
2
Data Types and Variables

This chapter will begin by examining the intrinsic data types supported by Visual Basic and
relating them to their corresponding types available in the .NET Framework’s Common
Type System. It will then examine the ways in which variables are declared in Visual Basic

and discuss variable scope, visibility, and lifetime. The chapter will conclude with a discussion of
boxing and unboxing (that is, of converting between value types and reference types).

Visual Basic Data Types
At the center of any development or runtime environment, including Visual Basic and the .NET
Common Language Runtime (CLR), is a type system. An individual type consists of the
following two items:

• A set of values.

• A set of rules to convert every value not in the type into a value in the type. (For these
rules, see Appendix F.) Of course, every value of another type cannot always be
converted to a value of the type; one of the more common rules in this case is to throw
an InvalidCastException, indicating that conversion is not possible.

Scalar or primitive types are types that contain a single value. Visual Basic 2005 supports two
basic kinds of scalar or primitive data types: structured data types and reference data types. All
data types are inherited from either of two basic types in the .NET Framework Class Library.
Reference types are derived from System.Object. Structured data types are derived from the
System.ValueType class, which in turn is derived from the System.Object class. Although we will
discuss the difference between value types and reference types in greater detail later in this
chapter, suffice it to say that the .NET Common Language Infrastructure (CLI) manipulates value
types by value and reference types by reference.

To appreciate the difference, consider the following very simple code, which defines a
StudentRef class (a reference type) and a StudentVal structure (a value type) to store the name
and grade point average of a student, and then creates instances of both:

L 2-1 Public Class StudentRef
Public Name As String
Public GPA As Double

End Class

5

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Structure StudentVal
Public Name As String
Public GPA As Double

End Structure

Public Class Test
Public Shared Sub Main()

Dim studentRef1 As New StudentRef()
Dim studentVal1 As New StudentVal()

studentRef1.Name = "Jill"
studentRef1.GPA = 92.3
studentVal1.Name = "Jill"
studentVal1.GPA = 92.3

Dim studentRef2 As StudentRef = studentRef1
Dim studentVal2 As StudentVal = studentVal1

studentRef2.GPA += 2
studentVal2.GPA += 2

Console.WriteLine("{0}'s GPA is: {1}", studentRef1.Name, studentRef1.GPA)
Console.WriteLine("{0}'s GPA is: {1}", studentVal1.Name, studentVal1.GPA)

End Sub
End Class

The Main procedure creates an instance of the class, named studentRef1, and an instance of the
structure, named studentVal1. The value of studentRef1 is then assigned to a new class instance,
studentRef2, and the value of studentVal1 is assigned to a new structure instance, studentVal2.
The GPA fields of both studentRef2 and studentVal2 are next incremented by two. Then the
GPAs of StudentRef1 and StudentVal1 are displayed to the console. The results are as follows:

L 2-2 Jill's GPA is: 94.3
Jill's GPA is: 92.3

Note that studentRef1.GPA has changed even though it was studentRef2.GPA that our code
modified. That’s because studentRef1 and studentRef2 are expressions that both refer to the same
instance of the StudentRef class. In contrast, studentVal1.GPA remains unchanged. That’s
because studentVal1 and studentVal2 are instances of the StudentVal structure, a value type.
When we assigned studentVal1 to studentVal2, we assigned studentVal2 the values of the first
structure, not a reference to a single set of data.

Table 2-1 lists the data types supported by Visual Basic and shows which are value types and
which are reference types.

6 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

VB 6 and VB.NET Data Types
Visual Basic .NET supports all but two of the scalar data types supported by COM-based
versions of Visual Basic. The Currency type has been eliminated; the Decimal type should be
used instead. In addition, the Variant type, the “universal type” of COM-based Visual Basic
programming, is no longer supported. Instead, Object is the universal data type in Visual
Basic .NET.

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As we’ll see, Visual Basic’s intrinsic data types directly correspond to particular .NET data
types. Because of this, we’ll begin by briefly discussing the .NET Common Type System and the
relationship of .NET types to Visual Basic data types. Then we’ll turn to each of the intrinsic data
types supported by Visual Basic. This chapter provides some basic information about each data
type. However, you’ll also want to look at Appendix G, which briefly surveys the members (the
fields, methods, and properties) of each data type. In addition, since type conversion can be
much more important in Visual Basic .NET if Option Strict is set to On (its preferred setting), you
may want to examine Appendix F, which lists the methods available to convert any data type
into any other data type.

