

The Data Access Handbook
by John Goodson and Robert A. Steward

Published March 2009

Prentice Hall

ISBN-10: 0137143931
ISBN-13: 9780137143931

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

The Environment:
Tuning for Performance

75

The performance of your database application,

whether that is measured by response time,

throughput, or scalability, is affected by many things,

each of which can be a limiting factor to overall perfor-

mance. In Chapter 3, “Database Middleware: Why It’s

Important,” we explained that the database driver is only

one component of your database middleware and that

multiple environment layers also work with the data-

base driver to handle the communication between a

database application and the database management

software. This chapter describes how those environment

layers, shown in Figure 4-1, can influence performance

and how to optimize performance for data requests and

responses that flow through these layers. In addition,

this chapter provides details about how your database

driver and specific application design and coding tech-

niques can optimize your hardware resources and relieve

performance bottlenecks.

C H A P T E R F O U R

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 75

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Figure 4-1 Environment layers

The influence of the environment can be significant, as shown by the follow-

ing real-world example. A major business software company thoroughly tested a

new database application on a local area network (LAN), and performance was

acceptable according to all the benchmarks that were run. Surprisingly, when the

database application was deployed in the production environment, which

involved network travel over a wide area network (WAN), overall response time

dropped by half. Puzzled about the performance, developers placed the actual

machines used in the testing environment into the production environment;

performance was still compromised. After troubleshooting the database applica-

tion in the production environment, the developers discovered that the network

traffic over the WAN passed through multiple network nodes with lower MTUs,

which caused network packet fragmentation. See the section, “Avoiding Network

Packet Fragmentation,” page 98, for more information about packet fragmenta-

tion.

76 The Environment: Tuning for Performance

Application/
Application Framework

Client/Application Server

Database Driver/
Provider

Runtime
Environment

Operating System

Network
Software

Hardware

Database

Database Server

Environment
Layers

Operating System

Network
Software

Hardware

Java and
.NET only

Network

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 76

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

In this chapter, we’ll talk about how the following environment layers affect

performance and what you can do about it:

• Runtime environment (Java and .NET)

• Operating system

• Network

• Hardware

Runtime Environment (Java and .NET)

What do a Java Virtual Machine (JVM) and the .NET Common Language

Runtime (CLR) have in common? They’re both runtime environments for appli-

cations. Whereas a JVM is a runtime environment for the Java language, the

.NET CLR, as part of the .NET Framework, operates as a runtime environment

for multiple languages on Windows platforms. They also significantly impact the

performance of your database applications.

JVM

IBM, Sun Microsystems, Oracle (BEA), and others manufacture their own JVMs.

However, all JVMs are not created equal. Although vendors who produce JVMs

using the “Java” trademark must adhere to the JVM specification published by

Sun Microsystems, Inc., there are differences in the way those JVMs are imple-

mented—differences that affect performance.

For example, Figure 4-2 shows the results of a benchmark that measures the

throughput and scalability of a database application with different JVMs. The

benchmark was run multiple times using the same JDBC driver, database server,

hardware, and operating system. The only variable in this scenario is the choice

of JVM. The JVMs tested were manufactured by different vendors, but were the

same version of JVM and had comparable configurations. As you can see in

Figure 4-2, where each line represents a benchmark run with a different JVM, the

throughput and scalability of JVMs can vary significantly.

Not only does your choice of JVM matter for performance, but how that

JVM is configured matters. Each JVM has tuning options that can impact your

application’s performance. For example, Figure 4-3 shows the results of a bench-

mark that used the same JDBC driver, database server, hardware, operating sys-

tem, and JVM. The benchmark compares the throughput and scalability of a

database application. However, the JVM was first configured to run in client

mode and then configured to run in server mode. (See the section, “Client Versus

Server Mode,” page 82, for more information.) As you can see, the throughput

Runtime Environment (Java and .NET) 77

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 77

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

78 The Environment: Tuning for Performance

Threads

R
ow

s/
S

ec
on

d

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

Select 10K rows of 3100 bytes.

Threads

R
ow

s/
S

ec
on

d

0

100000

200000

300000

400000

500000

1 2 3 4 5 6 7 8 9 10

Client Mode
Server Mode

Select 100 rows of 100 bytes.

Figure 4-3 Comparing JVM configurations

and scalability of the JVM running in server mode dramatically outperformed

the JVM running in client mode.

Figure 4-2 Comparing different JVMs

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 78

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

You can tune the performance of your database application by setting the

following common JVM options:

• Garbage collection

• Client versus server mode

Runtime Environment (Java and .NET) 79

Performance Tip

Choose a JVM that gives your database application the best perfor-

mance. In addition, tuning options, such as those for garbage collection

and client versus server mode, can improve performance.

Garbage Collection

While C++ requires direct control over when memory is allocated and freed,

Java makes this process more automatic. As a Java application runs, it creates Java

objects that it uses for varying lengths of time. When the Java application is fin-

ished with an object, it stops referencing it. The JVM allocates memory for Java

objects from a reserved pool of memory known as the Java heap. This means

that at any one time, the heap may have allocated memory for the following:

• Live objects that are being used by the application

• Dead objects that are no longer used (no longer referenced) by the applica-

tion

Because the heap maintains memory for both types of objects and new

objects are created constantly, eventually the heap runs low on memory. When

this occurs, the JVM runs a routine known as a garbage collector to clean up

dead objects and reclaim memory so that the heap has enough memory to allo-

cate to new objects.

Why does garbage collection matter to performance? Different JVMs use

different garbage collection algorithms, but most garbage collectors halt the allo-

cation of objects while the garbage collector performs its collection routine,

effectively “freezing” any application work running at the same time. Depending

on the garbage collection algorithm used, this pause in work may persist as long

as several seconds. When the garbage collector is finished with its collection, it

lets the allocation of objects resume. For most database applications, lengthy col-

lection pauses can negatively affect performance and scalability.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 79

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

The most important options that control garbage collection are these:

• Heap size

• Generation heap size

• Garbage collection algorithm used by the JVM

The heap size controls how much memory is allocated to the overall Java

heap. The heap size also controls how often the JVM performs garbage collection.

Finding the ideal heap size is a balancing act. When the heap size is set to a

large value, garbage collection occurs less frequently, but collection pauses are

longer because there’s more heap to scan. In contrast, small heap sizes cause

garbage collection to occur more frequently, but result in shorter pauses.

If garbage collection occurs too frequently, performance can be severely

impacted. For example, suppose that your application uses a heap size that is too

small to handle every live object being used by your application plus new ones

that need to be created. Once the maximum heap size is reached, your applica-

tion attempts to allocate a new object and fails. This failure triggers the garbage

collector, which frees up memory. Your application tries again to allocate a new

object. If the garbage collector failed to recover enough memory the first time,

the second attempt fails, triggering the garbage collector to run again. Even if the

garbage collector reclaims enough memory to satisfy the immediate request, the

wait won’t be long before another allocation failure occurs, triggering yet another

garbage collection cycle. As a result, instead of servicing your application, the

JVM constantly scavenges the heap for memory.

80 The Environment: Tuning for Performance

Performance Tip

As a general rule, try increasing the heap size so that garbage collection

is not triggered as frequently, keeping in mind that you don’t want to run

out of physical memory (RAM). See the section, “Memory,” page 107, for

information about how running out of RAM affects performance. If

garbage collection pauses seem unnecessarily long, try decreasing the

heap size.

Older JVMs often treat the heap as one big repository, requiring the garbage

collector to inspect each object in the heap to determine whether it is a dead

object and can be cleaned up. Newer JVMs use generational garbage collection
to separate objects into different memory pools within the heap based on the

object’s lifetime.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 80

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Some Java objects are short lived, such as local variables; others are long-

lived, such as connections. Generational garbage collection divides the heap into

Young and Old generations, as shown in Figure 4-4. New objects are allocated

from the Young generation and, if they live long enough, eventually migrate to

the Old generation. Figure 4-4 also shows another generation called the

Permanent generation, which holds the JVM’s class and method objects.

Runtime Environment (Java and .NET) 81

Perm Old

Memory for Objects Created by Your Application

Total Heap Size

Young

Figure 4-4 Heap generations

When the Young generation becomes full, the garbage collector looks for

surviving objects while cleaning up short-lived objects. It moves surviving

objects into a reserved area of the Young generation called a survivor space. If

that survivor is still being used by the next collection, it’s considered tenured. In

this case, the collector moves the object into the Old generation. When the Old

generation becomes full, the garbage collector cleans up any unused objects.

Because the Young generation typically occupies a smaller heap space than the

Old generation, garbage collection occurs more frequently in the Young genera-

tion, but collection pauses are shorter.

Similar to the way that the overall heap size affects garbage collection, the

heap sizes of the generations affect garbage collection.

Performance Tip

As a general rule, set the size of the Young generation to be one-fourth

that of the Old generation. You may want to increase the size of the

Young generation if your application generates large numbers of short-

lived objects.

