberos implementations.

Figure 5.29
Relationship

between Kerberos
ticket and

authenticator.

Ticket

PACSSusus

Alice +
Timestamp

Authenticator

SSususMMss

180 5.4 Advanced Kerberos topics

There are two reasons why Microsoft did not use DES as the default
algorithm:

Ease of upgrading from NT4 to Windows 2000 or Windows Server
2003. The key used for RC4-HMAC can also be used with the Win-
dows NT 4 Password Hash.

Export law restrictions. In the early stages of the Windows 2000 devel-
opment, 56-bit DES could not be exported outside of the United
States. Because MS wanted to use the same Kerberos encryption tech-
nology in both the domestic and export versions of the product, they
chose the 128-bit RC4-HMAC alternative. RC4-HMAC was already
exportable at that point in time.

Table 5.5 Kerberos Ticket Content

Encrypted? Name Meaning

Tkt-vno Version number of the ticket format.

Realm Name of the realm (domain) that issued the ticket.

Sname Name of the server (Principal name).

✓ Flags Ticket options. These are explained in more detail later in the chapter.

✓ Key Session key.

✓ Crealm Name of the client’s realm (domain).

✓ Cname Client’s name (Principal name).

✓ Transited Lists the Kerberos realms that took part in authenticating the client to whom the
ticket was issued.

✓ Authtime Time of initial authentication by the client. The KDC places a timestamp in this
field when it issues a TGT. When it issues tickets based on a TGT, the KDC copies
the authtime of the TGT to the authtime of the ticket.

✓ Starttime (Optional) Time after which the ticket is valid.

✓ Endtime Ticket’s expiration time.

✓ Renew-till (Optional) Time period during which the ticket is automatically renewed without
the client having to provide his or her master key.

✓ Caddr (Optional) One or more addresses from which the ticket can be used. If omitted, the
ticket can be used from any address.

✓ Authorization
data

(Optional) Privilege attributes for the client. Microsoft calls this part the Privilege
Attribute Certificate (PAC).

5.4 Advanced Kerberos topics 181

Chapter 5

The algorithm used for a Kerberos ticket can be checked using the
“klist” or “kerbtray” resource kit utilities. These utilities are explained later
in this chapter.

Table 5.6 shows the algorithms and their supported key lengths. When
the Windows 2000 “Strong encryption fix” has been installed, RC4-
HMAC can use 128-bit keys for bulk encryption. This is the default in
Windows Server 2003. A Windows domain can contain a mix of clients
with and without the fix installed. Windows Kerberos will automatically
choose the strongest available encryption algorithm.

The Privilege Attribute Certificate

The Privilege Attribute Certificate (PAC) enables the Kerberos protocol to
transport authorization data—in the Windows case these data are user
group memberships and user rights. We already explained part of the rea-
son for existence of the PAC in the section on “From authentication to
authorization.”

Shortly after the release of Windows 2000, Microsoft received some
negative press attention because of the proprietary way they used the PAC
field in a Kerberos ticket. This forced Microsoft to release the PAC specifi-
cations. They can be downloaded from http://www.microsoft.com/
downloads/details.aspx?displaylang=en&familyid=BF61D972-5086-49FB-
A79C-53A5FD27A092. This document can be used only for informational
purposes; it explicitly forbids the creation of software that implements the
PAC as described in the specifications. A summary of the specifications can
be found at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnkerb/html/MSDN_PAC.asp. Microsoft also submitted their PAC def-
inition as an Internet Draft to the IETF—it’s called draft-brezak-win2K-
krb-authz-01.txt.

Most non-Microsoft Kerberos implementations ignore the PAC field and
its content. Interoperability issues may arise though if a user is a member of a

Table 5.6 Kerberos Encryption Types: Key Lengths in Bits

Algorithm Authentication Signing
Confidentiality
Protection

RC4-HMAC 128 128 128 (56)

DES-CBC-CRC 56 56 56

DES-CBC-MD5 56 56 56

182 5.4 Advanced Kerberos topics

large amount of groups. In that case, the PAC size may become so big that it
cannot be transported in a single UDP packet anymore. If this happens, a
Windows KDC will request the client to switch to TCP, which cannot be
done by some of the early Kerberos implementations (see also Section 5.5.3).

An important PAC security detail is that its content is digitally signed.
By signing the authorization data, a hacker cannot make modifications to
the data without being detected. This was possible in NTLM version 1:
Authorization data for part of NTLM version 1 messages were not pro-
tected. Microsoft corrected this error in NTLM version 2, which is
included in Windows 2000, XP, Windows Server 2003, and all the NT4
Service Packs from SP4 onward (see also Chapter 4 for more information).

The Kerberos PAC content is signed twice:

Once with the master key of the KDC (this is the master key linked
to the krbtgt account). This signature prevents malicious server-side
services from changing authorization data. The LSA on the server
side will require a validation of the signature for every ticket coming
from a service that is not running using the local system account. To
validate the signature, the server will need to set up a secure channel
with the KDC that signed the authorization data. This extra valida-
tion step might remind you of NTLM and its pass-through authenti-
cation. This time, however, the pass-through is not used for
validation of a response but for validation of a digital signature.

Once with the master key of the destination service’s service account
(the destination service is the one responsible for the resource the user
wants to access). This is the same key as the one used to encrypt the
ticket content. This signature prevents a user from modifying the
PAC content and adding its own authorization data.

The Kerberos ticket has a fixed size, which indirectly also limits the PAC
size. If a user is a member of a large amount of groups, this size may be
exceeded and, as a consequence, authentication and group policy processing
may fail. Microsoft allows you to adjust the maximum size of a Kerberos
ticket using the MaxTokenSize registry parameter. This parameter is a
REG_DWORD value and is contained in the HKEY_LOCAL_MA-
CHINE\System\CurrentControlSet\Control\Lsa\Kerberos registry con-
tainer. The value should be adjusted on all Windows machines users are
logging from to a domain to using Kerberos.

