
murach’s

C#C#C#C#C# 20052005200520052005
Joel Murach

(Chapter 3)
Thanks for downloading this chapter from Murach’s C# 2005. We hope it will show you
how easy it is to learn from any Murach book, with its paired-pages presentation, its
“how-to” headings, its practical coding examples, and its clear, concise style.

To view the full table of contents for this book, you can go to our web site. From there,
you can read more about this book, you can find out about any additional downloads that
are available, and you can review our other books on .NET development.

Thanks for your interest in our books!

TRAINING & REFERENCE

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2006 Mike Murach & Associates. All rights reserved.

http://www.murach.com/books/csh5/index.htm
http://www.murach.com/books/csh5/toc.htm
mailto:murachbooks@murach.com
http://www.murach.com

iii

Contents
Introduction xiii

Section 1 An introduction to Visual Studio
Chapter 1 How to get started with Visual Studio 3
Chapter 2 How to design a Windows Forms application 31
Chapter 3 How to code and test a Windows Forms application 53

Section 2 The C# language essentials
Chapter 4 How to work with numeric and string data 89
Chapter 5 How to code control structures 127
Chapter 6 How to code methods and event handlers 153
Chapter 7 How to handle exceptions and validate data 175
Chapter 8 How to work with arrays and collections 203
Chapter 9 How to work with dates and strings 243
Chapter 10 More skills for working with controls and multi-form projects 269
Chapter 11 How to debug an application 311

Section 3 Object-oriented programming
Chapter 12 How to create and use classes 339
Chapter 13 How to work with indexers, delegates, events, and operators 377
Chapter 14 How to work with inheritance 405
Chapter 15 How to work with interfaces and generics 443
Chapter 16 How to organize and document your classes 473

Section 4 Database programming
Chapter 17 An introduction to database programming 493
Chapter 18 How to use data sources with databases (part 1) 525
Chapter 19 How to use data sources with databases (part 2) 577
Chapter 20 How to use ADO.NET to write your own data access code 629
Chapter 21 How to use data sources with business objects 667

Section 5 Other skills for C# developers
Chapter 22 How to work with files and data streams 697
Chapter 23 How to work with XML files 719
Chapter 24 How to enhance the user interface 743
Chapter 25 How to deploy an application 767

Appendixes
Appendix A How to install and use the software and files for this book 789
Index 796

Judy Taylor

Chapter 3 How to code and test a Windows Forms application 53

3

How to code and test a
Windows Forms application
In the last chapter, you learned how to design a form for a Windows Forms
application. In this chapter, you’ll learn how to code and test a Windows Forms
application. When you’re done, you’ll be able to develop simple applications of
your own.

An introduction to coding.. 54
Introduction to object-oriented programming .. 54
How to refer to properties, methods, and events .. 56
How an application responds to events .. 58

How to add code to a form .. 60
How to create an event handler for the default event of a form or control ... 60
How to delete an event handler .. 60
The event handlers for the Invoice Total form .. 62
How to detect and correct syntax errors ... 64

More coding skills .. 66
How to code with a readable style .. 66
How to code comments .. 68
How to work with the Text Editor toolbar .. 70
How to collapse or expand blocks of code ... 70
How to use code snippets ... 72
How to refactor code .. 74
How to get help information ... 76

How to run, test, and debug a project 78
How to run a project ... 78
How to test a project ... 80
How to debug runtime errors .. 82

Perspective .. 84

54 Section 1 An introduction to Visual Studio

An introduction to coding

Before you learn the mechanics of adding code to a form, it’s important to
understand some of the concepts behind object-oriented programming.

Introduction to object-oriented programming

Whether you know it or not, you are using object-oriented programming as
you design a Windows form with Visual Studio’s Form Designer. That’s because
each control on a form is an object, and the form itself is an object. These
objects are derived from classes that are part of the .NET Class Library.

When you start a new project from the Windows Application template, you
are actually creating a new class that inherits the characteristics of the Form
class that’s part of the .NET Class Library. Later, when you run the form, you
are actually creating an instance of your form class, and this instance is known
as an object.

Similarly, when you add a control to a form, you are actually adding a
control object to the form. Each control is an instance of a specific class. For
example, a text box control is an object that is an instance of the TextBox class.
Similarly, a label control is an object that is an instance of the Label class. This
process of creating an object from a class can be called instantiation.

As you progress through this book, you will learn much more about classes
and objects because C# is an object-oriented language. In chapter 12, for
example, you’ll learn how to use the C# language to create your own classes. At
that point, you’ll start to understand what’s actually happening as you work with
classes and objects. For now, though, you just need to get comfortable with the
terms and accept the fact that a lot is going on behind the scenes as you design a
form and its controls.

Figure 3-1 summarizes what I’ve just said about classes and objects. It also
introduces you to the properties, methods, and events that are defined by classes
and used by objects. As you’ve already seen, the properties of an object define
the object’s characteristics and data. For instance, the Name property gives a
name to a control, and the Text property determines the text that is displayed
within the control. In contrast, the methods of an object determine the opera-
tions that can be performed by the object.

An object’s events are signals sent by the object to your application that
something has happened that can be responded to. For example, a Button
control object generates an event called Click if the user clicks the button. Then,
your application can respond by running a C# method to handle the Click event.

By the way, the properties, methods, and events of an object or class are
called the members of the object or class. You’ll learn more about properties,
methods, and events in the next three figures.

Chapter 3 How to code and test a Windows Forms application 55

A form object and its ten control objects

Class and object concepts
• An object is a self-contained unit that combines code and data. Two examples of objects

you have already worked with are forms and controls.

• A class is the code that defines the characteristics of an object. You can think of a class
as a template for an object.

• An object is an instance of a class, and the process of creating an object from a class is
called instantiation.

• More than one object instance can be created from a single class. For example, a form
can have several button objects, all instantiated from the same Button class. Each is a
separate object, but all share the characteristics of the Button class.

Property, method, and event concepts
• Properties define the characteristics of an object and the data associated with an object.

• Methods are the operations that an object can perform.

• Events are signals sent by an object to the application telling it that something has
happened that can be responded to.

• Properties, methods, and events can be referred to as members of an object.

• If you instantiate two or more instances of the same class, all of the objects have the
same properties, methods, and events. However, the values assigned to the properties can
vary from one instance to another.

Objects and forms
• When you use the Form Designer, Visual Studio automatically generates C# code that

creates a new class based on the Form class. Then, when you run the project, a form
object is instantiated from the new class.

• When you add a control to a form, Visual Studio automatically generates C# code in the
class for the form that instantiates a control object from the appropriate class and sets the
control’s default properties. When you move and size a control, Visual Studio automati-
cally sets the properties that specify the location and size of the control.