Different JVMs use different garbage collection algorithms. A few let you tune

which algorithm is used. Each algorithm has its own performance implications.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 81

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

For example, an Incremental garbage collection algorithm performs its collection

work a little at a time instead of trying to work its way through the entire heap,

which results in shorter garbage collection pauses but reduces throughput.

Client Versus Server Mode

As a way to improve performance, many JVMs use Just-in-Time (JIT) compilers

to compile and optimize code as it executes. The compiler that the JVM uses

depends on the mode in which the JVM runs:

• Client mode uses a JIT compiler that is optimized for applications that are

short running, need fast startup times, and require minimum memory, such

as GUI applications. Many JVMs use this mode as the default.

• Server mode uses a JIT compiler that instructs the JVM to perform more

extensive run-time optimization for applications that are long running and

use substantial memory, such as database applications. Therefore, after

startup, the JVM executes slowly until it has had enough time to optimize

the code. After that, performance is considerably faster.

82 The Environment: Tuning for Performance

Performance Tip

Tune your JVM to use server mode. For database applications that run

for weeks or months at a time, slower execution during the first few

hours is a small price to pay for better performance later on.

.NET CLR

The CLR provides automatic garbage collection in much the same way as a JVM.

When your application creates a new object, the CLR allocates memory to it

from a pool of memory known as the CLR heap. The CLR also uses generational

garbage collection. The CLR has three generations: generation 0, generation 1,

and generation 2. When the garbage collector performs a collection in any of its

generations, it cleans up objects that are no longer used and reclaims the mem-

ory allocated to them. Objects that survive a collection are progressively pro-

moted to the next generation. For example, objects that survive a collection in

generation 1 are moved to generation 2 during the next collection.

Unlike a JVM, the CLR doesn’t provide tuning options that allow you to

tune garbage collection. The CLR doesn’t let you set a maximum limit on the

heap size. Instead, the CLR heap size depends on how much memory can be

allocated from the operating system. In addition, the CLR automatically adjusts

the sizes of the generations according to its own optimization criteria.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 82

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

If you can’t tune garbage collection in the CLR, how can you ensure that

garbage collection works in favor of your application’s performance? The way

your application code is designed and coded largely affects how efficiently

garbage collection is performed.

Operating System 83

Performance Tip

To optimize garbage collection in the CLR, make sure that your applica-

tion closes connections as soon as the user is finished with them, and

correctly and consistently use the Dispose method to free an object’s

resources. See the section, “Disconnecting Efficiently,” page 196, for more

information.

Operating System

Another factor in the environment that affects performance is the operating sys-

tem. This is not to claim that one operating system is better than another—just

that you need to be aware that any operating system change, no matter how

minor, can increase or decrease performance, sometimes dramatically. For

example, when testing an application that applied a recommended Windows

update, we saw performance plummet when the database driver made

CharUpper calls. In our benchmark, 660 queries per second throughput

dropped to a mere 11 queries per second—an astounding 98% decrease.

Often, we see performance differences when running the same benchmark

on different operating systems. For example, on UNIX/Linux, a database driver

may use mblen(), a standard C library function, to determine the length in bytes

of a multibyte character; on Windows, it may use the equivalent function,

IsDBCSLeadByte(). Our benchmarks have shown that when an application used

mblen() on Linux, the processing of mblen() appropriated 30% to 35% of the

total CPU time. When run on Windows, IsDBCSLeadByte() used only 3% to 5%

of the total CPU time.

It’s also helpful to know which byte order, or endianness1, is used by the

operating system on the database client to store multibyte data in memory, such

as long integers, floating point numbers, and UTF-16 characters. The endianness

1 The term endianness was adopted from the novel Gulliver’s Travels by Jonathan Swift, first published in
1726. In the novel, a shipwrecked castaway, Gulliver, tangled with a sovereign state of diminutive
Lilliputians who were split into two intractable factions: Big-Endians who opened their soft-boiled eggs
at the larger end, and Little-Endians who broke their eggs at the smaller end.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 83

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

of the operating system is determined by the processor that the operating system

runs on. Processors use either of the following byte-order conventions:

• Big endian machines store data in memory “big-end” first. The first byte is

the biggest (most significant).

• Little endian machines store data in memory “little-end” first. The first byte

is the smallest (least significant).

For example, let’s consider the integer 56789652, which is 0x03628a94 in

hexadecimal. On a big endian machine, the 4 bytes in memory at address

0x18000 start with the leftmost hexadecimal digit. In contrast, on a little endian

machine, the 4 bytes start with the rightmost hexadecimal digit.

Big Endian

18000 18001 18002 18003

0x03 0x62 0x8a 0x94

Little Endian

18000 18001 18002 18003

0x94 0x8a 0x62 0x03

Intel’s 80x86 processors and their clones are little endian. Sun Microsystem’s

SPARC, Motorola’s 68K, and the PowerPC families are big endian. Java Virtual

Machines (JVMs) are big endian as well. Some processors even have a bit in the

register that allows you to select which endianness you want the processor to use.

84 The Environment: Tuning for Performance

Performance Tip

If possible, match the endianness of the operating system on the data-

base client to that of the database server. If they match, the database dri-

ver doesn’t need to perform extra work to convert the byte order of

multibyte data.

For example, suppose you have an accounting application that allows you to

prepare financial statements such as balance sheets, income statements, cash

flows, and general ledger accounts. The application runs on Windows XP and

retrieves data from a Microsoft SQL Server database running on Windows NT.

The database driver doesn’t need to convert the byte order of long integers

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 84

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

because the exchange between the machines is a match: little endian to little

endian. What if you installed the application on a UNIX operating system run-

ning on a Solaris machine? You would see a drop in performance because the

database driver must convert long integers retrieved from the database server

from little endian to big endian, as shown in Figure 4-5. Similarly, if your applica-

tion runs on a Windows machine and the database server switched to a UNIX

operating system running on a Solaris machine, the database driver would need

to perform byte-order conversion for long integers because of the mismatch. In

many cases, you can’t do anything about a mismatch, but it’s helpful to know

that, when all other things are equal, an endianness mismatch impacts perfor-

mance.

Operating System 85

Solaris
Client

Byte-Order Conversion Is Required
(Big Endian and Little Endian)

Windows
Server

Windows
Client

Byte-Order Conversion Is Not Required
(Little Endian and Little Endian)

Windows
Server

Figure 4-5 Endianness of processor determines whether byte-order
conversion is required

To complicate matters, the database system doesn’t always send data in the

endianness of the operating system of the database server machine. Some data-

base systems always send data either in big endian or little endian. Others send

data using the same endianness of the database server machine. Still others send

data using the same endianness of the database client machine. Table 4-1 lists the

endianness that some common database systems use to send data.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 85

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Table 4-1 Endianness Database Systems Use to Send Data
Database Systems Endianness

DB2 Endianness of database server machine

MySQL Little endian

Oracle Big endian

Microsoft SQL Server Little endian

Sybase ASE Endianness of database client machine

For example, suppose your application connects to an Oracle database that

runs on a Windows machine. Oracle, which typically sends data big endian, must

accommodate the little endian operating system it runs on and convert the byte

order of multibyte data. Once again, you may not be able to change the endian-

ness of your database client, database server, and database system to align, but it’s

helpful to know how endianness impacts performance if you have a choice.

Network

If your database application communicates to the database system over the net-

work, which is part of the database middleware, you need to understand the per-

formance implications of the network. In this section, we describe those

performance implications and provide guidelines for dealing with them.

Database Protocol Packets

To request and retrieve information, database drivers and database servers trans-

fer database protocol packets over a network (typically, TCP/IP).2 Each database

vendor defines a protocol for communication with the database system, a format

that only that database system understands. For example, Microsoft SQL Server

uses communication encoded with the Tabular Data Stream (TDS) protocol, and

IBM DB2 uses communication encoded with the Distributed Relational

Database Architecture (DRDA) protocol.

The way database drivers communicate to the database depends on their

architecture. Some database drivers communicate to the database server directly

using a database-specific protocol. Other drivers communicate using a driver-

specific protocol that is translated into a database-specific protocol by a server

component. Still other drivers require database vendor client libraries to com-

86 The Environment: Tuning for Performance

2 If an application is running on the same machine as the database, the database driver uses the network
in a loop-back mode or does not use the network at all and communicates directly with the database
using shared memory.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 86

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

municate with the database server. See the section, “Database Driver

Architecture,” page 55, for more information about database driver architecture.

When an application makes a standards-based API request, such as execut-

ing a Select statement to retrieve data, the database driver transforms that API

request into zero, one, or multiple requests to the database server. The database

driver3 packages the requests into database protocol packets and sends them to

the database server, as shown in Figure 4-6. The database server also uses data-

base protocol packets to transfer the requested data to the driver.