In Windows 2000, the default MaxTokenSize value is 8,000 bytes. In
Windows 2000 Service Pack 2 (SP2) and Microsoft Windows Server 2003,
the default value is 12,000 bytes.

5.4 Advanced Kerberos topics 183

Chapter 5

The MaxTokenSize parameter is documented in Microsoft Knowledge
Base article Q327825.

In order to reduce the PAC size, Microsoft implemented a new method
to store authorization data in the PAC in Windows 2000 Service Pack 4
(SP4) and later, and in Windows Server 2003. This solution is also available
as a hotfix for pre-Windows 2000 SP4 machines (see also Q327825). This
new PAC authorization data storage method can be summarized as follows:

If the global and universal groups a user belongs to are local to the
domain the user is in, then only the RID (relative identifier) is stored.

If the groups are local groups or are from other domains, the entire
SID is stored.

This means for example that instead of storing an “S-1-5-21-
1275210071-789336058-1957994488-3140” value (the SID), you would
only store the “3140” value (the RID) in the PAC. Microsoft provides a
special process on the client and server side to explode the RIDs back to the
SID format during the Windows authorization process.

Even on platforms where this new PAC authorization data storage
method is available, it may be required that the maxtokensize registry value
be adjusted.

Kerberos preauthentication data

“Preauthentication” is a feature introduced in Kerberos version 5. With pre-
authentication data, a client can prove the knowledge of its password to the
KDC before the TGT is issued. In Kerberos version 4, anyone, including a
hacker, can send an authentication request to the KDC; the KDC does not
care. It does not even care about authenticating the client: Authentication is
completely based on the client’s ability to decrypt the packet returned from
the KDC using its master key.

Preauthentication also lowers the probability of an offline password-
guessing attack. Without preauthentication data, it is easy for a hacker to
do an offline password-guessing attack13 on the encrypted packets returned
from the KDC. A hacker can send out dummy requests for authentication;
each time he or she will get back another encrypted packet, which means he
or she gets another chance to make a brute-force attack on the encrypted
packet and to guess the user’s master key.

13. During an offline password-guessing attack, a hacker intercepts an encrypted packet, takes it offline, and tries to break it
using different passwords This kind of offline attack is also known as a brute-force attack: The hacker tries out different
keys (in this case “passwords”) to decrypt a packet until he or she finds the right key that decrypts the packet in cleartext.

184 5.4 Advanced Kerberos topics

In a standard Kerberos authentication sequence, the preauthentication
data consist of an encrypted timestamp. When logging on using a smart
card, the preauthentication data consist of a signed timestamp and the
user’s public key certificate. In Windows 2000 and Windows Server 2003,
preauthentication is the default. An administrator can turn it off using
the “Do not require Kerberos preauthentication” checkbox in the account
properties (“account” tab). This might be required for compatibility with
other implementations of the Kerberos protocol. Preauthentication affects
the content of a ticket: Every ticket contains a special flag that is reserved
for preauthentication.

Authenticator content

Table 5.7 shows the authenticator fields, their meaning, and whether they
are sent in encrypted format across the network.

TGT and ticket flags

In this section, we will analyze the content of a Kerberos TGT and a service
ticket; we will focus on the TGT and ticket “flags.” The ticket flags and
their meaning are explained in Table 5.8.

Next are some important notes on usage of the ticket flags in Windows
2000 and Windows Server 2003 Kerberos.

By default, every ticket has the “forwardable” flag set. This default
behavior can be reversed by setting the “account is sensitive and can-

Table 5.7 Kerberos Authenticator Content

Encrypted? Name Meaning

✓ Authenticator-vno Version number of the authenticator format. In Kerberos v.5 it is 5.

✓ Crealm Name of the realm (domain) that issued the corresponding ticket.

✓ Cname Name of the server that issued the corresponding ticket (Principal name).

✓ Cksum (Optional) Checksum of the application data in the KRB_AP_REQ.

✓ Cusec Microsecond part of the client’s timestamp.

✓ Ctime Current time on client.

✓ Subkey (Optional) Client’s choice for an encryption key to be used to protect an
application session. If left out, the session key from the ticket is used.

✓ Seq-number (Optional) Initial sequence number to be used by the KRB_PRIV or
KRB_SAFE messages (protection against replay attacks).

5.4 Advanced Kerberos topics 185

Chapter 5

not be delegated” property on an account object. Windows 2000 and
Windows Server 2003 Kerberos do not support “proxy” tickets.

By default, every ticket has the “renewable” flag set. When a ticket
expires and a new ticket is needed, the system will not automatically
request a new ticket (a TGT or a service ticket) (automatic ticket
requests will work as long as a user’s cached credentials are available).

By default, every ticket has the “preauthenticated” flag set.

Every Windows 2000 TGT has the “initial” flag set.

Table 5.8 Kerberos Ticket Flags

Flags Meaning

Forwardable Indicates to the ticket-granting server that it can issue a new Ticket Granting Ticket
with a different network address based on the presented ticket.

Forwarded The ticket has either been forwarded or was issued based on authentication involving a
forwarded Ticket Granting Ticket.

Proxiable Indicates to the ticket-granting server that only nonticket-granting tickets may be
issued with different network addresses.

Proxy The ticket is a proxy ticket.

May be postdated Indicates to the ticket-granting server that a postdated ticket may be issued based on
this Ticket Granting Ticket.

Postdated Indicates that a ticket has been postdated. The end service can check the ticket’s auth-
time field to see when the original authentication occurred.

Invalid The ticket is invalid.

Renewable The ticket is renewable. If this flag is set, the time limit for renewing the ticket is set in
RenewTime. A renewable ticket can be used to obtain a replacement ticket that expires
later.

Initial The ticket was issued using the AS protocol instead of being based on a Ticket Grant-
ing Ticket.