Figure 3-1 Introduction to object-oriented programming

56 Section 1 An introduction to Visual Studio

How to refer to properties, methods, and events

As you enter the code for a form in the Code Editor window, you often need
to refer to the properties, methods, and events of the form’s objects. To do that,
you type the name of the object, a period (also known as a dot operator, or dot),
and the name of the member. This is summarized in figure 3-2.

In addition to referring to the properties, methods, and events of objects, you
can also refer to some of the properties and methods of a class directly from that
class. The code shown in the Code Editor in this figure, for example, refers to the
ToDecimal method of the Convert class. A property or method that you can refer
to directly from a class like this is called a static member. You’ll learn more
about static members in chapter 4. For now, you just need to realize that you can
refer to static properties and methods using the same techniques that you use to
refer to the properties and methods of an object.

To make it easier for you to refer to the members of an object or class, Visual
Studio’s IntelliSense feature displays a list of the members that are available for
that class or object after you type a class or object name and a period. Then, you
can highlight the entry you want by clicking on it, typing the first few letters of
its name, or using the arrow keys to scroll through the list. In most cases, you can
then complete the entry by pressing the Tab key.

To give you an idea of how properties, methods, and events are used in code,
this figure shows examples of each. In the first example for properties, code is
used to set the value that’s displayed for a text box to 10. In the second example,
code is used to set a text box’s ReadOnly property to true. Although you can also
use the Properties window to set these values, that just sets the properties at the
start of the application. By using code, you can change the properties as an
application is running.

In the first example for methods, the Focus method of a text box is used to
move the focus to that text box. In the second example, the Close method of a
form is used to close the active form. In this example, the this keyword is used
instead of the name of the form. Here, this refers to the current instance of the
active form. Note also that the names of the methods are followed by parentheses.

As you progress through this book, you’ll learn how to use the methods for
many types of objects, and you’ll learn how to supply arguments within the
parentheses of a method. For now, though, just try to understand that you can call
a method from a class or an object and that you must code a set of parentheses
after the method name.

Although you’ll frequently refer to properties and methods as you code an
application, you’ll rarely need to refer to an event. That’s because Visual Studio
automatically generates the code for working with events, as you’ll see later in
this chapter. To help you understand the code that Visual Studio generates,
however, the last example in this figure shows how you refer to an event. In this
case, the code refers to the Click event of a button named btnExit.

Chapter 3 How to code and test a Windows Forms application 57

A member list that’s displayed in the Code Editor window

The syntax for referring to a member of a class or object
ClassName.MemberName
objectName.MemberName

Statements that refer to properties
txtTotal.Text = "10"; Assigns a string holding the number 10 to the Text property of

the text box named txtTotal.

txtTotal.ReadOnly = true; Assigns the true value to the ReadOnly property of the text
box named txtTotal so the user can’t change its contents.

Statements that refer to methods
txtMonthlyInvestment.Focus(); Uses the Focus method to move the focus to the text box

named txtMonthlyInvestment.

this.Close(); Uses the Close method to close the form that contains the
statement. In this example, this is a keyword that is used to
refer to the current instance of the class.

Code that refers to an event
btnExit.Click Refers to the Click event of a button named btnExit.

How to enter member names when working in the Code Editor
• To display a list of the available members for a class or an object, type the class or object

name followed by a period (called a dot operator, or just dot). Then, you can type the
first few letters of the member name, and the Code Editor will select the first entry in the
list that matches those letters. Or, you can scroll down the list to select the member you
want. Once it’s selected, press the Tab key to insert the member into your code.

• If a member list isn’t displayed, select the Tools�Options command to display the
Options dialog box. Then, expand the Text Editor group, select the C# category, and
check the Auto List Members and Parameters Information boxes.

Figure 3-2 How to refer to properties, methods, and events

58 Section 1 An introduction to Visual Studio

How an application responds to events

Windows Forms applications are event-driven. That means they work by
responding to the events that occur on objects. To respond to an event, you code
a special type of method known as an event handler. When you do that, Visual
Studio generates a statement that connects, or wires, the event handler to the
event. This is called event wiring, and it’s illustrated in figure 3-3.

In this figure, the user clicks the Exit button on the Invoice Total form.
Then, Visual Studio uses the statement it generated to wire the event to deter-
mine what event handler to execute in response to the event. In this case, the
btnExit.Click event is wired to the method named btnExit_Click, so this method
is executed. As you can see, this event handler contains a single statement that
uses the Close method to close the form.

This figure also lists some common events for controls and forms. One
control event you’ll respond to frequently is the Click event. This event occurs
when the user clicks an object with the mouse. Similarly, the DoubleClick event
occurs when the user double-clicks an object.

Although the Click and DoubleClick events are started by user actions,
that’s not always the case. For instance, the Enter and Leave events typically
occur when the user moves the focus to or from a control, but they can also
occur when code moves the focus to or from a control. Similarly, the Load event
of a form occurs when a form is loaded into memory. For the first form of an
application, this typically happens when the user starts the application. And the
Closed event occurs when a form is closed. For the Invoice Total form presented
in this figure, this happens when the user selects the Exit button or the Close
button in the upper right corner of the form.

In addition to the events shown here, most objects have many more events
that the application can respond to. For example, events occur when the user
positions the mouse over an object or when the user presses or releases a key.
However, you don’t typically respond to those events.

Chapter 3 How to code and test a Windows Forms application 59

Event: The user clicks the Exit button

Wiring: The application determines what method to execute
this.btnExit.Click += new System.EventHandler(this.btnExit_Click);

Response: The method for the Click event of the Exit button is executed
private void btnExit_Click(object sender, System.EventArgs e)
{
 this.Close();
}

Common control events
Event Occurs when…

Click …the user clicks the control.

DoubleClick …the user double-clicks the control.

Enter …the focus is moved to the control.

Leave …the focus is moved from the control.

Common form events
Event Occurs when…

Load …the form is loaded into memory.

Closing …the form is closing.

Closed …the form is closed.

Concepts
• Windows Forms applications work by responding to events that occur on objects.

• To indicate how an application should respond to an event, you code an event handler,
which is a special type of method that handles the event.

• To connect the event handler to the event, Visual Studio automatically generates a
statement that wires the event to the event handler. This is known as event wiring.

• An event can be an action that’s initiated by the user like the Click event, or it can be an
action initiated by program code like the Closed event.

Figure 3-3 How an application responds to events

60 Section 1 An introduction to Visual Studio

How to add code to a form

Now that you understand some of the concepts behind object-oriented
coding, you’re ready to learn how to add code to a form. Because you’ll learn the
essentials of the C# language in the chapters that follow, though, I won’t focus on
the coding details right now. Instead, I’ll focus on the concepts and mechanics of
adding the code to a form.

How to create an event handler for the default
event of a form or control

Although you can create an event handler for any event of any object, you’re
most likely to create event handlers for the default event of a form or control. So
that’s what you’ll learn to do in this chapter. Then, in chapter 6, you’ll learn how
to create event handlers for other events.