Network 87

Packets Sent from the Driver

Packets Sent from the Database Server

Driver

Figure 4-6 Database protocol packets

One important principle to understand: The relationship between applica-

tion API requests and the number of database protocol packets sent to the data-

base is not one to one. For example, if an ODBC application fetches result set rows

one at a time using the SQLFetch function, not every execution of SQLFetch

results in database protocol packets being sent to or from the database. Most dri-

vers optimize retrieving results from the database by prefetching multiple rows at

a time. If the requested result set row already exists in a driver result set cache

because the driver retrieved it as an optimization on a previous SQLFetch execu-

tion, a network round trip to the database server would be unnecessary.

This book repeatedly demonstrates that database application performance

improves when communication between the database driver and the database is

optimized. With this in mind, one question you should always ask is this: How

can I reduce the amount of information that is communicated between the data-

base driver and the database? One important factor for this optimization is the

size of database protocol packets.

The size of database protocol packets sent by the database driver to the data-

base server must be equal to or less than the maximum database protocol packet

size allowed by the database server. For example, if the database server accepts a

3 Generally, we state that the database driver sends the database protocol packets to the database server.
However, for drivers that have a client-based architecture, this task is performed by the database client
(Net8 for Oracle, for example).

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 87

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

maximum packet size of 64KB, the database driver must send packets of 64KB or

less. Typically, the larger the packet size, the better the performance, because

fewer packets are needed to communicate between the driver and the database.

Fewer packets means fewer network round trips to and from the database.

88 The Environment: Tuning for Performance

Note

Although most database applications experience better performance

when sending and receiving fewer packets, this is not always the case,

as explained in the section, “Configuring Packet Size,” page 92.

For example, if the database driver uses a packet size of 32KB and the data-

base server’s packet size is configured for 64KB, the database server must limit its

packet size to the smaller 32KB packet size used by the driver. As shown in Fig-

ure 4-7, this increases the number of packets sent over the network to retrieve the

same amount of data to the client.

Using 64KB Packets

Driver

Using 32KB Packets

Driver

Figure 4-7 Packet size affects the number of database protocol packets
required

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 88

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

The increase in the number of packets also means an increase in packet over-

head. High packet overhead reduces throughput, or the amount of data that is

transferred from sender to receiver over a period of time.

Why does packet overhead reduce throughput? Each packet stores extra

bytes of information in the packet header, which limits the amount of data that

can be transported in each packet. The smaller the packet size, the more packets

are required to transport data. For example, a 64KB packet with a packet header

of 30 bytes equals a total of three 32KB packets, each with 30-byte packet head-

ers, as shown in Figure 4-8. The extra CPU required to disassemble packets for

transport and reassemble them when they reach their destination reduces the

overall transmission speed of the raw data. Fewer packets require less disassem-

bly and reassembly, and ultimately, use less CPU.

Network 89

Database Server:
Packet Size = 64KB

Database Driver:
Packet Size = 32KB

Header (30 Bytes)

Data (63.971KB)

Header (30 Bytes)

Data (31.971KB)

Header (30 Bytes)

Data (31.971KB)

Header (30 Bytes)

Data (.029KB)

Figure 4-8 64KB database protocol packets compared to 32KB packets

Network Packets

Once database protocol packets are created, the database driver hands over the

packets to TCP/IP for transfer to the database server. TCP/IP transfers the data in

network packets. If the size of the database protocol packet is larger than the

defined size of the network packet, TCP/IP breaks up the communication into

even smaller network packets for transmission over the network and reassembles

them at their destination.

Think of it like this: The database protocol packet is like a case of diet soda,

which can be too difficult to carry over a long distance. TCP/IP breaks up that

case into four 6 packs, or network packets, that can be easily carried over the

network. When all four 6 packs reach their destination, they are reassembled

into a case.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 89

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Similar to database protocol packets, the fewer the network packets, the bet-

ter the performance. In contrast to database protocol packets, you can’t configure

the size of network packets.

Each network node (any machine connected to the network such as a client,

server, router, and so on) has at least one network adapter for each network it

connects to. The network packet size is determined by a maximum transmission
unit (MTU) setting4 for the network adapter in the operating system of the send-

ing network node. The MTU is the maximum packet size that can be sent across

a particular network link and is a characteristic of the network type. By default,

the MTU setting is set to the MTU of the network type. You can set the MTU set-

ting to another value, but that value cannot exceed the MTU of the network type.

For example, if the network packet size is 1500 bytes (MTU for Ethernet

networks), TCP/IP breaks up the database protocol packet into as many 1500-

byte network packets as needed to transfer the data across the network, as shown

in Figure 4-9.

90 The Environment: Tuning for Performance

Data (31.971KB)

Header (30 Bytes)

Data (31.971KB)

Header (30 Bytes)

Data (.029KB)

Header (30 Bytes)Database
Protocol
Packets 32KB

Database protocol
packet fits into one
1500-byte network
packet.

Network
Packets

Figure 4-9 Database protocol packets divided into network packets

See the section, “Understanding Maximum Transmission Unit (MTU),”

page 99, for details about how MTU affects network packets.

Database drivers and database servers only deal with database protocol

packets, not network packets. Once network packets reach their destination, such

as a database server, the operating system of the database server reassembles

them into database protocol packets that deliver the communication to the data-

base. To understand how this happens, let’s take a closer look at network packets

and how a network such as TCP/IP works.

Like a busy highway with a limited number of lanes, a network has a limited

amount of bandwidth to handle network traffic between computers. By breaking

up communication into network packets, TCP/IP can control the flow of traffic.

4 The name of this setting depends on the operating system. Refer to your operating system documenta-
tion for details.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 90

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Like cars merging onto a highway, network packets can merge into traffic along

with packets sent from other computers instead of hogging the road, so to speak.

The header of each network packet contains information about the follow-

ing:

• Where the network packet comes from

• Where the network packet is going

• How the network packet will be reassembled with other network packets

into a database protocol packet

• How to check the network packet content for errors

Because each network packet essentially contains its own shipping instruc-

tions, not all network packets associated with a single message may travel the

same path. As traffic conditions change, network packets may be dynamically

routed through different paths in the network. For example, if Path A is over-

loaded with traffic, network packets may be routed through Path B, reducing the

congestion bottleneck as shown in Figure 4-10.

Network 91

A A

B B

Figure 4-10 Network packets may travel different paths as a result of
dynamic routing

Network packets can even arrive at their destination out of sequence. For

example, network packets traveling Path B may arrive at their destination before

those traveling on Path A. When all packets reach their destination, the operating

system of the receiving computer reassembles the network packets into a data-

base protocol packet.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 91

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Configuring Packet Size

Remember that larger packet sizes typically provide the best performance

because fewer packets are needed to retrieve data, and fewer packets means fewer

network round trips to and from the database. Therefore, it’s important to use a

database driver that allows you to configure the packet size of database protocol

packets. See the section, “Runtime Performance Tuning Options,” page 62, for

more information about performance tuning options to look for in a database

driver. In addition, many database servers can be configured to use packet sizes

that are larger than the default.

If network packets are really the way that data is transported over the net-

work and the MTU of the network controls the size of network packets, why does

a larger database protocol packet size improve performance? Let’s compare the

following examples. In both examples, a database driver sends 25KB of data to

the database server, but Example B uses a larger database protocol packet size

than Example A. Because a larger database protocol packet size is used, the num-

ber of network round trips is reduced. More importantly, actual network traffic

is reduced.

92 The Environment: Tuning for Performance

Example A: Database Protocol Packet Size = 4KB

Using a 4KB database protocol packet, as shown in Figure 4-11, the

database driver creates seven 4KB database protocol packets (assuming

a 30-byte packet header) to send 25KB of data to the database server (6

packets transporting 3.971KB of data and 1 packet transporting

0.199KB of data).

Figure 4-11 4KB database protocol packet size

If the MTU of the network path is 1500 bytes, as shown in Figure 4-12,

the database protocol packets are divided into network packets for

transport across the network (total of 19 network packets). The first 6

database protocol packets are each divided into three 1500-byte net-

work packets. The data contained in the last database protocol packet

fits within one 1500-byte network packet.

+ + + + + + + 25KB (7 Database
Protocol Packets)

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 92

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Figure 4-12 4KB database protocol packets divided into
1500-byte network packets

Now let’s look at Example B, which uses a larger database protocol packet

size.

Network 93

Example B: Database Protocol Packet Size = 32KB

Using a 32KB database protocol packet, the database driver only needs

to create a single 32KB database protocol packet to send 25KB of data

to the database server (assuming a 30-byte packet header), as shown in

Figure 4-13.

Figure 4-13 32KB database protocol packet size

If the MTU of the network path is 1500 bytes, as shown in Figure 4-14,

the single database protocol packet is divided into 17 network packets

for transport across the network, a reduction of 10% when compared to

Example A.