Preauthenticated Indicates that, during initial authentication, the client was authenticated by the KDC
before a ticket was issued. The strength of the preauthentication method is not indi-
cated, but is acceptable to the KDC.

Hardware
preauthentication

Indicates that the protocol employed for initial authentication required the use of
hardware expected to be possessed solely by the named client. The hardware authenti-
cation method is selected by the KDC and the strength of the method is not indicated.

Target trusted for delega-
tion (OK as delegate)

This flag means that the target of the ticket is trusted by the directory service for dele-
gation.

186 5.4 Advanced Kerberos topics

A ticket has the “Target trusted for delegation” (OK as delegate) flag
set if the service or user account for which the ticket was issued has
the “account is trusted for delegation” property set, or, in the case of a
computer account, if the computer object has “trust computer for
delegation” set.

A single ticket can contain multiple flags. The flags are added to a
ticket’s properties as a hexadecimal 8-bit number, of which only the first 4
bits are significant. One bit can refer to different flags. If flags refer to the
same bit position, they are added hexadecimally. This hexadecimal number
is displayed when looking at the TGTs in the Kerberos ticket cache using
the resource kit tool “klist”; the other resource kit tool “kerbtray” automati-
cally converts the number to its appropriate meaning.

5.4.4 Kerberized applications

Kerberized applications are applications that use the Kerberos authentica-
tion protocol to provide authentication (and maybe in a later phase to pro-
vide encryption and signing for subsequent messages). Windows 2000 and
Windows Server 2003 include the following Kerberized applications:

LDAP to AD

CIFS/SMB remote file access. Common Internet File System (CIFS)
is the new name of Microsoft’s SMB protocol that is mainly used for
file and print sharing.

Secure dynamic DNS update

Distributed File System Management

Host to Host IPsec using ISAKMP

Secure intranet Web services using IIS

Authenticate certificate request to certification authority (CA)

DCOM RPC security provider

Smart card logon process

Windows 2000 and Windows Server 2003 include extensions to Kerberos
Version 5 to support public-key–based authentication. These extensions are
known as PKINIT—which stands for use of Public Key cryptography for
INITial authentication—and are defined in an IETF Internet draft available
from http://www.ietf.org. PKINIT enables the smart card logon process to
a Windows 2000 or later domain. PKINIT allows a client’s master key to be
replaced with its public key credentials in the Kerberos Authentication

5.4 Advanced Kerberos topics 187

Chapter 5

Using Klist and Kerbtray The Windows Server 2003 Resource Kit contains two utili-
ties you can use to look at the content of the Kerberos ticket cache: kerbtray.exe (illustrated
in Figure 5.30) and klist.exe (illustrated in Figure 5.31). Kerbtray.exe is a GUI tool, and
klist.exe is a command-line tool. Both tools can be used to display and/or purge the content
of the Kerberos ticket cache.

To bring up the kerbtray dialog box and look at your logon session’s Kerberos ticket
cache, double-click the kerbtray icon in the status area of your Windows desktop. The kerb-
tray icon is only displayed if you started the kerbtray program—it looks like a green ticket.
The upper pane of the kerbtray dialog box shows all Kerberos tickets (both service tickets
and TGTs) that are cached in your logon session’s Kerberos ticket cache. The lower part of
the dialog box has four tabs: Names, Times, Flags, and Encryption Types. The content of
these tabs differs depending on the ticket that is selected in the upper pane.

The Names tab shows the name of the security principal the Kerberos ticket was
issued to [this is the user’s User Principal Name (UPN)], together with the name of
the service for which the ticket was issued [this is the service’s Service Principal Name
(SPN)].

The Times tab shows the validity period of the ticket: its start and end time. For both
TGTs and tickets, the default validity period is 10 hours.

The Flags tab shows the Kerberos ticket flags that have been set in the ticket. Exam-
ples of ticket flags are the forwarded and proxy flags used during the Kerberos delega-
tion process. For a more detailed explanation of all the Kerberos ticket flags, I refer to
the Kerberos Version 5 (V5) standard document [Request For Comments (RFC)
1510], which can be downloaded from the IETF Web site at http://www.ietf.org.

Finally, the Encryption Types tab shows the names of the symmetric encryption algo-
rithms that were used by the Kerberos software to encrypt the tickets’ content.

Figure 5.30
Looking at the
Kerberos ticket
cache using the

Klist utility.

188 5.4 Advanced Kerberos topics

To purge the tickets in the Kerberos ticket cache, right-click the kerbtray icon in your
desktop’s status area and select Purge Tickets. This option deletes all tickets in your ticket
cache. Use this option with extreme caution: Deleting tickets may stop you from authenti-
cating to other Windows services during your logon session. If you have purged your tick-
ets, you can only obtain new ones by logging off and then logging on again.

To display the content of the Kerberos ticket cache using the klist command-line utility,
type the following at the command prompt:

Klist tickets

or

Klist tgt

The first command will bring up the service tickets in the cache, and the second com-
mand will bring up the TGTs in the cache. To purge the cache from the command line,
type:

Klist purge

Again, use the latter command with extreme caution.

The kerbtray utility displays more ticket information than the klist utility does—it also
displays the information in a much more readable format. For example, the klist utility dis-
plays the TGT tickets flags altogether in a single hexadecimal string: It is up to the user to
decipher this string and retrieve the associated ticket flags.

Figure 5.31
Looking at the
Kerberos ticket
cache using the

Kerbtray utility.

5.4 Advanced Kerberos topics 189

Chapter 5

Request (KRB_AS_REQ) and Reply (KRB_AS_REP) messages. This is
illustrated in Table 5.9.

PKINIT introduces a new trust model (illustrated on the right side of
Figure 5.32) in which the KDC is not the first entity to identify the users
(as is the case for classical Kerberos). Before KDC authentication, users are
identified by the certification authority in order to obtain a certificate. In
this new model the users and the KDC obviously both need to trust the
same CA.