To create an event handler for the default event of a form or control, you
double-click the object in the Form Designer. Then, Visual Studio opens the Code
Editor, generates a method declaration for the default event of the object, and
places the insertion point on a blank line between the opening and closing braces
of that declaration. As a result, you can immediately start typing the C# state-
ments that you want to include in the body of the method.

To illustrate, figure 3-4 shows the code that was generated when I double-
clicked the Calculate button on the Invoice Total form. In this figure, the code for
the form is stored in a file named frmInvoiceTotal.cs. In addition, the name of the
method is the name of the object (btnCalculate), an underline, and the name of
the event (Click). The statement that wires the Click event of this button to this
event handler is stored in the file named frmInvoiceTotal.Designer.cs.

Before you start an event handler for a control, you should set the Name
property of the control as described in chapter 2. That way, this name will be
reflected in the method name of the event handler as shown in this figure. If you
change the control name after starting an event handler for it, Visual Studio will
change the name of the object in the event wiring, but it won’t change the name
of the object in the method name. And that can be confusing when you’re first
learning C#.

You should also avoid modifying the method declaration that’s generated for
you when you create an event handler. In chapter 6, you’ll learn how to modify
the method declaration. But for now, you should leave the method declaration
alone and focus on adding code within the body of the method.

How to delete an event handler

If you add an event handler by mistake, you can’t just delete it. If you do,
you’ll get an error when you try to run the application. This error will be dis-
played in an Error List window as shown in figure 3-6, and it will indicate that
the event handler is missing.

Chapter 3 How to code and test a Windows Forms application 61

The method that handles the Click event of the Calculate button

How to handle the Click event of a button
1. In the Form Designer, double-click the control. This opens the Code Editor, generates

the declaration for the method that handles the event, and places the cursor within this
declaration.

2. Type the C# code between the opening brace ({) and the closing brace (}) of the method
declaration.

3. When you are finished writing code, you can return to the Form Designer by clicking
the View Designer button in the Solution Explorer window.

How to handle the Load event for a form
• Follow the procedure shown above, but double-click the form itself.

Description
• The method declaration for the event handler that’s generated when you double-click on

an object in the Form Designer includes a method name that consists of the object name,
an underscore, and the event name.

• The event handler is stored in the cs file for the form.

• Most the code that’s generated when you design a form, including the statement that
wires the event to the event handler, is stored in the Designer.cs file for the form. If
necessary, you can open this file to view or delete the event wiring.

• In chapter 6, you’ll learn how to handle events other than the default event.

Figure 3-4 How to create an event handler for the default event of a form or control

Object Event

62 Section 1 An introduction to Visual Studio

That’s because when you create an event handler, Visual Studio also gener-
ates a statement that wires the event to the event handler. As a result, if you
delete an event handler, you must also delete the wiring for the event. The
easiest way to do that is to double-click on the error message in the Error List
window. This will open the Designer.cs file for the form and jump to the state-
ment that contains the wiring for the missing event handler. Then, you can
delete this statement.

The event handlers for the Invoice Total form

Figure 3-5 presents the two event handlers for the Invoice Total form. The
code that’s shaded in this example is the code that’s generated when you
double-click the Calculate and Exit buttons in the Form Designer. You have to
enter the rest of the code yourself.

I’ll describe this code briefly here so you have a general idea of how it
works. If you’re new to programming, however, you may not understand the
code completely until after you read the next two chapters.

The event handler for the Click event of the Calculate button calculates the
discount percent, discount amount, and invoice total based on the subtotal
entered by the user. Then, it displays those calculations in the appropriate text
boxes. For example, if the user enters a subtotal of $1000, the discount percent
will be 20%, the discount amount will be $200, and the invoice total will be
$800.

In contrast, the event handler for the Click event of the Exit button contains
just one statement that executes the Close method of the form. As a result, when
the user clicks this button, the form is closed, and the application ends.

In addition to the code that’s generated when you double-click the Calculate
and Exit buttons, Visual Studio generates other code that’s hidden in the
Designer.cs file. When the application is run, this is the code that implements
the form and controls that you designed in the Form Designer. Although you
may want to look at this code to see how it works, you shouldn’t modify this
code with the Code Editor as it may cause problems with the Form Designer.
The one exception is deleting unnecessary event wiring statements.

When you enter C# code, you must be aware of the coding rules summa-
rized in this figure. In particular, note that each method contains a block of code
that’s enclosed in braces. As you’ll see throughout this book, braces are used
frequently in C# to identify blocks of code. Also, note that each statement ends
with a semicolon. This is true even if the statement spans several lines of code.

You should also realize that C# is a case-sensitive language. As a result, you
must use exact capitalization for all C# keywords, class names, object names,
variable names, and so on. If you enter the name of a control or variable without
using the correct capitalization, for example, the Code Editor won’t recognize
the control or variable.

Chapter 3 How to code and test a Windows Forms application 63

The event handlers for the Invoice Total form
private void btnCalculate_Click(object sender, System.EventArgs e)
{
 decimal subtotal = Convert.ToDecimal(txtSubtotal.Text);
 decimal discountPercent = 0m;
 if (subtotal >= 500)
 {
 discountPercent = .2m;
 }
 else if (subtotal >= 250 && subtotal < 500)
 {
 discountPercent = .15m;
 }
 else if (subtotal >= 100 && subtotal < 250)
 {
 discountPercent = .1m;
 }

 decimal discountAmount = subtotal * discountPercent;
 decimal invoiceTotal = subtotal - discountAmount;

 txtDiscountPercent.Text = discountPercent.ToString("p1");
 txtDiscountAmount.Text = discountAmount.ToString("c");
 txtTotal.Text = invoiceTotal.ToString("c");

 txtSubtotal.Focus();
}

private void btnExit_Click(object sender, System.EventArgs e)
{
 this.Close();
}

Coding rules
• Use spaces to separate the words in each statement.

• Use exact capitalization for all keywords, class names, object names, variable names,
etc.

• End each statement with a semicolon.

• Each block of code must be enclosed in braces ({}). That includes the block of code that
defines the body of a method.

Description
• When you double-click the Calculate and Exit buttons in the Form Designer, it generates

the shaded code shown above. Then, you can enter the rest of the code within the event
handlers.

• The first event handler for the Invoice Total form is executed when the user clicks the
Calculate button. This method calculates and displays the discount percent, discount
amount, and total based on the subtotal entered by the user.

• The second event handler for the Invoice Total form is executed when the user clicks the
Exit button. This method closes the form, which ends the application.

Figure 3-5 The event handlers for the Invoice Total form

64 Section 1 An introduction to Visual Studio

How to detect and correct syntax errors

As you enter code, Visual Studio checks the syntax of each statement. If a
syntax error, or build error, is detected, Visual Studio displays a wavy line
under the code in the Code Editor. In the Code Editor in figure 3-6, for example,
you can see the lines under txtPercent and txtAmount.