Figure 4-14 32KB database protocol packets divided into
1500-byte network packets

= 25KB (1 Database Protocol Packet)

+ + + + + + +

+ + + + + + +

+

+

= 25KB (17 Network Packets)

+ + + + + + +

+ + + + + + +

+

+

+ + = 25KB (19 Network Packets)

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 93

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Although a larger packet size is typically the best choice for performance,

this isn’t always the case. If your application sends queries that only retrieve small

result sets, a small packet size can work well. For example, an ATM banking

application typically sends and receives many packets that contain a small

amount of data, such as a withdrawal amount, a deposit amount, and a new bal-

ance. A result set that contains only one or two rows of data may not completely

fill a larger packet. In this case, using larger packets wouldn’t improve perfor-

mance. In contrast, a reporting application that retrieves large result sets with

thousands of rows performs best when using larger packets.

94 The Environment: Tuning for Performance

Performance Tip

If your application sends queries that retrieve large amounts of data, tune

your database server packet size to the maximum size, and tune your

database driver to match the maximum size used by the database server.

Analyzing the Network Path

Often, we talk about database access as if the client is always local to the database

server, perhaps in the same building connected by a LAN. However, in today’s

distributed computing environment, the reality is that a user working from a

client desktop in New York may retrieve data stored in a database that is located

in California, or Europe, for that matter.

For example, a database application may send a data request that travels

across a LAN, often through one or multiple routers, across a WAN, and through

more routers to reach the target database. Because the world’s most popular

WAN is the Internet, an application may also need to communicate through one

or multiple Internet service provider (ISP) routers. Then the data that is

retrieved from the database must travel back along a similar path before users

even see it on their desktops.

Whether your database application accesses a database server locally on a

LAN or your data requests follow a more complicated path, how do you deter-

mine if network packets associated with your database application are using the

most efficient path?

You can use the tracert command (Windows) and the traceroute com-

mand (UNIX/Linux) to find out which network nodes the network packets

travel through on their way to a destination. In addition, by default, these

commands display a sampling of the latency, the time delay it takes to make a

network round trip to each node along the traced path.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 94

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Network 95

Example A: Using the tracert Command on Windows

This example traces the path that network packets take from a data-

base client in North America to a database server in Europe. Let’s exe-

cute the tracert command:

tracert belgserver-01

Notice that the trace report shows that network packets make three net-

work hops. (The fourth network node in the list is the destination.)

Tracing route to belgserver-01 (10.145.11.263)

over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms 10.40.11.215

2 1 ms 3 ms 3 ms 10.40.11.291

3 113 ms 113 ms 113 ms 10.98.15.222

4 120 ms 117 ms 119 ms 10.145.16.263

Example B: Using the traceroute Command on UNIX/Linux

This example traces the path that network packets take on the return

trip. Let’s execute the traceroute command:5

traceroute nc-sking

Similar to the trace report shown in Example A, this trace report shows

that network packets make three network hops.

Traceroute to nc-sking (10.40.4.263), 30 hops max,

40 byte packets

1 10.139.11.215 <1 ms <1 ms <1 ms

2 10.139.11.291 2 ms 1 ms 1 ms

3 10.40.11.254 182 ms 190 ms 194 ms

4 10.40.4.263 119 ms 112 ms 120 ms

5 The traceroute command supports different options depending on your operating system. Refer to
the command reference of your operating system documentation for command options.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 95

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

After you have traced the paths going to and from the database server, let’s

look at what the trace report can tell you.

• Is the path taken by network packets from the client to the database server

comparable to that taken on the return trip? The physical path through the

network may be different in each direction, but is one path significantly

slower than the other? For example, if a particular router is a bottleneck

because of network congestion, you may want to change your network

topology so that network packets can take a different path.

• On either path, how many network hops separate the client and database

server? Can any of these network hops be eliminated? For example, if the

client is assigned to a different network subnet than the database server, can

the machines be reassigned to the same subnet? See the following section for

details about reducing network hops.

• On either path, does packet fragmentation occur? See “Avoiding Network

Packet Fragmentation,” page 98, for details about detecting packet fragmen-

tation and strategies for avoiding it.

Reducing Network Hops and Contention

There’s a saying that goes something like this: “The road to success is not

straight.” However, when referring to data access, this adage does not necessarily

apply. Shorter network paths with fewer network hops typically provide better

performance than longer paths with many network hops because each interme-

diate network node must process each network packet that passes through that

node on its way to its destination.

This processing involves checking the packet header for destination infor-

mation and looking up the destination in its routing tables to determine the best

path to take. In addition, each intermediate network node checks the size of the

packet to determine whether the packet needs to be fragmented. On longer

paths, for example, from LAN to WAN, a data request is more likely to encounter

varying MTU sizes that cause packet fragmentation (see “Avoiding Network

Packet Fragmentation,” page 98).

A database application typically shares the network with other types of net-

work traffic. At any one time, different users may request files and Internet con-

tent, send e-mail, use streaming video/voice, perform backups, and so on. When

the traffic load is light, the network operates at top form and performance may

be great. However, when large numbers of users request connections and make

96 The Environment: Tuning for Performance

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 96

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

other network requests at the same time, the network can become overloaded

with too many network packets. If network packets sent by your database appli-

cation pass through an intermediate network node that is overloaded with net-

work traffic, application performance can be negatively affected.

Sometimes network congestion from normal business traffic is made worse

by poorly planned network topology or bandwidth changes. For example, if net-

work packets are forced to pass through a single gateway router to reach their

destination, packets must wait in the router’s queue for processing, causing a

packet backup at the gateway. In this case, is it possible to change your network

topology by adding additional router access to the destination network?

Similarly, differences in bandwidth from LAN to WAN can cause a communica-

tion slowdown, much like a 4-lane highway merging into a 2-lane highway.

One way to reduce network hops and network contention is to create a dedi-

cated path for your database application using a private data network, which can

be implemented using a network switch to a dedicated network adapter, a leased

T1 connection, or some other type of dedicated connection. For example, as

shown in Figure 4-15, clients have full public access to the corporate network,

including e-mail and the Internet, while enjoying private direct access to the

database server.

Network 97

Corporate Network

Server

Server ServerClientClientClient

Private Data Network

Internet

Database
Server

Server

Figure 4-15 Private data network

Even when the client and database server are in proximity to one another,

don’t assume that network packets take a direct point-to-point path. For exam-

ple, consider the case of a real-world company whose business depended on crit-

ical bulk updates that executed periodically during the course of the day.

Performance was poor despite the fact that the client and database server

machines were installed side by side in the same room.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 97

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

The network path analysis revealed that when the application requested

data, network packets associated with requests typically made as many as 17 net-

work hops before reaching the database server. Although the client and database

server machines resided in the same location, they were assigned to different cor-

porate network subnets. In this case, reassigning the machines to the same net-

work subnet reduced the number of network hops from 17 to 1, and the average

response time for bulk updates decreased from 30 seconds to 5 seconds, an

amazing performance gain of 500%.

98 The Environment: Tuning for Performance

Note

A virtual private network (VPN) emulates a private data network for

applications that transfer data over the Internet. It doesn’t eliminate net-

work hops but provides a secure extension of a private network and

reduces network contention.

Avoiding Network Packet Fragmentation

Before we go forward, let’s recap some of what we’ve already learned about how

database drivers and database servers use the network to request and send data:

• Database drivers and database servers communicate by sending database

protocol packets.

• If the size of the database protocol packet is larger than the defined size of

the network packet, TCP/IP divides the database protocol packets into as

many network packets as needed for transmission over the network.

• The MTU is the maximum network packet size that can be sent across a par-

ticular network link and is a characteristic of the network type.

• Packet size is important for both types of packets because the fewer the

packets, the better the performance.

Packet fragmentation occurs when a network packet is too large to traverse

a network link as determined by the network link’s MTU. For example, if a net-

work link’s MTU is 1500 bytes, it cannot transport a 1700-byte packet. An over-

sized packet must be divided into smaller packets that are able to traverse the

link, or the communication must be re-sent using smaller packets.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 98

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

In most modern systems, packet fragmentation is not automatic but occurs

as a result of a process known as path MTU discovery, a technique for determin-

ing the path MTU, which is the lowest MTU of any network node along a partic-

ular network route. Because packet fragmentation requires additional

communication between network nodes to negotiate the correct packet size and

significant CPU processing to divide communication into smaller packets and

reassemble them, it degrades performance. The following sections explain why

packet fragmentation has a negative impact on performance and provide guide-

lines for detecting and resolving packet fragmentation.

Understanding Maximum Transmission Unit (MTU)

MTU is the maximum packet size that can be sent across a particular network

link as determined by the network type. See Table 4-2 for the MTU values of

some common network types.

Table 4-2 MTU Values of Common Network Types
Network MTU

16 MB/second Token Ring 17914

4 MB/second Token Ring 4464

FDDI 4352

Ethernet 1500

IEEE 802.3/802.2 1492

PPPoE (WAN miniport) 1480

X.25 576

Each network node has one or multiple network adapters installed, one for

each network it connects to. The operating system on each node provides an

MTU setting for each network adapter. The MTU setting determines the size of

network packets sent from that node. By default, this MTU setting is set to the

MTU of the network type and can be set to another value, but that value cannot

exceed the MTU of the network type. For example, if a network node is con-

nected to an Ethernet network, the MTU setting for that machine’s network

adapter must be set to a value of 1500 (MTU for Ethernet networks) or less.