Figure 5.33 shows the way the Kerberos smart card logon process works
(notice that the cryptic names of the Kerberos messages have changed):

Alice starts the logon process by introducing her smart card and by
authenticating to the card using her PIN code. The smart card con-
tains Alice’s public key credentials: her private key and certificate.

A TGT request is sent to the KDC (AS); this request contains the fol-
lowing (PA-PK-AS-REQ):

Alice’s principal name and a timestamp
The above signed with Alice’s private key
A copy of Alice’s certificate

Table 5.9 Mapping the Standard Kerberos “Master Key” to the PKINIT “Public-Private Key”

Standard Kerberos Usage of Master Key PKINIT Replacement

Client-side encryption of the preauthentication data Private key

KDC-side decryption of the preauthentication data Public key

KDC-side encryption of session key Public key

Client-side decryption of session key Private key

Figure 5.32
Smart card logon

trust model.

CA
KDCKDC

Standard Kerberos V5 Kerberos PKINIT

190 5.5 Kerberos configuration

To validate the request and the digital signature on it, the KDC will
first validate Alice’s certificate. The KDC will then query the Active
Directory for a mapping between the certificate and a Windows
account. If it finds a mapping, it will issue a TGT to the correspond-
ing account.

The KDC sends back the TGT to Alice. Alice’s copy of the session is
encrypted with her public key (PA-PK-AS-REP).

To retrieve her copy of the session key, Alice uses her private key.

We will come back to smart card support in Windows Server 2003 in
Chapter 17.

5.5 Kerberos configuration

5.5.1 Kerberos GPO settings

The Windows Server 2003 Account Policies [Part of the Group Policy
Object (GPO) computer configuration] include a special subfolder for Ker-
beros-related policy settings (illustrated in Figure 5.34). It contains the fol-
lowing GPO entries:

Enforce user logon restrictions: This setting enforces the KDC to
check the validity of a user account every time a ticket request is sub-
mitted. If a user does not have the right to log on locally or if his or
her account has been disabled, he or she will not get a ticket. By
default, the setting is on.

Figure 5.33
Smart card logon

process.
CA

KDC

Certificate Publishing

Trust + Cert
Mapping?

Trust + Cert

Active Directory

Principal Name +
Timestamp

Session
Key

TGT

CertDig
Sig

Request for TGT

TGT Reply

SID Cert

5.5 Kerberos configuration 191

Chapter 5

“Maximum lifetime for service ticket”: In Microsoft terminology, a
service ticket is a plain Kerberos ticket. Its default lifetime is 10
hours.

“Maximum lifetime for user ticket”: In Microsoft terminology, a user
ticket is a Kerberos TGT. Its default lifetime is 10 hours.

“Maximum lifetime for user ticket renewal”: By default, the same
ticket [service or user ticket (TGT)] can be renewed up until 7 days
after its issuance. After 7 days, a brand-new ticket has to be issued.

Maximum tolerance for computer clock synchronization: This is the
maximum time skew that can be tolerated between a ticket’s time-
stamp and the current time at the KDC. Kerberos is using a time-
stamp to protect against replay attacks. Setting this setting too high
creates a bigger risk for replay attacks. The default setting is 5 minutes.

These Kerberos policies can only be set on a per-domain basis (the same
is true for account lockout policies and password policies). You cannot
define, for example, different Kerberos account policy settings per individ-
ual organizational unit (OU).

Another Kerberos-related GPO entry is located in Local policies\user
rights assignment: “enable computer and user accounts to be trusted for
delegation” sets the “trusted for delegation” property of user and computer
objects in a domain, site, or organizational unit. Kerberos delegation was
explained earlier in this chapter.

Figure 5.34
Kerberos-related

GPO settings.

192 5.5 Kerberos configuration

5.5.2 Kerberos-related account properties

Every Windows 2000 user account has a set of Kerberos-related properties.
Most of them are related to Kerberos delegation, and one is related to the
use of preauthentication.

Every user account has the property “Account is sensitive and cannot be
delegated.” Every machine account has a special delegation tab in its prop-
erties that can be used to define machine-related Kerberos delegation set-
tings. This is a brand-new tab in the machine properties that was not
available in Windows 2000. The details behind the machine-related delega-
tion settings were explained in Section 5.4.1. One more point worthy of
mentioning is that domain controllers are by default trusted for delegation.
If a user account has the “account is sensitive and cannot be delegated”
property set, the administrator instructs the KDC not to issue any forward-
able tickets to that particular user account.

The “Use DES encryption types for this account” account property
changes the default Kerberos encryption type from RC4 to DES (as
explained in Section 5.4.3).

Every user account also has a “Do not require Kerberos preauthen-
tication” property. This setting must be enabled when the account is used in
a Kerberos implementation or application that supports preauthentication.
This is usually the case in UNIX Kerberos implementations. Windows Ker-
beros preauthentication was discussed earlier in this chapter.

5.5.3 Kerberos transport protocols and ports

RFC 1510 defines that a Kerberos client should connect to a KDC (port
88) using the connectionless UDP protocol. Microsoft Kerberos by default
uses UDP. Microsoft Kerberos can also use TCP to take advantage of TCP’s
bigger Maximum Transmission Unit (MTU) capacity. Microsoft uses TCP
if the ticket size is bigger than 2 kB. Any ticket fitting in a packet of 2 kB is
sent using UDP, which has a 1,500-octet MTU limit. The Windows 2000
Kerberos ticket can easily grow beyond this limit if it is carrying a large PAC
field—this can, for example, occur when a user is a member of a large num-
ber of groups.