If you place the mouse pointer over the code in error, a brief description of
the error is displayed. In this case, the error message indicates that the name
does not exist. That’s because the names entered in the Code Editor don’t match
the names used by the Form Designer. If the names are correct in the Form
Designer, you can easily correct these errors, by editing the names in the Code
Editor. In this figure, for example, the names of the text boxes should be
txtDiscountPercent and txtDiscountAmount.

If the Error List window is open as shown in this figure, any errors that
Visual Studio detects will also be displayed in that window. If the Error List
window isn’t open, you can display it by pointing to the Error List tab that’s
displayed on the lower edge of Visual Studio. Then, you can jump to the error in
the Code Editor by double-clicking on it in the Error List window.

When you’re first getting started with C#, you will inevitably encounter a
lot of errors. As a result, you may want to use the Auto Hide button that’s
available from the Error List window to keep it open all the time. This makes it
easy to see errors as soon as they occur. Then, once you get the hang of working
with C#, you can conserve screen space by using the Auto Hide button so this
window is only displayed when you point to the Error List tab.

By the way, Visual Studio isn’t able to detect all syntax errors as you enter
code. Instead, some syntax errors aren’t detected until the project is built. You’ll
learn more about building projects later in this chapter.

Chapter 3 How to code and test a Windows Forms application 65

The Code Editor and Error List windows with syntax errors displayed

Description
• Visual Studio checks the syntax of your C# code as you enter it. If a syntax error (or

build error) is detected, it’s highlighted with a wavy underline in the Code Editor, and
you can place the mouse pointer over it to display a description of the error.

• If the Error List window is open, all of the build errors are listed in that window. Then,
you can double-click on any error in the list to take you to its location in the Code Editor.
When you correct the error, it’s removed from the error list.

• If the Error List window isn’t open, you can display it by selecting the Error List com-
mand from the View menu. Then, you can click the Error List tab that’s displayed at the
edge of the Visual Studio window. If you prefer, you can click its Auto Hide button to
keep it displayed.

• Visual Studio doesn’t detect some syntax errors until the project is built. As a result, you
may encounter more syntax errors when you build and run the project.

Figure 3-6 How to detect and correct syntax errors

Error List window

66 Section 1 An introduction to Visual Studio

More coding skills

At this point, you should understand the mechanics of adding code to a
form. To code effectively, however, you’ll need some additional skills. The
topics that follow present some of the most useful coding skills.

How to code with a readable style

In figure 3-5, you learned some coding rules that you must follow when you
enter the code for an application. If you don’t, Visual Studio reports syntax
errors that you have to correct before you can continue. You saw how that
worked in the last figure.

Besides adhering to the coding rules, though, you should try to write your
code so it’s easy to read, debug, and maintain. That’s important for you, but it’s
even more important if someone else has to take over the maintenance of your
code. You can create more readable code by following the three coding recom-
mendations presented in figure 3-7.

To illustrate, this figure presents two versions of an event handler. Both
versions accomplish the same task. As you can see, however, the first one is
easier to read than the second one because it follows our coding recommenda-
tions.

The first coding recommendation is to use indentation and extra spaces to
align related elements in your code. This is possible because you can use one or
more spaces, tabs, or returns to separate the elements in a C# statement. In this
example, all of the statements within the event handler are indented. In addition,
the if-else statements are indented and aligned so you can easily identify the
parts of this statement.

The second recommendation is to separate the words, values, and operators
in each statement with spaces. In the unreadable code in this figure, for ex-
ample, you can see that each line of code except for the method declaration
includes at least one operator. Because the operators aren’t separated from the
word or value on each side of the operator, the code is difficult to read. In
contrast, the readable code includes a space on both sides of each operator.

The third recommendation is to use blank lines before and after groups of
related statements to set them off from the rest of the code. This too is illus-
trated by the first method in this figure. Here, the code is separated into five
groups of statements. In a short method like this one, this isn’t too important,
but it can make a long method much easier to follow.

Throughout this chapter and book, you’ll see code that illustrates the use of
these recommendations. You will also receive other coding recommendations
that will help you write code that is easy to read, debug, and maintain.

As you enter code, the Code Editor will automatically assist you in format-
ting your code. When you press the Enter key at the end of a statement, for
example, the Editor will indent the next statement to the same level.

Chapter 3 How to code and test a Windows Forms application 67

A method written in a readable style
private void btnCalculate_Click(object sender, System.EventArgs e)
{
 decimal subtotal = Convert.ToDecimal(txtSubtotal.Text);

 decimal discountPercent = 0m;
 if (subtotal >= 500)
 {
 discountPercent = .2m;
 }
 else if (subtotal >= 250 && subtotal < 500)
 {
 discountPercent = .15m;
 }
 else if (subtotal >= 100 && subtotal < 250)
 {
 discountPercent = .1m;
 }

 decimal discountAmount = subtotal * discountPercent;
 decimal invoiceTotal = subtotal - discountAmount;

 txtDiscountPercent.Text = discountPercent.ToString("p1");
 txtDiscountAmount.Text = discountAmount.ToString("c");
 txtTotal.Text = invoiceTotal.ToString("c");

 txtSubtotal.Focus();
}

A method written in an unreadable style
private void btnCalculate_Click(object sender, System.EventArgs e){
decimal subtotal=Convert.ToDecimal(txtSubtotal.Text);
decimal discountPercent=0m;
if (subtotal>=500) discountPercent=.2m;
else if (subtotal>=250&&subtotal<500) discountPercent=.15m;
else if (subtotal>=100&&subtotal<250) discountPercent=.1m;
decimal discountAmount=subtotal*discountPercent;
decimal invoiceTotal=subtotal-discountAmount;
txtDiscountPercent.Text=discountPercent.ToString("p1");
txtDiscountAmount.Text=discountAmount.ToString("c");
txtTotal.Text=invoiceTotal.ToString("c");txtSubtotal.Focus();}

Coding recommendations
• Use indentation and extra spaces to align statements and blocks of code so they reflect

the structure of the program.

• Use spaces to separate the words, operators, and values in each statement.

• Use blank lines before and after groups of related statements.

Note
• As you enter code in the Code Editor, Visual Studio may adjust its indentation.

Figure 3-7 How to code with a readable style

68 Section 1 An introduction to Visual Studio

How to code comments

Comments are used to document what the program does and what specific
blocks and lines of code do. Since the C# compiler ignores comments, you can
include them anywhere in a program without affecting your code. Figure 3-8
shows you how to code two types of comments.

First, this figure shows a delimited comment at the start of a method. This
type of comment is typically used to document information that applies to an
entire method or to any other large block of code. You can include any useful or
helpful information in a delimited comment such as a general description of the
block, the author’s name, the completion date, the files used by the block, and
so on.