How does MTU affect network packets? Let’s consider a simple example

where only two network nodes, a client and database server, send and receive net-

work packets as shown Figure 4-16. In this case, Node A has an MTU setting of

1500, meaning that it sends 1500-byte packets across the network to Node B.

Network 99

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 99

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Similarly, Node B has an MTU setting of 1500 and sends 1500-byte packets on

the return trip to Node A.

100 The Environment: Tuning for Performance

Driver

Node A

MTU = 1500

Node B

MTU = 1500

Figure 4-16 Simple example of MTU

Now let’s look at a more complex example where network packets are routed

by an intermediate network node to the database server, as shown in Figure 4-17.

In this case, Node A has an MTU setting of 1500, Node B has an MTU setting of

1492, and Node C has an MTU setting of 1500.

Driver

Node A

MTU = 1500

Node B

MTU = 1492

Node C

MTU = 1500

Figure 4-17 Complex example of MTU

The maximum packet size that can be sent across the network depends on

the network link, or the part of the network, that the packet is being sent across,

as shown in Table 4-3.

Table 4-3 Maximum Packet Size
Network Link Maximum Packet Size

Node A to Node B 1500 bytes

Node B to Node C 1492 bytes

Node C to Node B 1500 bytes

Node B to Node A 1492 bytes

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 100

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

If a network node receives an oversized network packet, the network node

discards that packet and sends a message to the sending network node with

information about a packet size that will fit. The sending network node resends

the original communication, dividing it into smaller packets. The communica-

tion required to notify the sending network node that fragmentation must occur

and the resending of the communication in smaller packets increases traffic

along that network route. In addition, significant CPU processing is required to

divide the communication into smaller packets for transport and reassemble

them when they reach their destination.

To understand how this process works, let’s step through the example shown

in Figure 4-18.

Network 101

Driver

Node A

MTU = 1500

1500-Byte
Packets

1492-Byte
Packets

Node B

MTU = 1492

Node C

MTU = 1500

Packet
Fragmentation

Figure 4-18 Packet fragmentation example

1. As the result of a data request, Node A sends multiple 1500-byte packets

to Node C.

2. Each time Node B receives a 1500-byte packet, it discards the packet and

sends a message to Node A, telling Node A that it cannot pass along a

packet larger than 1492 bytes.

3. Node A resends each communication, breaking it into as many 1492-

byte packets as needed.

4. When Node B receives each 1492-byte packet, it passes the packets to

Node C.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 101

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

VPNs Magnify Packet Fragmentation

Configuring the MTU setting to the path MTU doesn’t always avoid packet frag-

mentation. For example, when VPN tunneling is used, the problem of packet

fragmentation is magnified because of additional packet overhead.

VPNs are routinely used to connect remote machines over the Internet to

corporate LANs, creating a secure path between two endpoints. Communication

within the VPN path is encrypted so that other users of the Internet cannot inter-

cept and inspect or modify communications. The security protocol that per-

forms the encryption, typically Internet Protocol Security Protocol (IPSec),

encapsulates, or wraps, each network packet in a new, larger packet while adding

its own IPSec headers to the new packet. Often, the larger packet size caused by

this encapsulation results in packet fragmentation.

For example, suppose the MTU of a VPN network link is 1500 bytes and the

MTU setting of the VPN client is set to the path MTU, a value of 1500. Although

this configuration is ideal for LAN access, it presents a problem for VPN users.

IPSec cannot encapsulate a 1500-byte packet because the packet is already as

large as the VPN network link will accept. In this case, the original communica-

tion is re-sent using smaller packets that IPSec can encapsulate. Changing the

MTU setting on the client to a value of 1420 or less gives adequate leeway for

IPSec encapsulation and avoids packet fragmentation.

102 The Environment: Tuning for Performance

Performance Tip

In most cases, you can avoid packet fragmentation by configuring the

MTU setting of the client and the database server to be the same as the

path MTU, the lowest MTU of any network node along the path. For

example, using the scenario in Figure 4-18, if you configure the MTU set-

ting of the client and database server to be a value of 1492, packet frag-

mentation would not occur.

Performance Tip

A one-size-fits-all MTU doesn’t exist. If most of your users are VPN users,

change the MTU setting along the network path to accommodate your

VPN users. However, remember that reducing the MTU for your LAN

users will cause their application performance to suffer.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 102

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

LAN versus WAN

Because communication across a WAN typically requires more network hops

than communication across a LAN, your application is more likely to encounter

varying MTU sizes, resulting in packet fragmentation. In addition, if data has to

travel over VPN within a WAN, packet fragmentation further reduces the MTU

size. If you are unable to avoid packet fragmentation by setting the client and the

database server to the path MTU (see “Understanding Maximum Transmission

Unit (MTU),” page 99), it becomes even more important to reduce the number

of network round trips between the client and server to preserve performance.

Detecting and Resolving Network Packet Fragmentation

If you don’t have privy knowledge of the MTUs of every network node along the

network path, how can you tell if packet fragmentation occurs? Operating system

commands, such as the ping command (Windows) and the traceroute com-

mand (UNIX/Linux), can help you determine if packets are being fragmented

along a particular network path. In addition, with a little persistence and detec-

tive work, you can determine the optimal packet size for the network path, a size

that doesn’t require packet fragmentation.

For example, suppose your client is a Windows XP machine, and data

requests are made from this machine to a UNIX database server located in

London. You know from the following trace report that three network hops are

involved to reach the server:

Tracing route to UK-server-03 [10.131.15.289]

over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms 10.30.4.241

2 <1 ms <1 ms <1 ms 10.30.4.245

3 112 ms 111 ms 111 ms 10.168.73.37

4 113 ms 112 ms 116 ms 10.131.15.289

Therefore, the network path looks similar to the configuration shown in

Figure 4-19. If the MTU of the client is set to a value of 1500, the client sends

1500-byte packets across the network. The MTU of the other network nodes is

unknown.

Network 103

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 103

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Figure 4-19 Network analysis of MTU

In the following examples, we use the ping (Windows) and traceroute

(UNIX/Linux) commands to determine if packet fragmentation occurs along

this network path for a 1500-byte packet, and we find the optimal packet size for

the network path.

104 The Environment: Tuning for Performance

Driver

MTU = 1500 MTU = ?

Router Router

MTU = ? MTU = ? MTU = ?

Router

Example A: Detecting Packet Fragmentation on Windows

1. At a command prompt, enter the ping command to test the connec-

tion between the client and database server. The -f flag turns on a

“do not fragment” (DF) field in the header of the packet, forcing the

ping command to fail if the packet needs to be fragmented at any

network node along the path. The -l flag sets the packet size. For

example:

ping UK-server-03 -f -l 1500

If packet fragmentation is needed, the ping command fails with the

following message, which indicates that the packet was not frag-

mented because the DF field was set:

Packet needs to be fragmented but DF set

2. Reissue the ping command repeatedly, each time lowering the size

of the packet in logical increments (for example, 1500, 1475, 1450,

1425, 1400, and so on) until a message is returned indicating that

the command was successful.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 104

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Network 105

For example, the following code shows that the ping command was

successful when executed with a packet size of 1370 bytes:

Pinging UK-server-03 [10.131.15.289] with 1370 bytes of

data

Reply from 10.131.15.289: bytes=1370 time=128ms TTL=1

Reply from 10.131.15.289: bytes=1370 time=128ms TTL=1

Reply from 10.131.15.289: bytes=1370 time=128ms TTL=1

Reply from 10.131.15.289: bytes=1370 time=128ms TTL=1

Ping statistics for 10.131.15.289:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss)

Approximate round trip times in milli-seconds:

Minimum = 128ms, Maximum = 128ms, Average = 128ms

3. Once you have a packet size that works for the entire path, configure the

MTU setting of the client and database server to that value (if possible).

Example B: Detecting Packet Fragmentation on UNIX/Linux

1. At a prompt, enter the traceroute command.6 The -F flag forces

the command to fail if packet fragmentation occurs. The integer

sets the packet size.

traceroute UK-server-03 -F 1500

If packet fragmentation occurs, the command fails with the follow-

ing message:

!F

2. Reissue the traceroute command repeatedly, each time lowering

the size of the packet in logical increments (for example, 1500,

1475, 1450, 1425, 1400, and so on) until a message is returned indi-

cating that the traceroute command was successful.

6 The traceroute command supports different options depending on your operating system. Refer to
the command reference of your operating system documentation for command options.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 105

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Increasing Network Bandwidth

Bandwidth is the capacity of a network connection to transport network pack-

ets. The greater the capacity, the more likely that good performance will result,

although overall performance also depends on factors such as latency. Increasing

bandwidth is similar to widening a congested 2-lane highway into a 4- or 6-lane

highway. The highway can handle more traffic, relieving bottlenecks.