The default 2-kB limit can be changed using the following registry hack.
Setting this value to 1 will force Kerberos to use TCP all the time.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\
Kerberos\Parameters
Value Name: MaxPacketSize

5.5 Kerberos configuration 193

Chapter 5

Data Type: REG_DWORD
Value: 1—2000 (in bytes)

Kerberos uses port 88 on the KDC side and a variable port on the client
side. If your Kerberos clients communicate only with KerberosV5 KDCs
(the Kerberos version used in Windows 2000 and Windows Server 2003),
it is enough to keep port 88 open on your firewall. If they communicate
with KerberosV4 KDCs, you must also open port 750. Table 5.10 gives an
overview of all Kerberos-related ports.

5.5.4 Kerberos time sensitivity

Time is a critical service in Windows 2000 and Windows Server 2003.
Timestamps are needed for directory replication conflict resolution, but
also for Kerberos authentication. Kerberos uses timestamps to protect
against replay attacks. Computer clocks that are out of sync between clients
and servers can cause authentication to fail or extra authentication traffic to
be added during the Kerberos authentication exchange.

To illustrate the importance of time for Kerberos authentication, let’s
look at what really happens during a KRB_AP_REQ and KRB_AP_REP
Kerberos exchange:

1. A client uses the session key it received from the KDC to encrypt
its authenticator. The authenticator is sent out to a resource
server together with the ticket.

Table 5.10 Kerberos-Related Ports

Port Protocol Function Description

88 UDP TCP Kerberos V5

750 UDP TCP Kerberos V4 Authentication

751 UDP TCP Kerberos V4 Authentication

752 UDP Kerberos password server

753 UDP Kerberos user registration server

754 TCP Kerberos slave propagation

1109 TCP POP with Kerberos

2053 TCP Kerberos demultiplexer

2105 TCP Kerberos encrypted rlogin

194 5.5 Kerberos configuration

2. The resource server compares the timestamp in the authenticator
with its local time. If the time difference is within the allowed
time skew, it goes to step (4). By default, the maximum allowed
time skew is 5 minutes—this setting can be configured through
domain-level GPOs.

3. If step (2) failed, the resource server sends its local current time to
the client. The client then sends a new authenticator using the
new timestamp it received from the resource server.

4. The resource server compares the timestamp it received from the
client with the entries in its “replay cache” (this is a list of recently
received timestamps). If it finds a match, the client’s authentica-
tion request will fail. If no match is found, client authentication
has succeeded, and the resource server will add the timestamp to
its replay cache.

The service responsible for time synchronization between Windows
2000, Windows XP, and Windows Server 2003 computers is the Windows
Time Synchronization Service (W32time.exe). The Windows time service
is compliant with the Simple Network Time Protocol (SNTP) as defined in
RFC 1769 (available from http://www.ietf.org/rfcs/rfc1769.txt). SNTP
makes sure that the computer clocks are within 20 seconds of each other. A
protocol that can provide more accurate time synchronization than SNTP
is the Network Time Protocol (NTP). NTP is defined in RFC 1305 (avail-
able from http://www.ietf.org/rfcs/rfc1305.txt). Because the Windows
2000 AD replication and Kerberos do not require the level of time accuracy
offered by NTP, the Windows developers decided to implement the SNTP
protocol as the time protocol for Windows 2000 and later OSs.

Basic SNTP operation

All Windows 2000, XP, and Windows Server 2003 machines have the
W32Time service installed by default. In the service list the service is
referred to as the Windows Time service—in Windows Server 2003 and XP
it is started automatically. The time service will automatically perform time
synchronization at machine startup and at regular intervals (initially every 8
hours).

At machine startup, the client contacts an authenticating domain con-
troller and exchanges packets to determine the latency of communication
between the two computers. W32time will determine what time the local
machine time should be converged to—this time is referred to as the target
time. If the target time is ahead of local time, local time is immediately set

5.5 Kerberos configuration 195

Chapter 5

to the target time. If the target time is behind local time, the local clock is
slowed over the next 20 minutes to align the two times, unless local time is
more than 2 minutes out of synchronization, in which case the time is
immediately set.

At regular intervals, the client machine will perform periodic time
checks. To do this the client connects to the “inbound time partner” (the
Windows authenticating domain controller) once each “period.” The initial
period is 8 hours. If the local time is off from the target time by more than
2 seconds, the interval check period is divided in half. This process is
repeated at the next interval check until either:

The local time and target time remain within 2 seconds of each other.

The interval frequency is reduced to the minimum setting of 45 min-
utes.

If accuracy is maintained within 2 seconds, the interval check period is
doubled, up to a maximum period of 8 hours.

The default time convergence hierarchy constructed in a Windows 2000
and Windows Server 2003 forest follows the following rules:

All client desktops and member servers nominate as their inbound
time partner the authenticating domain controller. If this domain
controller becomes unavailable, the client reissues its request for a
domain controller.

All domain controllers in a domain nominate the primary domain
controller (PDC) emulator Flexible Single Master Operation
(FSMO) to be the inbound time partner.

All PDC emulator FSMOs in the enterprise follow the hierarchy of
domains in their selection of an inbound time partner.

The PDC emulator FSMO at the root of the forest is authoritative
and can be manually set to synchronize with an outside time source.

Many organizations also rely on an external time source for time syn-
chronization. This usually means that the PDC emulator of their root
domain synchronizes with an external time server. In organizations that
have a Windows forest that is geographically spread out, an external time
source for a DC in every geography may be preferred over one time source
for the root domain only.

The external time source can be a time server on the Internet such as the
server of the Swiss Federal Institute of Technology in Zurich. It can also be
a time server appliance hosted in the enterprise—one of the companies sell-

196 5.5 Kerberos configuration

ing time server appliances is Symmetricom (previously known as Datum—
more info at http://www.datum.com).

A sample SNTP hierarchy is shown in Figure 5.35. This default SNTP
hierarchy can be modified by using the utilities that will be explained in the
next section.