To document the purpose of a single line of code, you can use single-line
comments. Once the compiler reads the slashes (//) that start this type of com-
ment, it ignores all characters until the end of the current line. In this figure,
single-line comments have been used to describe each group of statements. In
addition, single-line comments have been used at the end of some lines of code
to clarify the code.

Although many programmers sprinkle their code with comments, that
shouldn’t be necessary if you write your code so it’s easy to read and under-
stand. Instead, you should use comments only to clarify code that’s difficult to
understand. The trick, of course, is to provide comments for the code that needs
explanation without cluttering the code with unnecessary comments. For
example, an experienced C# programmer wouldn’t need any of the comments
shown in this figure.

One problem with comments is that they may not accurately represent what
the code does. This often happens when a programmer changes the code, but
doesn’t change the comments that go along with it. Then it’s even harder to
understand the code, because the comments are misleading. So if you change
the code that has comments, be sure to change the comments too.

Incidentally, all comments are displayed in the Code Editor in a different
color from the words in the C# statements. By default, the C# code is blue and
black (blue for C# keywords and black for the rest of the code), while the
comments are green. That makes it easy to identify the comments.

Chapter 3 How to code and test a Windows Forms application 69

A method with comments
private void btnCalculate_Click(object sender, System.EventArgs e)
{
 /***************************************
 * this method calculates the total
 * for an invoice depending on a
 * discount that’s based on the subtotal
 **/

 // get the subtotal amount from the Subtotal text box
 decimal subtotal = Convert.ToDecimal(txtSubtotal.Text);

 // set the discountPercent variable based
 // on the value of the subtotal variable
 decimal discountPercent = 0m; // the m indicates a decimal value
 if (subtotal >= 500)
 {
 discountPercent = .2m;
 }
 else if (subtotal >= 250 && subtotal < 500)
 {
 discountPercent = .15m;
 }
 else if (subtotal >= 100 && subtotal < 250)
 {
 discountPercent = .1m;
 }

 // calculate and assign the values for the
 // discountAmount and invoiceTotal variables
 decimal discountAmount = subtotal * discountPercent;
 decimal invoiceTotal = subtotal - discountAmount;

 // format the values and display them in their text boxes
 txtDiscountPercent.Text = // percent format
 discountPercent.ToString("p1"); // with 1 decimal place
 txtDiscountAmount.Text =
 discountAmount.ToString("c"); // currency format
 txtTotal.Text =
 invoiceTotal.ToString("c");

 // move the focus to the Subtotal text box
 txtSubtotal.Focus();
}

Description
• Comments are used to help document what a program does and what the code within it

does.

• To code a single-line comment, type // before the comment. You can use this technique to
add a comment on its own line or to add a comment at the end of a line.

• To code a delimited comment, type /* at the start of the comment and */ at the end. You
can also code asterisks to identify the lines in the comment, but that isn’t necessary.

Figure 3-8 How to code comments

70 Section 1 An introduction to Visual Studio

How to work with the Text Editor toolbar

Figure 3-9 shows how you can use the Text Editor toolbar to work with
code. If you experiment with this toolbar, you’ll find that its buttons provide
some useful functions for working with comments and indentation and for
moving from one place to another.

In particular, you can use the Text Editor toolbar to modify several lines of
code at once. For example, during testing, you can use this toolbar to comment
out several lines of code by selecting the lines of code and then clicking on the
Comment button. Then, you can test the program without those lines of code. If
necessary, you can use the Uncomment button to restore those lines of code.
Similarly, you can use the Increase Indent and Decrease Indent buttons to adjust
the indentation for selected lines of code.

You can also use the Text Editor toolbar to work with bookmarks. After you
use the Toggle Bookmark button to mark lines of code, you can easily move
between the marked lines of code by using the Next and Previous buttons.
Although you usually don’t need bookmarks when you’re working with simple
applications like the one shown here, bookmarks can be helpful when you’re
working with applications that contain more than a few pages of code.

If you experiment with the other buttons on the Text Editor toolbar, you’ll
find that they provide IntelliSense features like the ones you learned about
earlier in this chapter for referring to properties, methods, and events. You can
use these buttons to force Visual Studio to display a member list or information
about a member that’s displayed in the Code Editor.

How to collapse or expand blocks of code

As you write the code for an application, you may want to collapse or
expand some of the regions, comments, and methods to make it easier to scroll
through the code and locate specific sections of code. To do that, you can use
the techniques described in figure 3-9. In this figure, for example, the
frmInvoiceTotal method has been collapsed so all you can see is its method
declaration.

You may also want to collapse or expand code before you print it. Then, in
the dialog box for the File�Print command, you can check or uncheck the Hide
Collapsed Regions box. If this box is checked, Visual Studio will only print the
code that’s displayed in the Code Editor.

Chapter 3 How to code and test a Windows Forms application 71

The Code Editor and the Text Editor toolbar

How to use the buttons of the Text Editor toolbar
• To display or hide the Text Editor toolbar, right-click in the toolbar area and choose Text

Editor from the shortcut menu.

• To comment or uncomment several lines of code, select the lines and click the Comment
or Uncomment button. During testing, you can comment out coding lines so they won’t
be executed. That way, you can test new statements without deleting the old statements.

• To increase or decrease the indentation of several lines of code, select the lines and click
the Increase Indent or Decrease Indent button. Or, press the Tab and Shift+Tab keys.

• To move quickly between lines of code, you can use the last eight buttons on the Text
Editor toolbar to set and move between bookmarks.

How to collapse or expand regions of code
• If a region of code appears in the Code Editor with a minus sign (-) next to it, you can

click the minus sign to collapse the region so just the first line is displayed.

• If a region of code appears in the Code Editor with a plus sign (+) next to it, you can
click the plus sign to expand the region so all of it is displayed.

Figure 3-9 How to use the Text Editor toolbar and collapse or expand code

Text Editor
toolbar

Collapsed method

72 Section 1 An introduction to Visual Studio

How to use code snippets

When you add code to an application, you will often find yourself entering
the same pattern of code over and over. For example, you often enter a series of
if blocks like the ones in the previous figures. To make it easy to enter patterns
like these, though, Visual Studio 2005 introduces a new feature known as code
snippets. These code snippets make it easy to enter common control structures
like the ones that you’ll learn about in chapter 5.

Sometimes, you’ll want to insert a code snippet on a blank line of text as
shown in figure 3-10. In that case, you can right-click on the blank line in the
Code Editor and select the Code Snippet command from the resulting menu.
Then, you can select the shortcut name for the code snippet you wish to insert
and press the Tab key. When you do, the code snippet will be inserted into the
Code Editor. In this figure, for example, the code snippet named if (not the #if
snippet at the top of the list) has been inserted into the document. This snippet
contains the start of an if block. Now, you just need to enter a condition within
the parentheses and some statements for the if block between the curled braces.