The Common Type System and Shared Functionality
One of the basic features of the .NET platform is the Common Type System. It means that the
.NET CLI supplies the data types used by .NET-compliant languages and development
environments.

This allows language independence and easy interoperability of components created in
different languages. The existence of a common type system has enormous implications for Visual
Basic: although Visual Basic .NET, like the COM-based versions of Visual Basic, appears to support

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 7

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

VB Type Name .NET Type Name Type

Boolean System.Boolean Value

Byte System.Byte Value

Char System.Char Value

Date System.DateTime Value

Decimal System.Decimal Value

Double System.Double Value

Integer System.Int32 Value

Long System.Int64 Value

Object System.Object Reference

SByte System.SByte Value

Short System.Int16 Value

Single System.Single Value

String System.String Reference

UInteger System.UInt32 Value

ULong System.UInt64 Value

UShort System.UInt16 Value

user-defined class Reference

user-defined value type Value

TABLE 2-1 Visual Basic 2005 Data Types

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a number of “intrinsic” data types, in fact these intrinsic data types are merely wrappers around
basic data types defined by the .NET framework. For example, running the following code:

L 2-3 Public Class WrappedType
Public Shared Sub Main()

Dim intVar As Integer = 100
Dim intType As Type = intVar.GetType()
Console.WriteLine(TypeName(intVar) & " = " & intType.FullName)

Dim stringVar As String = "This is a string."
Dim stringType As Type = stringVar.GetType()
Console.WriteLine(TypeName(stringVar) & " = " & stringType. FullName)

Dim boolVar As Boolean = True
Dim boolType As Type = boolVar.GetType()
Console.WriteLine(TypeName(boolVar) & " = " & boolType. FullName)

Dim singleVar As Single = 3.1417
Dim singleType As Type = singleVar.GetType()
Console.WriteLine(TypeName(singleVar) & " = " & singleType. FullName)

End Sub
End Class

produces the following output in a console window:

L 2-4 Integer = System.Int32
String = System.String
Boolean = System.Boolean
Single = System.Single

This code uses the Visual Basic TypeName function, which returns the name of an “intrinsic”
Visual Basic data type, to determine the data type of each variable. It also uses the .NET GetType
method to retrieve a Type object representing the data type of a variable. Calling the Type object’s
FullName method returns the fully qualified name of the data type. The example then uses the
Console.WriteLine method to write the results of these two method calls to a command window.
As the output shows, the Visual Basic data type name corresponds to a .NET data type name.

Besides language independence, the identity of Visual Basic data types and .NET data types
has a major advantage: all .NET types support members (that is, fields, properties, and methods)
that are accessible from Visual Basic intrinsic data types. For example, the Visual Basic Date data
type wraps the .NET DateTime structure. The following code uses the DateTime structure’s
constructor to initialize a Date variable, and then calls the DateTime AddMonths method to add
five months to the date. Finally, it uses the addition operator (which is equivalent to the DateTime
structure’s op_Addition method) to add 30 days to the date:

L 2-5 Public Class DateMembers
Public Shared Sub Main()

Dim dat As Date = New Date(2000, 1, 1)
Dim ts As New TimeSpan(30, 0, 0, 0)

Console.WriteLine("The original date is " & dat)
dat = dat.AddMonths(5)

8 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Console.WriteLine("The new date is " & dat)
dat = dat + ts
Console.WriteLine("The new date is " & dat)

End Sub
End Class

Appendix E lists the members of each Visual Basic .NET data type.
In the following sections, we’ll examine each of Visual Basic’s intrinsic data types in greater detail.

Scalar Data Types
Scalar data types are designed to hold a single item of data—a number, a string, a flag, or an
indication of state. In this section, we’ll examine each of the scalar data types supported by
Visual Basic .NET. They are shown in Table 2-2. Note that the literal identifiers are case
insensitive; an unsigned long literal, for example, can be identified with a UL, ul, Ul, or uL.

In the remainder of this section, we’ll discuss the data types supported by Visual Basic in
greater detail.