Upgrading to a large-capacity network adapter is one of the easiest and

cheapest investments you can make to improve the performance of your net-

work. While bandwidth capacity has dramatically increased over the years, the

costs associated with the hardware that provide it have dramatically fallen. Today,

you can easily purchase a 1GB network adapter for less than $40. Assuming there

are no other network constraints, upgrading from a 100Mbps network adapter to

a 1GB network adapter can result in as much as a 7% to 10% performance gain.

For the price and ease of effort, that’s a great return on investment.

Hardware

Clearly, how your database is configured can conserve or consume hardware

resources, but our focus in this section is on how database driver and specific

application design and coding techniques can optimize your hardware resources

and relieve performance bottlenecks in the following hardware resources:

• Memory

• Disk

• CPU (processor)

• Network adapter

106 The Environment: Tuning for Performance

The following example shows that the traceroute command was

successful when executed with a packet size of 1370 bytes:

Traceroute to UK-server-03 (10.131.15.289), 4 hops max,

1370 byte packets

1 10.139.11.215 <1 ms <1 ms <1 ms

2 10.139.11.291 2 ms 1 ms 1 ms

3 10.40.11.254 182 ms 190 ms 194 ms

4 10.40.4.263 119 ms 112 ms 120 ms

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 106

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

In addition, we’ll talk about how a hot new trend in database computing

known as virtualization can magnify hardware-related performance problems.

Memory

A computer has a finite amount of Random Access Memory (RAM) or physical

memory, and, as a general rule, more RAM is better. As the computer runs its

processes, it stores code and data for quick access in blocks of RAM known as

pages. The amount of data that can be stored on a single page depends on the

processor platform.

When a computer runs out of RAM, it takes advantage of virtual memory to

ensure that work processes smoothly. Virtual memory allows the operating sys-

tem to free up space in RAM by copying pages stored in RAM that have not been

used recently into a file that resides on disk. This file is called a page file (swap
file), and the process of writing to the file is known as paging. If an application

needs that page again for any reason, the operating system swaps it back out of

the page file into RAM.

When RAM is being used to capacity, paging occurs more frequently.

Because disk I/O is much slower than RAM, excessive paging causes a drastic per-

formance slowdown. Excessive paging also can interfere with other processes that

require the same disk, causing disk contention (see the section, “Disk,” page 110,

for more information). In fact, memory bottlenecks often masquerade as disk

issues. If you suspect that the disk is being read from or written to excessively, the

first thing you should do is rule out a memory bottleneck.

A memory leak can also result in excessive paging, steadily using up RAM,

and then virtual memory, until the page file size reaches its maximum.

Depending on how critical a memory leak is, virtual memory can be used up

within a period of weeks, days, or hours. Memory leaks often are created when

applications use resources, but they don’t release the resources when they are no

longer required.

Table 4-4 lists some common causes for memory bottlenecks and their rec-

ommended solutions.

Table 4-4 Causes and Solutions of Memory Bottlenecks
Cause Solution

Insufficient physical memory (RAM) Add more RAM.

Poorly optimized application code Analyze and tune your application or database
or database driver causing excessive driver to minimize memory use. See “Tuning
memory use Your Application and Database Driver to

Minimize Memory Use,” page 109, for more
information.

Hardware 107

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 107

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Detecting Memory Bottlenecks

The primary symptom of a memory bottleneck is a sustained, high rate of page

faults. A page fault occurs when an application requests a page, but the system

can’t find the page at the requested location in RAM.

Two types of page faults can occur:

• Soft page faults can occur when the requested page is located elsewhere in

RAM. A soft page fault’s effect on performance is negligible because disk I/O

is not required to find the page.

• Hard page faults occur when the requested page is located in virtual mem-

ory. The operating system must swap the page out of virtual memory and

place it back into RAM. Because of the disk I/O involved, hard page faults

slow performance if they occur frequently.

To detect a memory bottleneck, gather information about your system to

answer the following questions:

• How often are requested pages triggering a page fault? This information

gives you an idea of the number of total page faults, both soft and hard page

faults, that occur over a period of time.

• How many pages are retrieved from disk to satisfy page faults? Compare

this information to the preceding information to determine how many hard

page faults occur out of the total number of page faults.

• Does the memory use of any individual application or process climb
steadily and never level off? If so, that application or process is probably

leaking memory. In pooled environments, detecting memory leaks is more

difficult because pooled connections and prepared statements hold onto

memory and can make it appear as if your application is leaking memory

even when it isn’t. If you run into memory issues when using connection

pooling, try tuning the connection pool to reduce the number of connec-

tions in the pool. Similarly, try tuning the statement pool to reduce the num-

ber of prepared statements in the pool.

For information about tools that can help you troubleshoot memory use, see

“The Environment,” page 272.

108 The Environment: Tuning for Performance

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 108

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Tuning Your Application and Database Driver to Minimize Memory Use

Here are some general guidelines to minimize memory use:

• Reduce the number of open connections and prepared statements—Open

connections use memory on the client and on the database server. Make sure

that your application closes connections immediately after it’s finished with

them. If your application uses connection pooling and the database server

(or application server) starts to experience memory problems, try tuning the

connection pool to reduce the number of connections in the pool.

Alternatively, if your database system and database driver supports reau-

thentication, you may be able to use it to minimize the number of connec-

tions required to service your application.

Using statement pooling with connection pooling complicates the memory

situation exponentially. On the database client, client resources that correlate

to each pooled statement are stored in memory. On the database server, each

pooled connection has a statement pool associated with it that’s also main-

tained in memory. For example, if your application uses 5 pooled connec-

tions along with 20 prepared statements, each statement pool associated

with those 5 connections may potentially contain all 20 prepared state-

ments. That’s 5 connections × 20 prepared statements = 100 prepared state-

ments, all maintained in memory on the database server. If you use

statement pooling and the client or database server starts to experience

memory problems, try tuning the statement pool to reduce the number of

prepared statements in the pool. See “Using Statement Pooling with

Connection Pooling,” page 238, for more information.

• Do not leave transactions active for too long—The database must write

every modification made by a transaction to a log that is stored in memory

on the database server. If your application uses transactions that update large

amounts of data without committing modifications at regular intervals, the

application can consume a substantial amount of database memory.

Committing a transaction flushes the contents of the log and releases mem-

ory used by the database server. See “Managing Commits in Transactions,”

page 22, for guidelines on committing active transactions.

• Avoid retrieving large amounts of data from the database server—When

the database driver retrieves data from the database server, it typically stores

that data in a result set that is maintained in memory on the client. If your

application executes queries that retrieve millions of rows, memory can be

used up quickly. Always formulate your SQL queries to retrieve only the data

you need.

Hardware 109

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 109

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Similarly, retrieving long data—such as large XML data, long varchar/text,

long varbinary, Clobs, and Blobs—can be problematic for memory. Suppose

your application executes a query that retrieves hundreds of rows, and those

rows happen to contain a Blob. If the database system does not support true

LOBs, the database driver will probably emulate this functionality and

retrieve the entire Blob across the network and place it in memory on the

client. See “Data Retrieval,” page 30, for more information.

• Avoid scrollable cursors unless you know your database system fully sup-
ports them—Scrollable cursors let you go both forward and backward

through a result set. Because of limited support for server-side scrollable

cursors in many database systems, database drivers often emulate scrollable

cursors, storing rows from a scrollable result set in memory on the client or

application server. Large scrollable result sets can easily consume memory.

See “Using Scrollable Cursors,” page 36, for more information.

• If memory is a limiting factor on your database server, application server,
or client, tune your database driver to compensate for that limiting
factor—Some database drivers provide tuning options that allow you to

choose how and where some memory-intensive operations are performed.

For example, if your client excessively pages to disk because of large result

sets, you may want to decrease the size of the fetch buffer, the amount of

memory used by the driver to store results retrieved from the database

server. Decreasing the fetch buffer size reduces memory consumption, but it

means more network round trips, so you need to be aware of the trade-off.

Disk

When an operation reads or writes to disk, performance suffers because disk

access is extremely slow. The easiest way to avoid accessing the disk (or disk con-

troller in the case of multiple disks) is to use memory. For example, consider the

case of an application that retrieves large result sets. If your client or application

server has ample memory and your database driver supports this tuning option,

you could increase the size of the fetch buffer on the client to avoid the result set

being written to disk. However, remember that if you routinely stretch memory

to its limit, paging to disk occurs more frequently. In addition to slowing perfor-

mance, excessive paging can interfere with other processes that require the same

disk, causing disk contention.

110 The Environment: Tuning for Performance

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 110

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Disk contention occurs when multiple processes or threads try to access the

same disk simultaneously. The disk limits how many processes/threads can access

it and how much data it can transfer. When these limits are reached, processes

may have to wait to access the disk. Often, CPU activity is suspended until disk

access completes.