Other times, you’ll want to surround existing lines of code with a code
snippet. In that case, you can select the code that you want to surround, right-
click on that code, and select the Surround With command from the resulting
menu. Then, you can select the appropriate snippet. For example, you might
want to add an if block around one or more existing statements.

If you find that you like using code snippets, you should be aware that it’s
possible to add or remove snippets from the default list. To do that, you can
choose the Code Snippets Manager command from the Tools menu. Then, you
can use the resulting dialog box to remove code snippets that you don’t use or to
add new code snippets. Be aware, however, that writing a new code snippet
requires creating an XML file that defines the code snippet. To learn how to do
that, you can consult the documentation for Visual Studio.

Incidentally, if you’re new to programming and don’t understand the if
statements in this chapter, don’t worry about that. Instead, just focus on the
mechanics of using code snippets. In chapter 5, you’ll learn everything you need
to know about coding if statements.

Chapter 3 How to code and test a Windows Forms application 73

The default list of code snippets

A code snippet after it has been inserted

Description
• To insert a code snippet, right-click in the Code Editor and select the Code Snippet

command from the resulting menu. Then, select the code snippet you wish to insert.

• To surround existing code with a code snippet, select the code, right-click on it, and
select the Surround With command from the resulting menu. Then, select the appropriate
snippet.

• You can use the Tools�Code Snippets Manager command to display a dialog box that
you can use to edit the list of available code snippets and to add custom code snippets.

Figure 3-10 How to use code snippets

74 Section 1 An introduction to Visual Studio

How to refactor code

As you work on the code for an application, you will often find that you
want to revise your code. For example, you may want to change a name that
you’ve used to identify a variable in your code to make the name more mean-
ingful and readable. However, if you change the name in one place, you need to
change it throughout your code. This is known as refactoring, and Visual Studio
2005 includes new features that make it much easier to refactor your code.

Figure 3-11 shows how you can use Visual Studio to quickly and easily
change the names that you use within your code. In this figure, for example, the
first screen shows the Code Editor after the name of the subtotal variable has
been changed from subtotal to total. Here, a bar appears under the last letter of
the newly renamed total variable. Then, the second screen shows the smart tag
menu that can be displayed by pointing at the bar and clicking on the drop-down
arrow that becomes available.

At this point, you can select the first command to rename the variable
throughout the application. Or, you can select the second command to preview
the changes. If you select the second command, a Preview Changes dialog box
will be displayed. Then, you can preview the changes and deselect any changes
that you don’t want to make.

Although this figure just shows how to change a name that’s used by the
code, you can also use Visual Studio’s refactoring features to modify the struc-
ture of your code by extracting methods, encapsulating fields, and so on. To do
that, you often begin by selecting a block of code. Then, you can right-click on
the code and select the appropriate refactoring command. Or, you can select the
appropriate command from the Refactor menu.

If you already have experience with another object-oriented language, these
refactoring features should make sense to you. If not, don’t worry. You’ll learn
more about these features as you progress through this book.

Chapter 3 How to code and test a Windows Forms application 75

The bar that appears under a renamed variable

The menu that’s available from the bar

The Preview Changes dialog box

Description
• The process of revising and restructuring existing code is known as refactoring. Visual

Studio 2005 provides many new features that make it easier to refactor your code.

• When you change a name that’s used in your code, Visual Studio displays a bar beneath
the modified name. Then, you can display a smart tag menu by moving the mouse
pointer over the bar, and you can click on the drop-down list to display a menu that
contains the appropriate refactoring commands.

• You can also use Visual Studio’s refactoring features to modify the structure of your code
by extracting methods, encapsulating fields, and so on. To do that, you often begin by
selecting a block of code. Then, you can right-click on the code and select the appropri-
ate command, or you can select the command from the Refactor menu.

• Some refactoring commands display a dialog box that lets you preview the changes
before you make them. Then, you can deselect any changes that you don’t want to make.

Figure 3-11 How to refactor code

76 Section 1 An introduction to Visual Studio

How to get help information

As you develop applications in C#, it’s likely that you’ll need some addi-
tional information about the IDE, the C# language, an object, property, method,
event, or some other aspect of C# programming. Figure 3-12 shows several
ways you can get that information.

When you’re working in the Code Editor or the Form Designer, the quickest
way to get help information is to press F1 while the insertion point is in a
keyword or an object is selected. Then, Visual Studio opens a separate Help
window like the one shown in this figure and displays the available information
about the selected keyword or object. Another way to launch a Help window is
to select a command from Visual Studio’s Help menu such as the Search,
Contents, or Index command.

The Help window is split into two panes. The right pane contains one or
more tabbed windows, one for each help topic. In this figure, for example, the
right pane displays a help topic that provides information about working with
the Code Editor. In addition, this pane displays the tabs for other help topics,
and you can display those topics by clicking on the tab.

The left pane, on the other hand, displays the Index, Contents, and Help
Favorites tabs that help you locate help topics. In this figure, for example, the
left pane displays the Index tab. At the top of this tab, the drop-down list has
been used to filter help topics so they’re appropriate for C# programmers. In
addition, “code edit” has been entered to navigate to the index entries that begin
with those letters. This makes it easy to select the Code Editor entry.

In the left pane, you can click on the Contents tab to display a list of help
topics that are grouped by category. Or, you can click on the Help Favorites tab
to view a list of your favorite help topics. At first, the Help Favorites tab won’t
contain any help topics. However, you can add topics to this tab by displaying a
topic and clicking on the Add To Help Favorites button that’s available from the
toolbar.

Although it isn’t shown in this figure, you can display a Search tab in the
right pane by clicking on the Search button in the toolbar. From this tab, you
can enter a word or phrase to search for. Then, when you click the Search
button, the results are displayed in the tab. In addition, all index entries that
match the search are displayed in the Index Results pane that’s displayed across
the bottom of the screen. In this figure, for example, the Index Results window
is displayed for a search string of “Code Editor.” To display the help topic for
any of the listed index entries, just double-click on the entry.

When you display information in the Help window, you should realize that
the Help window uses a built-in web browser to display help topics that are
available from your computer and from the Internet. In addition, the Help
window works much like a web browser. To jump to a related topic, you can
click on a hyperlink. To move forward and backward through previously dis-
played topics, you can use the Forward and Back buttons. As a result, with a
little practice, you shouldn’t have much trouble using this window.

Chapter 3 How to code and test a Windows Forms application 77

The Help window

Description
• You can display a Help window by selecting an object in the Form Designer or position-

ing the insertion point in a keyword in the Code Editor and pressing F1.

• You can also display a Help window by selecting a command (such as Index, Contents,
or Search) from Visual Studio’s Help menu.

• The Help window works like a web browser and can display help topics that are avail-
able from your computer or from the Internet. You can use the buttons in its toolbar to
navigate between help topics or to add topics to your list of favorite topics.

• The Help window is divided into two panes. The left pane displays the Index, Content,
and Help Favorites tabs that let you locate the help topics you want to display. The right
pane displays each help topic in a separate window.