Configuring the windows time service

Microsoft provides two tools to configure and diagnose the Windows Time
service:

Net time—which is used to configure the time service and the syn-
chronization hierarchy. The following net time command will change
the time server on the local machine to mytimeserver.hp.com:

Net time /setsntp:mytimeserver.hp.com

w32tm—which is used to diagnose and configure the time service.
For example, to monitor and analyze the time synchronization in the
hp.com domain, I would type:

w32tm /monitor /domain:hp.com

Both tools allow you to configure the time hierarchy to use the Win-
dows defaults (as explained earlier in this section) or to use special desig-
nated time servers.

In Windows Server 2003, Microsoft added a new section in the GPO
settings to configure the Windows Time Service. You can find it under
Computer Configuration\Administrative Templates\System\Windows

Figure 5.35
Sample SNTP

hierarchy.
PDC

Emulator

PDC
Emulator

PDC
Emulator

DC DC DC

WS WS WS WS

NA.hp.com

Europe.hp.com

hp.com

External
Time Source

5.6 Kerberos and authentication troubleshooting 197

Chapter 5

Time Service. The time service’s configuration data are kept in the follow-
ing registry key: HKEY_LOCAL_MACHINE\System\CurrentControlSet\
Services\w32Time.

For many more Windows time service configuration details, read the
Microsoft white paper available from http://www.microsoft.com/win-
dows2000/docs/wintimeserv.doc.

5.6 Kerberos and authentication troubleshooting

In the next two sections, we will explore some basic Kerberos and Windows
Server 2003 authentication troubleshooting tools. An indispensable tool for
every administrator is the Event Viewer. The next section will list some com-
mon Kerberos error messages as they appear in the Event Viewer. The follow-
ing side note explains how to enable advanced Kerberos event logging.

5.6.1 Kerberos error messages

In Windows Server 2003, Microsoft included some Kerberos-specific event
IDs. They are listed in Table 5.11. If you want to go even more in detail,
Table 5.12 shows the Kerberos-related error messages as they appear in the
Windows Event Viewer. Both can give interesting hints when troubleshoot-
ing Kerberos authentication problems.

Enabling Advanced Kerberos Event Logging Advanced Kerberos event logging
can be enabled using the following Windows registry hack. Set the Loglevel registry key
(REG_DWORD) to value 1. Loglevel is located in the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\Kerberos\Param-
eters.

Table 5.11 Kerberos-Specific Event IDs

Event ID Meaning

672 An authentication service (AS) ticket was successfully issued and validated.

673 A ticket granting service (TGS) ticket was granted.

674 A security principal renewed an AS ticket or TGS ticket.

675 Kerberos preauthentication failed. This event is generated on a key distri-
bution center (KDC) when a user types in an incorrect password.

198 5.6 Kerberos and authentication troubleshooting

Table 5.12 Kerberos Error Messages and Meaning

Code Short Meaning Error Explanation

0x6 Client Principal unknown The KDC could not translate the client principal name from the KDC
request into an account in the Active Directory. To troubleshoot this error,
check whether the client account exists in AD, whether it has not expired,
and whether AD replication is functioning correctly.

0x7 Server Principal unknown The KDC could not translate the server principal name from the KDC
request into an account in the Active Directory. To troubleshoot this error,
check whether the client account exists in AD, whether it has not expired,
and whether AD replication is functioning correctly.

0x9 Null key error Keys should never be null (blank). Even null passwords generate keys
because the password is concatenated with other elements to form the key.

0xE Encryption type not sup-
ported

The client tried to use an encryption type that the KDC does not support,
for any of the following reasons: The client’s account does not have a key
of the appropriate encryption type; the KDC account does not have a key
of the appropriate encryption type; the requested server account does not
have a key of the appropriate encryption type. The type may not be recog-
nized at all, for example, if a new type is introduced. This happens most
frequently with MIT compatibility, where an account may not yet have an
MIT-compatible key. Generally, a password change must occur for the
MIT-compatible key to be available.

0x17 Password has expired This error can be caused by conflicting credentials. Let the user log off and
then log on again to resolve the issue.

0x18 Preauthentication failed This indicates failure to obtain ticket, possibly due to the client providing
the wrong password.

0x1A Requested server and ticket
do not match

This error will occur when a server receives a ticket destined for another
server. This problem can be caused by DNS problems.

0x1F Integrity check on decrypted
field failed

This error indicates that there is a problem with the hash included in a
Kerberos message. This could be caused by a hacker attack

0x20 Ticket has expired This is not a real error; it just indicates that a ticket’s lifetime has ended
and that the Kerberos client should obtain a new ticket.

0x22 Session request is a replay This error indicates that the same authenticator is used twice. This can be
caused by a hacker attack.

0x19 Preauthentication error The client did not send preauthentication, or did not send the appropriate
type of preauthentication, to receive a ticket. The client will retry with the
appropriate kind of preauthorization (the KDC returns the preauthentica-
tion type in the error).

0x25 Clock skew too great There is time discrepancy between client and server or client and KDC. To
resolve this issue, synchronize time between the client and the server.

5.6 Kerberos and authentication troubleshooting 199

Chapter 5

5.6.2 Troubleshooting tools

Microsoft delivers several tools to troubleshoot Kerberos (see Table 5.13).
They are spread across the resource kit, the support tools, and the platform
SDK. Most of them are command prompt tools.

0x26 Bad address in Kerberos ses-
sion tickets

Session tickets include the addresses from which they are valid. This error
can occur if the address sending the ticket is different from the valid
address in the ticket. A possible cause of this could be an Internet Protocol
(IP) address change. In Windows 2000, this change is dynamic and exist-
ing cached tickets could be invalidated. Another possible cause is when a
ticket is passed through a proxy server. The client is unaware of the address
scheme used by the proxy server, so unless the program caused the client to
request a proxy server ticket with the proxy server’s source address, the
ticket could be invalid.

0x3C Generic error A generic error that may be a memory allocation failure. The event logs
may be useful if this error occurs.