If you suspect that disk access occurs more often than it should, the first

thing you should do is rule out a memory bottleneck. Once you’ve ruled out a

memory bottleneck, make sure your application avoids unnecessary disk reads

and writes so that disk contention rarely happens.

Hardware 111

Performance Tip

As a general rule, your application should only access the disk in the fol-

lowing cases: to retrieve database metadata into memory and to write

changes to disk, such as in the case of committing transactions.

Table 4-5 lists some common causes for disk bottlenecks and their recom-

mended solutions.

Table 4-5 Causes and Solutions of Disk Bottlenecks
Cause Solution

Excessive paging caused by a Detect and resolve the memory bottleneck. See
memory bottleneck “Memory,” page 107, for more information.

Excessive reads or writes to disk, Analyze and tune your application to avoid
possibly causing disk contention unnecessary disk reads or writes. See “Tuning Your

Application to Avoid Unnecessary Disk
Reads/Writes,” page 112, for more information.

Detecting Disk Bottlenecks

To detect a disk bottleneck, gather information about your system to answer the

following questions:

• Is excessive paging occurring? A memory bottleneck can resemble a disk

bottleneck so it’s important to rule out a memory problem before you make

any disk improvements. See “Detecting Memory Bottlenecks,” page 108, for

information about detecting memory bottlenecks.

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 111

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

• How often is the disk busy? If your disk has a sustained rate of disk activity

of 85% or more for a sustained period of time and a persistent disk queue,

you may have a disk bottleneck.

Tuning Your Application to Avoid Unnecessary Disk Reads/Writes

Here are some general guidelines to help your application avoid unnecessary disk

reads and writes:

• Avoid stretching memory to its limit—Once memory is used up, paging to

disk occurs. See “Memory,” page 107, for information about detecting and

avoiding a memory bottleneck.

• Avoid using auto-commit mode for transactions—When using transac-

tions, the database writes every modification made by a transaction to a log

that is stored in database memory. A commit tells the database to make those

changes permanent. In response, the database writes the changes to disk and

flushes the log. In auto-commit mode, transactions are committed automat-

ically by the database, or if the database doesn’t support auto-commit mode,

by the database driver. You can minimize disk access by using manual com-

mits. See “Managing Commits in Transactions,” page 22, for more informa-

tion.

CPU (Processor)

The CPU is the brain of your database server (or application server), performing

most of the calculations and logic required to retrieve data or modify database

tables. When the CPU is overly busy, it processes work slowly and may even have

jobs waiting in its run queue. When the CPU is too busy to respond to work

requests, performance of the database server or application server rapidly hits a

ceiling. For example, Figure 4-20 shows benchmark runs of the same driver on

different machines with different CPU capacity. As you can see, when run on the

machine that is not CPU-bound, performance steadily climbed. On a machine

that is CPU bound, performance is capped by the CPU.

Table 4-6 lists some common causes for CPU bottlenecks and their recom-

mended solutions.

112 The Environment: Tuning for Performance

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 112

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Hardware 113

Threads

R
ow

s/
S

ec
on

d

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10
CPU-Bound
Not CPU-Bound

Update 40 Char(20) cols, 40 params,
commit every 128.

Figure 4-20 CPU-bound versus non-CPU-bound

Table 4-6 Causes and Solutions of CPU Bottlenecks
Cause Solution

Insufficient CPU capacity Add multiple processors or upgrade to a more powerful
processor.

Inefficient database driver See “Database Drivers,” page 53, for information on why
it’s important to choose a good database driver.

Poorly optimized application Analyze and tune your application and database
code or database driver driver to minimize CPU use. See “Tuning Your Appli-

cation or Database Driver to Minimize CPU Use,” page
114, for more information.

Detecting CPU Bottlenecks

To detect a CPU bottleneck, gather information about your system to answer the

following questions:

• How much time does the CPU spend executing work? If the processor is busy

80% or higher for sustained periods, it can be a source of trouble. If you detect

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 113

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

high CPU use, drill down to individual processes to determine if any one

application is using more than its fair share of CPU cycles. If so, look more

closely at how that application is designed and coded as described in “Tuning

Your Application or Database Driver to Minimize CPU Use,” page 114.

• How many processes or threads are waiting to be serviced in the CPU’s
run queue? A single queue is used for CPU requests, even on computers with

multiple processors. If all processors are busy, threads must wait until CPU

cycles are free to perform work. Processes waiting in the queue for sustained

periods indicate a CPU bottleneck.

• What is the rate that processes or threads are switched by the operating
system to perform work for other waiting threads? A context switch is the

process of storing and restoring the state (context) of a CPU so that multiple

processes can share a single CPU resource. Each time the CPU stops running

one process and starts running another, a context switch occurs. For exam-

ple, if your application is waiting for a row lock to release so that it can

update data, the operating system may switch the context so that the CPU

can perform work on behalf of another application while your application is

waiting for the lock to release. Context switching requires significant proces-

sor time, so excessive context switches and high CPU use tend to go hand in

hand.

For information about tools that can help you troubleshoot CPU use, see

Chapter 10, “Troubleshooting Performance Issues.”

Tuning Your Application or Database Driver to Minimize CPU Use

Here are some general guidelines to help your application or database driver to

minimize CPU use:

• Maximize query plan reuse—When a new SQL statement is sent to the

database, the database compiles a query plan for that statement and stores it

for future reference. Each time a SQL statement is submitted to the database,

the database looks for a matching SQL statement and query plan. If a query

plan isn’t found, the database creates a new query plan for the statement.

Each time the database creates a new query plan, it uses CPU cycles. To max-

imize query plan reuse, consider using statement pooling. For more infor-

mation about statement pooling, see “Using Statement Pooling,” page 236.

• Ensure connection pools and statement pools are tuned correctly—

Pooling can conserve CPU if tuned correctly, but if not, your pooling envi-

114 The Environment: Tuning for Performance

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 114

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

ronment may use more CPU than expected. As a general rule, when the data-

base has to create a new connection or prepared statement, CPU processing

becomes expensive. See Chapter 8, “Connection Pooling and Statement

Pooling,” for information about configuring your pooling environment.

• Avoid context switching by reducing network round trips—Each data

request that results in a network round trip triggers a context switch.

Context switching requires significant processor time, so excessive context

switches and high CPU use tend to go hand in hand. Reducing the number

of network round trips also reduces the number of context switches.

Application design and coding practices that reduce network round trips

include connection pooling, statement pooling, avoiding auto-commit

mode in favor of manual commits, using local transactions instead of dis-

tributed transactions where appropriate, and using batches or arrays of

parameters for bulk inserts.

• Minimize data conversions—Choose database drivers that convert data

efficiently. For example, some database drivers don’t support Unicode, a

standard encoding that is used for multilingual character sets. If your data-

base driver doesn’t support Unicode, more data conversion is required to

work with Unicode data, resulting in higher CPU use.

In addition, choose data types that process efficiently. When you are working

with data on a large scale, select the data type that can be processed most

efficiently. Retrieving and returning certain data types across the network

can increase or decrease network traffic. See “Choosing the Right Data

Type,” page 34, for details on which data types process more efficiently than

others.

• Be aware that emulated functionality can increase CPU use—Database dri-

vers sometimes emulate functionality if the database system doesn’t support

it. While this provides the benefit of interoperability, you should remember

that emulated behavior typically uses more CPU because the database driver

or the database must perform extra steps to satisfy the behavior. For example,

if your application uses scrollable cursors against Oracle, which doesn’t sup-

port scrollable cursors, CPU use on both the client/application server and

database server will be higher than against a database system that does sup-

port scrollable cursors, such as DB2. For more information about the type

Hardware 115

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 115

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

of functionality that drivers emulate, see “Know Your Database System,” page

47.

• Use data encryption with caution—Data encryption methods, such as SSL,

are CPU-intensive because they require extra steps between the database

driver and the database system, to negotiate and agree upon the encryp-

tion/decryption information to be used in addition to the process of

encrypting the data. To limit the performance penalty associated with data

encryption, consider establishing separate connections for encrypted and

nonencrypted data. For example, one connection can use encryption for

accessing sensitive data such as an individual’s tax ID number, while the

other connection can forgo encryption for data that is less sensitive, such as

an individual’s department and title. However, not all database systems allow

this. With some database systems, such as Sybase ASE, either all connections

to the database use encryption or none of them do. See “Data Encryption

across the Network,” page 39, for more information.

• If CPU is a limiting factor on your database server, application server, or
client, tune your database driver to compensate for that limiting factor—

Some database drivers provide tuning options that allow you to choose how

and where some CPU-intensive operations are performed. For example,

Sybase ASE creates stored procedures for prepared statements, a CPU-inten-

sive operation to create the stored procedure, but not to execute it. If your

application executes a prepared statement only once, not multiple times, the

database server uses more CPU than necessary. Choosing a driver that allows

you to tune whether Sybase ASE creates a stored procedure for a prepared

statement could improve performance significantly by conserving CPU.