• If you click on the Search button, the right pane will display a Search tab that lets you
search for help topics by entering a word or phrase.

• If you click on the How Do I button, the right pane will display a How Do I tab that lets
you go to a topic by clicking on a link.

• To close a tab, click on the Close button when the tab is active. To display a tab, click the
tab or select it from the Active Files drop down list that’s next to the Close button.

Help topic

Index, Contents, and
Help Favorites tabs

Index Results window

Figure 3-12 How to get help information

78 Section 1 An introduction to Visual Studio

How to run, test, and debug a project

After you enter the code for a project and correct any syntax errors that are
detected as you enter this code, you can run the project. When the project runs,
you can test it to make sure it works the way you want it to, and you can debug
it to remove any programming errors you find.

How to run a project

As you learned in chapter 1, you can run a project by clicking the Start
Debugging button in the Standard toolbar, selecting the Start Debugging com-
mand from the Debug menu, or pressing the F5 key. This builds the project if it
hasn’t been built already and causes the project’s form to be displayed, as
shown in figure 3-13. When you close this form, the application ends. Then,
you’re returned to Visual Studio where you can continue working on your
program.

You can also build a project without running it as described in this figure. In
most cases, though, you’ll run the project so you can test and debug it.

If build errors are detected when you run a project, the errors are displayed
in the Error List window, and you can use this window to identify and correct
the errors. If it isn’t already displayed, you can display this window by clicking
on the Error List tab that’s usually displayed at the bottom of the window. When
you do that, you should realize that the errors will still be listed in the Error List
window and highlighted in the Code Editor even after you’ve corrected them.
The errors aren’t cleared until you build the project again.

Chapter 3 How to code and test a Windows Forms application 79

The form that’s displayed when you run the Invoice Total project

Description
• To run a project, click the Start Debugging button in the Standard toolbar, select the

Debug�Start Debugging menu command, or press the F5 key. This causes Visual Studio
to build the project and create an assembly. Then, assuming that there are no build errors,
the assembly is run so the project’s form is displayed as shown above.

• If syntax errors are detected when a project is built, they’re listed in the Error List
window and the project does not run.

• To locate the statement that contains the error, you can double-click on the error descrip-
tion in the Error List window. After you’ve corrected all the errors, run the project again
to rebuild it and clear the errors.

• You can build a project without running it by selecting the Build�Build Solution com-
mand.

• When you build a project for the first time, all of the components of the project are built.
After that, only the components that have changed are rebuilt. To rebuild all components
whether or not they’ve changed, use the Build�Rebuild Solution command.

Figure 3-13 How to run a project

80 Section 1 An introduction to Visual Studio

How to test a project

When you test a project, you run it and make sure the application works
correctly. As you test your project, you should try every possible combination of
input data and user actions to be certain that the project works correctly in every
case. Figure 3-14 provides an overview of the testing process for C# applica-
tions.

To start, you should test the user interface. Make sure that each control is
sized and positioned properly, that there are no spelling errors in any of the
controls or in the form’s title bar, and that the navigation features such as the tab
order and access keys work properly.

Next, subject your application to a carefully thought-out sequence of valid
test data. Make sure you test every combination of data that the project will
handle. If, for example, the project calculates the discount at different values
based on the value of the subtotal, use subtotals that fall within each range.

Finally, test the program to make sure that it properly handles invalid data
entered by users. For example, type text information into text boxes that expect
numeric data. Leave fields blank. Use negative numbers where they shouldn’t
be allowed. Remember that the goal of testing is to find all of the problems.

As you test your projects, you’ll eventually encounter runtime errors. These
errors, also known as exceptions, occur when C# encounters a problem that
prevents a statement from being executed. If, for example, a user enters “ABC”
into the Subtotal text box on the Invoice Total form, a runtime error will occur
when the program tries to assign that value to a decimal variable.

When a runtime error occurs, Visual Studio breaks into the debugger and
displays an Exception Assistant window like the one in this figure. Then, you
can use the debugging tools that you’ll be introduced to in the next figure to
debug the error.

Runtime errors, though, should only occur when you’re testing a program.
Before an application is put into production, it should be coded and tested so all
runtime errors are caught by the application and appropriate messages are
displayed to the user. You’ll learn how to do that in chapter 7 of this book.

Chapter 3 How to code and test a Windows Forms application 81

The message that’s displayed when a runtime error occurs

How to test a project
1. Test the user interface. Visually check all the controls to make sure they are displayed

properly with the correct text. Use the Tab key to make sure the tab order is set cor-
rectly, verify that the access keys work right, and make sure that the Enter and Esc keys
work properly.

2. Test valid input data. For example, enter data that you would expect a user to enter.

3. Test invalid data or unexpected user actions. For example, leave required fields blank,
enter text data into numeric input fields, and use negative numbers where they are not
appropriate. Try everything you can think of to make the program fail.

Description
• To test a project, you run the project to make sure it works properly no matter what

combinations of valid or invalid data you enter or what sequence of controls you use.

• If a statement in your application can’t be executed, a runtime error, or exception,
occurs. Then, if the exception isn’t handled by your application, the statement that
caused the exception is highlighted and an Exception Assistant window like the one
above is displayed. At that point, you need to debug the application as explained in the
next figure.

Figure 3-14 How to test a project

82 Section 1 An introduction to Visual Studio

How to debug runtime errors

When a runtime error occurs, Visual Studio enters break mode. In that
mode, Visual Studio displays the Code Editor and highlights the statement that
couldn’t be executed, displays the Debug toolbar, and displays an Exception
Assistant dialog box like the one shown in figure 3-15. This is designed to help
you find the cause of the exception (the bug), and to debug the application by
preventing the exception from occurring again or by handling the exception. For
example, you can often handle an exception by displaying an appropriate
message to the user. This message may give the user one or more options for
dealing with the exception.

Often, you can figure out what caused the problem just by knowing what
statement couldn’t be executed, by reading the message displayed by the
Exception Assistant, or by reading the troubleshooting tips displayed by the
Exception Assistant. But sometimes, it helps to find out what the current values
in some of the variables or properties in the program are. To do that, you can
place the mouse pointer over a variable or property in the code so a data tip is
displayed. This tip displays the current value of the variable or property.

For example, if the current value of the Text property of the txtSubtotal
control is “ABC”, the data tip will clearly show that the Text property does not
contain numeric data. However, the variable named subtotal requires numeric
data. As a result, you know that the highlighted statement can’t be executed
because the user didn’t enter numeric data in the Subtotal text box.

Once you find the cause of a bug, you can correct it. But first, you must exit
from break mode. To do that, you can click the Stop Debugging button in the
Debug toolbar. Then, you can correct the problem in the Code Editor and test
the application again.

For now, don’t worry if you don’t know how to correct the problem in this
example. Instead, you can assume that the user will enter valid data. In chapter
7, though, you’ll learn how to catch exceptions and validate all user entries for
an application because that’s what a professional application has to do.