0x29 Kerberos AP exchange error This indicates that the server was unable to decrypt the ticket sent by a cli-
ent, meaning that the server does not know its own secret key, or the client
received the ticket from a KDC that did not know the server’s key. This
can be tested by determining if the server can obtain a ticket to itself, or if
anybody else can locate the server. The secure channel used by NTLM is
also an indicator of the validity of the password on local machine accounts.

Table 5.13 Kerberos Troubleshooting Tools

Tool Comments

mytoken.exe
(Platform SDK)

Command prompt tool to display the content of a user’s access
token: This includes the user’s rights and group memberships.

whoami.exe
(Default Windows
installation)

 Command line tool to look at the content of the user’s access
token (use the /all switch).

klist
(Resource Kit)

Command prompt tool to look at the local Kerberos ticket
cache. Klist can also be used to purge tickets. Klist is a very sim-
ple but very important tool that you can use to find out how far
the authentication got.

Kerbtray
(Resource Kit)

GUI tool that displays the content of the local Kerberos ticket
cache.

Table 5.12 Kerberos Error Messages and Meaning (continued)

Code Short Meaning Error Explanation

200 5.7 Kerberos interoperability

5.7 Kerberos interoperability

As mentioned earlier in this chapter, Kerberos is an open standard that is
implemented on different platforms. Because of this Kerberos can be used
as an SSO solution between Windows and other platforms.

5.7.1 Non-Windows Kerberos implementations

Table 5.14 lists other Kerberos implementations and the platforms on
which they are available.

5.7.2 Comparing Windows Kerberos to other
implementations

Before going into the details of the interoperability scenarios, it is interest-
ing to look at what makes Windows 2000 and Windows Server 2003 Ker-
beros different from the other implementations. The Microsoft
implementation of Kerberos is different in the following ways:

It is tightly integrated with the Windows 2000 and Windows Server
2003 OS kernel: Every Windows 2000 and Windows Server 2003
system runs the Kerberos Security Support Provider (SSP) and every
DC has a KDC service.

Netdiag
(Support tools)

Netdiag helps isolate networking and connectivity problems by
providing a series of tests to determine the state of your network
client. One of the “NETDIAG” tests is the Kerberos test. To run
the Kerberos test, type “netdiag /test:Kerberos” at the command
prompt.

Replication monitor
(replmon)
(Support tools)

Using Replication monitor, an administrator can not only check
the replication traffic but also the number of AS and TGS
requests and the FSMO roles.

Network monitor
(Server CD)

Network monitor does not come out of the box with a parser for
the Kerberos protocol. However, a special Kerberos parser dll is
available from Microsoft.

Setspn
(Support Tools)

Tool allowing you to manage (view, reset, delete, add) service
principal names (SPNs).

Table 5.13 Kerberos Troubleshooting Tools (continued)

Tool Comments

5.7 Kerberos interoperability 201

Chapter 5

Kerberos principals locate the KDC using DNS. Windows 2000 and
Windows Server 2003 DNS includes special SRV records that pro-
vide the location of a Kerberos KDC.

MS implemented the RC4-HMAC encryption algorithm (56/128 bit
keys) as the preferred Kerberos encryption type. MS still supports
DES-CBC-CRC and DES-CBC-MD5 (56-bit keys) for interopera-
bility reasons. See Section 5.4.3 for more information about this.

The MS implementation does not support the MD4 checksum type.

Windows Kerberos KDCs require Kerberos clients to perform pre-
authentication by default. More information about this is available in
Section 5.5.2.

The MS implementation does not include support for DCE-style
cross-realm trust relationships.

Microsoft uses their proprietary SSPI API (see Chapter 4) to access
Kerberos services. They do not support the raw krb5 API.

Microsoft uses the authdata field in the ticket to embed authorization
data. Microsoft refers to this field as the Privilege Attribute Certificate
(PAC). See also Section 5.4.3 for more information about this.

5.7.3 Interoperability scenarios

In this section we will focus on setting up Kerberos interoperability between
Windows 2000 or Windows Server 2003 Kerberos and a Kerberos imple-

Table 5.14 Non-Windows Kerberos Implementations

Kerberos Implementation Platform

MIT Kerberos v1.1 NetBSD

CyberSafe TrustBroker UNIX, MVS, Windows 95, NT4

Sun SEAM Solaris

DCE Kerberos (IBM) AIX, OS/390

Computer Associates Kerberos
[Platinum (OpenVision)]

Windows 95, 3.1, 3.11

Kerberos PAM Linux, HP-UX

Heimdal UNIX

202 5.7 Kerberos interoperability

mentation that runs on top of UNIX platforms. Kerberos authentication
interoperability can be set up in three different ways:

The Windows Kerberos KDC is the KDC for both Windows and
UNIX security principals (the principals are administered from the
Windows KDC) (Scenario 1).

The UNIX KDC is the KDC for both Windows and UNIX security
principals (the principals are administered from the UNIX KDC).
This scenario includes no Windows domain controllers (Scenario 2).

A cross-realm trust relationship is defined between a Windows
domain and a UNIX Kerberos realm. A part of the principals is
administered from the Windows KDC, another part is administered
from the UNIX KDC. In this case, there are two KDCs—one KDC
on each side of the trust relationship (Scenario 3).

Next we will explain these three scenarios using examples of Windows-
UNIX Kerberos authentication interoperability.

Lots of valuable information on how to set up interoperability can be
found in the following white papers:

“Windows 2000 Kerberos interoperability” available from http://
www.microsoft.com/windows2000/techinfo/howitworks/security/
kerbint.asp

“Windows 2000 Kerberos Interoperability” by Christopher Nebergall
available from http://www.sans.org/rr/paper.php?id=973

Principals defined on a Windows KDC

This scenario allows for Kerberos principals on both Windows and non-
Windows platforms to log on using Windows credentials and a Windows
KDC. To enable a user to log on to Windows from a UNIX workstation,
the UNIX krb5.conf Kerberos configuration file must be edited to point to
the Windows KDC. Afterward, the user can log on using his or her Win-
dows account and the “kinit” command (kinit is the equivalent of logon in
UNIX Kerberos implementations).