Network Adapter

Computers that are connected to a network have at least one network adapter

that sends and receives network packets across the network. Network adapters

are designed for a specific network type, such as Ethernet, token-ring, and so on.

Differences in the speed of network adapters at either end of the network can

cause performance issues. For example, a 64-bit network adapter sends data

faster than a 32-bit network adapter can process it.

116 The Environment: Tuning for Performance

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 116

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

A sluggish network can indicate that you need more bandwidth, the capacity

to send and receive network packets. Increasing bandwidth is similar to widening

a congested 2-lane highway into a 4- or 6-lane highway. The highway can handle

more traffic, relieving bottlenecks.

Table 4-7 lists some common causes for network bottlenecks and their rec-

ommended solutions.

Table 4-7 Causes and Solutions of Network Bottlenecks
Cause Solution

Insufficient bandwidth Add more network adapters or upgrade your network
adapter. See “Increasing Network Bandwidth,” page 106,
for more information about upgrading your network
adapter.

Distribute client connections across multiple network
adapters.

Reduce network traffic by configuring the database dri-
ver to use the maximum database protocol packet size
allowed by the database server. See “Configuring Packet
Size,” page 92, for more information.

Inefficient database driver See “Database Drivers,” page 53, for information on
why it’s important to choose a good database driver.

Poorly optimized application Analyze and tune your application and database
code or database driver driver to use the network efficiently. See “Tuning Your

Application or Database Driver to Use the Network
Efficiently,” page 118, for more information.

Detecting a Network Bottleneck

What is the rate at which network packets are sent and received using the net-
work adapter? Comparing this rate to the total bandwidth of your network

adapter can tell you if the network traffic load is too much for your network

adapter. To allow room for spikes in traffic, you should use no more than 50% of

capacity.

For information about tools that can help you troubleshoot network use, see

“The Environment,” page 272.

Hardware 117

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 117

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Tuning Your Application or Database Driver to Use the Network Efficiently

Here are some general guidelines to help your application and database driver

use the network efficiently:

• Reduce the number of network round trips—Reducing network round

trips reduces your application’s reliance on the network, which improves

performance. Application design and coding practices that reduce network

round trips include connection pooling, statement pooling, avoiding auto-

commit mode in favor of manual commits, using local transactions instead

of distributed transactions where appropriate, and using batches or arrays of

parameters for bulk inserts.

• Tune your database driver to optimize communication across the net-
work—Some database drivers provide tuning options that allow you to opti-

mize network traffic. For example, if your database driver supports it, you

can increase the size of database protocol packets, which ultimately improves

performance because it results in fewer network packets being sent across

the network. See “Configuring Packet Size,” page 92, for more information.

• Avoid retrieving large amounts of data from the database server—The

more data that must be transferred across the network, the more network

packets are required to transfer the data. For example, data such as XML

files, Blobs, and Clobs can be very large. Just as retrieving thousands of rows

of character data can be a drain on performance, retrieving long data across

the network is slow and resource intensive because of the size of the data.

Avoid retrieving it unless you have a compelling reason to do so. See “Data

Retrieval,” page 30, for more information.

If you can’t avoid retrieving data that generates large amounts of network

traffic, your application can still control the amount of data being sent from

the database by limiting the number of rows sent across the network and

reducing the size of each row sent across the network. See “Limiting the

Amount of Data Returned,” page 34, for more information.

• Be aware that large result sets can delay your application’s response time if
you are using a streaming protocol database—Sybase ASE, Microsoft SQL

Server, and MySQL are examples of streaming protocol databases. These

database systems process the query and send results until there are no more

118 The Environment: Tuning for Performance

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 118

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

results to send; the database is uninterruptable. Therefore, the network con-

nection is “busy” until all results are returned (fetched) to the application.

Large result sets can suspend the availability of the network for longer times

than small result sets. If you’re using a streaming protocol database, it’s even

more important to reduce the amount of data retrieved from the database

server. See “How One Connection for Multiple Statements Works,” page 17,

for more information about streaming protocol databases versus cursor-

based protocol databases.

• Avoid scrollable cursors unless you know your database system fully sup-
ports them—Scrollable cursors provide the ability to go both forward and

backward through a result set. Because of limited support for server-side

scrollable cursors in many database systems, database drivers often emulate

scrollable cursors, storing rows from a scrollable result set in memory on the

client or application server. A large result set can result in large amounts of

data being transferred over the network. See “Using Scrollable Cursors,” page

36, for more information.

Virtualization

You may have heard talk about a recent trend in database computing known as

virtualization. Virtualization allows companies to consolidate server resources

by allowing multiple operating system instances to run at the same time on a sin-

gle physical computer. A single server can run 4, 8, 16, or even more virtual oper-

ating systems. In 2007, the number of companies offering virtualization

management solutions increased from 6 to 50, a staggering 866% increase. It’s

not hard to figure out why.

Over the past 10 years, hardware has become less expensive and more power-

ful. To keep pace with computing demands, companies have acquired large num-

bers of server machines, but they often find themselves low on the space, power,

and air conditioning required to store and maintain them. It’s estimated that in

an unvirtualized environment, only 8% to 10% of the capacity of a server is used.

Using virtualization, companies can get more work out of fewer machines, easing

and sometimes eliminating the costs associated with housing multiple servers.

For example, imagine an IT’s data center that maintains 50 servers stored in a

crowded, subleased server space. By creating 5 virtual servers on only 10 servers,

Hardware 119

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 119

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

that data center can move to a smaller space and get rid of an expensive sublease

without sacrificing business capability.

What does virtualization mean to the performance of database applications?

First, it’s important to choose a database driver that supports virtualization tech-

nologies. Next, you need to be aware that it becomes easier to stretch hardware

resources such as network, memory, CPU, and disk use to their limits; the proba-

bility that your database application will be affected by performance issues

caused by hardware constraints is amplified.

Finally, it’s important to understand that virtualized environments make it

harder to detect where performance bottlenecks actually originate because of the

increased complexity of the environment. In addition, there’s no overarching

tool that is operating system-agnostic to analyze resource use in virtualized envi-

ronments (although companies are rushing to develop virtualization manage-

ment tools that allow you to monitor activity and resource use). For example,

Figure 4-21 shows a virtualized machine that runs four operating systems and

hosts four applications. If Application A and Application C routinely generate a

spike in network traffic at the same time every day, the network adapter of the

virtualized machine may not be able to handle the increase in network requests.

The increase can affect the performance of not only Application A and C, but

also the performance of Application B and D.

120 The Environment: Tuning for Performance

Windows XP

Application A

Windows
Server 2003

Application B

Linux

Network

Virtualized Machine

Application C

Solaris x86

Application D

Figure 4-21 Virtualized machine running multiple operating systems and
database applications

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 120

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

The soundest advice we can give is to invest in the best hardware you can

afford. Software tools to help you troubleshoot performance issues in virtualized

environments demand a steep learning curve and, ultimately, will cost more than

the best hardware. In the example shown in Figure 4-21, if we provide each virtu-

alized machine with its own dedicated network adapter, our performance bottle-

neck is resolved.

In a few cases, it may not be feasible to add or upgrade hardware resources to

expand those that are being overworked. For example, each computer has a phys-

ical limit on the amount of memory it can address. When hardware becomes the

limiting factor for performance, using an efficient database driver becomes even

more important. See “Database Drivers,” page 53, for more information about

choosing an efficient database driver.

Summary

The environment in which your database application runs affects its perfor-

mance. In the Java environment, performance can vary between JVMs from dif-

ferent manufacturers, so it’s important to choose a JVM that gives your

application the best performance. You can further improve performance by tun-

ing JVM settings for heap size and garbage collection. In contrast, the .NET CLR

doesn’t provide the same tuning ability for garbage collection, and efficient

garbage collection largely depends on your application code.

Any operating system change, even a minor one, can affect performance

more than you would think. One often overlooked factor is the endianness of the

operating system, as determined by the computer’s processor. If possible, try to

align the endianness of the operating system on the database client with that of

the operating system on the database server.

Database clients and database servers communicate over a network, typically

TCP/IP. How efficiently your database application uses that network affects per-

formance. Following are key techniques for ensuring the best performance over

the network:

• Reducing network round trips

• Tuning the size of database protocol packets

• Reducing the number of network hops between network destinations

• Avoiding network packet fragmentation

Summary 121

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 121

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

Hardware resources such as memory, disk I/O, CPU, and the network

adapter can be a limiting factor for performance. To conserve hardware

resources, you often can tune the database driver or use specific application

design and coding techniques. In virtualized environments, it’s easier to stretch

hardware resources to their limits and harder to detect where bottlenecks origi-

nate. Investing in the best hardware that you can afford will save you in the long

run.

122 The Environment: Tuning for Performance

04_0137143931_ch04.qxd 2/17/09 2:04 PM Page 122

The Data Access Handbook – John Goodson & Robert A. Steward – 0137143931/9780137143931 – Prentice Hall – Published March 2009

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