Chapter 3 How to code and test a Windows Forms application 83

How a project looks in break mode

Figure 3-15 How to debug runtime errors

Stop Debugging button Debug toolbar

Description
• When an application encounters a runtime error, you need to fix the error. This is com-

monly referred to as debugging, and the error is commonly referred to as a bug.

• When an application encounters a runtime error, it enters break mode. In break mode, the
Debug toolbar is displayed along with other windows that provide debugging features.

• When an application displays the Exception Assistant window, you can read a descrip-
tion of the error. This should give you an idea of what the error might be. You can also
click on the links in the Troubleshooting Tips list to display more information in a Help
window. You’ll learn more about debugging and the Exception Assistant window in
chapter 11.

• To display a data tip for a property or variable, move the mouse pointer over it in the C#
code. Then, its value is displayed in the data tip.

• To exit break mode and end the application, click the Stop Debugging button in the
Debug toolbar or press Shift+F5. Then, you can attempt to fix the error, and you can run
the application again when you’re done fixing the error.

Exception Assistant window

Statement that caused the break

84 Section 1 An introduction to Visual Studio

Perspective

If you can code and test the Invoice Total project that’s presented in this chapter,
you’ve already learned a lot about C# programming. You know how to enter the
code for the event handlers that make the user interface work the way you want it to.
You know how to build and test a project. And you know some simple debugging
techniques.

On the other hand, you’ve still got a lot to learn. For starters, you need to learn
the C# language. So in the next six chapters, you’ll learn the essentials of the C#
language. Then, in chapter 11, you’ll learn some debugging techniques that can be
used with more advanced code.

Terms

object-oriented programming
object-oriented language
object
class
instance
instantiation
property
method
event
member
dot operator
dot
static member
event-driven application
event handler
event wiring
method declaration
method name
statement
block of code

syntax error
build error
comment
single-line comment
delimited comment
comment out a line
bookmark
collapse
expand
code snippet
refactoring
build a project
run a project
test a project
runtime error
exception
bug
debug
break mode
data tip

Exercise 3-1 Code and test the Invoice Total form
In this exercise, you’ll add code to the Invoice Total form that you designed in
exercise 2-1. Then, you’ll build and test the project to be sure it works correctly.
You’ll also experiment with debugging and review some help information.

Copy and open the Invoice Total application
1. Use the Windows Explorer to copy the Invoice Total project that you created for

chapter 2 from the C:\C# 2005\Chapter 02 directory to the C:\C# 2005\Chapter
03 directory.

Chapter 3 How to code and test a Windows Forms application 85

2. Open the Invoice Total solution (InvoiceTotal.sln) that’s now in the C:\C#
2005\Chapter 03\InvoiceTotal directory.

Add code to the form and correct syntax errors
3. Display the Invoice Total form in the Form Designer, and double-click on the

Calculate button to open the Code Editor and generate the method declaration
for the Click event of this object. Then, enter the code for this method as shown
in figure 3-5. As you enter the code, be sure to take advantage of all of the
Visual Studio features for coding including snippets.

4. Return to the Form Designer, and double-click the Exit button to generate the
method declaration for the Click event of this object. Enter the statement shown
in figure 3-5 for this event handler.

5. Open the Error List window as described in figure 3-6. If any syntax errors are
listed in this window, double-click on each error to move to the error in the
Code Editor. Then, correct the error.

Test the application
6. Press F5 to build and run the project. If you corrected all the syntax errors in

step 5, the build should succeed and the Invoice Total form should appear. If
not, you’ll need to correct the errors and press F5 again.

7. Enter a valid numeric value in the first text box and click the Calculate button or
press the Enter key to activate this button. Assuming that the calculation works,
click the Exit button or press the Esc key to end the application. If either of
these methods doesn’t work right, of course, you need to debug the problems
and test the application again.

Enter invalid data and display data tips in break mode
8. Start the application again. This time, enter “xx” for the subtotal. Then, click the

Calculate button. This will cause Visual Studio to enter break mode and display
the Exception Assistant as shown in figure 3-15.

9. Note the highlighted statement and read the message that’s displayed in the
Exception Assistant. Then, move the mouse pointer over the variable and
property in this statement to display their data tips. This shows that the code for
this application needs to be enhanced so it checks for invalid data. You’ll learn
how to do that in chapter 7. For now, though, click the Stop Debugging button
in the Debug toolbar to end the application.

Create a syntax error and see how it affects the IDE
10. When you return to the Code Editor, hide the Error List window by clicking on

its Auto Hide button. Next, change the name of the Subtotal text box from
txtSubtotal to txtSubTotal. This creates an error since the capitalization doesn’t
match the capitalization used by the Name property of the text box.

11. Try to run the application, and click No when Visual Studio tells you the build
had errors and asks whether you want to continue with the last successful build.
Then, double-click on the error in the Error List, correct the error, and run the
application again to make sure the problem is fixed.

86 Section 1 An introduction to Visual Studio

Use refactoring
12. Change the name of the subtotal variable from subtotal to invoiceSubtotal.

When you do a bar will appear under the last letter of the variable. Point at this
bar to display a drop-down arrow. Then, click on this arrow and select the
Rename command. This should rename the subtotal variable throughout the
form, but run the form to make sure it’s working correctly.

Generate and delete an event handler
13. Display the Form Designer for the Invoice Total form and double-click a blank

area on the form. This should generate an event handler for the Load event of
the form.

14. Delete the event handler for the Load event of the form. Then, run the
application. When you do, you’ll get a build error that indicates that the form
does not contain a definition for this event handler.

15. Double-click on the error. This opens the Designer.cs file for the form and
jumps to the statement that wires the event handler. Delete this statement to
correct the error.

16. If you’re curious, review the generated code that’s stored in the Designer.cs file
for this simple form. Then, click the minus sign to the left of the region named
“Windows Form Designer generated code” to collapse this region.

17. Run the form to make sure it’s working correctly. When you return to the Code
Editor, close the Designer.cs file for the form.

Experiment with the Help feature
18. To see how context-sensitive help works, place the insertion point in the Focus

method in the last statement of the first event handler and press F1. This should
open a Help window that tells you more about this method.

19. In the left pane, select the Index tab to display the Index window. Type “focus”
into the Look For box in this window to see the entries that are listed under this
topic. Next, if Visual C# (or Visual C# Express Edition) isn’t selected in the
Filter By drop-down list, select it to show just the topics for C#. Then, click on
one or more topics to display them.

20. Continue experimenting with the Index, Contents, Help Favorites, and Search
features to see how they work, and try using some of the buttons in the Web
toolbar to see how they work. Then, close the Help window.

Exit from Visual Studio
21. Click the Close button for the Visual Studio window to exit from this

application. If you did everything and got your application to work right,
you’ve come a long way!