The setup gets a little bit more complicated when enabling a service,
running on a UNIX platform, to log on using Windows credentials and a
Windows KDC. In this scenario the Windows administrator has to run
through the following configuration steps:

Edit the krb5.conf file on the UNIX machine to point to the Win-
dows KDC.

5.7 Kerberos interoperability 203

Chapter 5

Create a service account for the UNIX service in the Active Directory.

Use ktpass.exe to export the newly created service account’s creden-
tials from AD and create a keytab file. The keytab file contains the
password that will be used by the UNIX service to logon to the Win-
dows domain.

Copy the keytab file to the UNIX host and merge it with the existing
keytab file.

Ktpass comes with the Windows support tools. It allows an administra-
tor to configure a UNIX computer or UNIX-based service as a security
principal in the Active Directory.

The following example illustrates this last scenario. A company has a
UNIX database server whose content should be accessible through a Web
interface for every Windows user. To set this up, configure the database ser-
vice as a principal in the Windows domain, and install an IIS server as a
Web front end for the database server. To allow for credential forwarding
between a Windows user and the IIS server, the IIS server must be “trusted
for delegation.”

Principals defined on a non-Windows KDC

This scenario allows for Kerberos principals on both Windows and non-
Windows platforms to log on using UNIX credentials and a UNIX KDC.
For a stand-alone Windows workstation or member server to use a UNIX
KDC, the following has to be done:

Create a host for the workstation in the UNIX realm.

Configure the Windows workstation or member server using
ksetup.exe to let it point to the UNIX KDC and realm and to set the
machine password (this will automatically switch the workstation or
member server to workgroup mode). Ksetup.exe also comes with the
Windows support tools.

Restart the workstation or member server and run ksetup.exe again to
map local machine accounts to UNIX principals.

Cross-realm trust

This is probably the most flexible interoperability scenario available. This
scenario will enable non-Windows Kerberos principals to log on to their
UNIX KDC and to access resources in a Windows domain and also the
other way around: For Windows principals to log on to their Windows
KDC and to access resources in a UNIX realm.

204 5.7 Kerberos interoperability

The setup of a cross-realm trust between Windows and a UNIX realm
is relatively straightforward. On the Windows side two things must be
done: A trust relationship must be created using the AD Domains and
Trusts snap-in, and a realm mapping for the UNIX realm should be added
to the system registry. To add a realm mapping, use the ksetup tool. A
realm mapping should not only be added on the Windows Domain con-
troller, but also on every machine from which resources will be accessed in
the UNIX realm. On the UNIX side, a trust relationship can be created
using the kadmin tool.

If all user accounts are defined in the UNIX realm, a domain layout that
is very similar to the NT4 master domain model of account domains and
resource domains is created. In that case, the UNIX realm acts as a master
account domain containing all the accounts. The Windows domain acts as
a resource domain, containing resources and mappings from the UNIX
accounts to Windows SIDs.

If you are planning to use this domain-realm layout, some extra configu-
ration, besides the creation of a cross-realm trust, is needed on the Win-
dows side. The reason for this is the difference in the accounting and
aauthorization systems used in Windows and UNIX. Whereas UNIX relies
on principal names for both accounting and authorization, Windows relies
entirely on security identities (SIDs). Even though there is a trust relation-
ship between the UNIX realm and the Windows domain, users authenti-
cated through the KDC in the UNIX account domain can by default not
access any resource in the Windows, because they do not have an SID.

To resolve this problem, shadow or proxy accounts must be created on
the Windows side. A proxy account is an attribute (the “altSecurityIdenti-
ties” attribute) of a Windows account that contains a UNIX principal
name. In other words, proxy accounts provide a way to map a UNIX
account to a Windows account or SID.

Setting Up Kerberos Proxy Accounts Kerberos proxy or shadow accounts can be
defined from the AD Users and Computers MMC snap-in.

In the MMC snap-in’s View menu option, select Advanced Features…

Right-click the user account for which you want to define the proxy account and
select Name Mappings… This will bring up the Security Identity Mapping dialog
box (illustrated in Figure 5.36).

Select the Kerberos Names tab, and then Add… to add the UNIX Kerberos Principal
Name.

5.7 Kerberos interoperability 205

Chapter 5

Let’s look at what will happen now when a UNIX principal wants to
access a resource that is hosted on a machine that is a member of a Win-
dows domain (illustrated in Figure 5.37):

The UNIX principal is logged on to the UNIX domain; his or her
credential cache contains a TGT for the UNIX domain.

The UNIX principal wants to access resource A in the Windows
domain. His or her local KDC refers him to the Windows KDC.

The Windows KDC creates a new service ticket for the UNIX princi-
pal to access resource A. Because the TGT used by the UNIX princi-
pal contains an empty PAC, the Windows KDC will query the Active

Figure 5.36
Defining Kerberos
account mappings.

Figure 5.37
UNIX-Windows

Server 2003
Kerberos

interoperability
using a cross-realm

trust.

Windows XP Professional Windows Server 2003

hp.realm win2k.hp.com

MIT
KDC

Windows
Server 2003

KDC

TGT

TGT

TICKET

TICKET

With NT
Auth Data

Proxy
Account

206 5.7 Kerberos interoperability

Directory for an account mapping between the UNIX principal and a
Windows SID. The newly issued service ticket will contain the PAC
data corresponding to the Windows SID.

Using the service ticket, the UNIX principal authenticates to the
machine hosting resource A.

In case the Windows domain also contains NT4 servers that can only
authenticate using NTLM, this scenario also requires some password syn-
chronization tool between the UNIX Realm (where the accounts and their
passwords are defined) and the Windows domain. Such a tool is available in
CyberSafe’s Trustbroker product.