Boolean
The Boolean type corresponds to the System.Boolean structure and consists of the set {True,
False}. An uninitialized Boolean variable is assigned a value of False.

Byte
The Byte data type, which corresponds to the System.Byte structure, holds an eight-bit unsigned
integer; its value can range from 0 to 255. (Visual Basic 2005 also adds intrinsic support for a
signed byte data type, SByte.) An uninitialized Byte variable is assigned a value of 0.

Char
The Char data type, which corresponds to the System.Char structure, holds a two-byte character
code representing a particular UTF-16 Unicode character. Character codes can range from 0 to
65,535. An uninitialized Char variable is assigned a value of character code 0. The Char data type
was not supported in Visual Basic 6.0.

When assigning a value of type Char, you can use the literal type character C to treat a literal
string as a Char literal. For example, if Option Strict is on, the code

L 2-6 Dim ch As Char = "a"

produces a compiler error (“Option Strict On disallows implicit conversions from ‘String’ to
‘Char’.”). The literal type character defines the data type of the “a” as Char and corrects the error,
as the following code illustrates:

L 2-7 Dim ch As Char = "a"c

Date
The Date data type, which corresponds to the System.DateTime structure, can range from midnight
(0:00:00) of January 1, 0001, to 11:59:59 P.M. of December 31, 9999. An uninitialized Date variable is
assigned a value of 12:00:00 A.M. on January 1, 0001. Date values occupy eight bytes of memory.

In addition to using the Date constructors, you can also use # characters as literal type
characters. For example, the following code initializes a date variable to July 1, 2005:

L 2-8 Dim dat As Date = #07/01/2005#

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 9

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

10 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Data Type
Type
Identifier

Literal
Identifier Range

Boolean None None True, False

Byte None None 0 to 255

Char None C UTF-16 character codes from 0 to 65,535

Date None #date# 12:00:00 A.M., 1/1/0001 to 11:59:59 P.M.,
12/31/9999

Decimal @ D –79,228,162,514,264,337,593,543,950,335 to
79,228,162,514,264,337,593,543,950,335. A Decimal
value is stored internally as a scaled value, making it far
more precise than either the Single or the Double.

Double # R –1.79769313486231570308 to
1.79769313486231570308, as well as positive or
negative zero, positive infinity (the result of an operation
that exceeds Single.MaxValue or of division of a positive
Single value by zero), negative infinity (the result of an
operation less than Single.MinValue or of division of a
negative Single value by zero), and NaN (not a number),
indicating the result of an operation is undefined. A
Double value has 15 decimal digits of precision.

Integer % I –2,147,483,648 to 2,147,483,647

Long & L –9,223,372,036,854,775,808 through
9,223,372,036,854,775,807

Object None none Any type

SByte None none –128 to 127

Short None S –32,768 through 32,767

Single ! F –3.402823538 to 3.402823538, as well as positive or
negative zero, positive infinity (the result of an operation
that exceeds Single.MaxValue or of division of a positive
Single value by zero), negative infinity (the result of an
operation less than Single.MinValue or of division of a
negative Single value by zero), and NaN (not a number),
indicating the result of an operation is undefined). A
Single value has seven decimal digits of precision).

String $ Quotation
marks

Limited by available memory

UInteger None UI 0 to 4,294,967,295

ULong None UL 0 to 18,446,744,073,709,551,615

UShort None US 0 to 65,535

TABLE 2-2 Scalar Data Types in Visual Basic .NET

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In .NET, the Date (or DateTime) type has been substantially enhanced to provide more
information about a date (such as the date’s time zone) as well as much of the functionality
required to work with dates. You can, for instance, convert a Date value to its equivalent
FILETIME value (used by the Win32 API) or its equivalent OLE Automation value (a Date value
in Visual Basic 6.0). You can also use arithmetic operators to manipulate and compare dates. For
details, see the members of the DataTime structure in Appendix G.

Decimal
The Decimal data type, which corresponds to the System.Decimal structure, can be used to hold
currency values or values in which rounding error in the most significant fractional digits is
unacceptable. (It stores data in a scaled format that minimizes rounding error.) It replaces the
Currency data type of Visual Basic 6.0 and earlier versions. The Decimal data type can hold values
ranging from –79,228,162,514,264,337,593,543,950,335 to 79,228,162,514,264,337,593,543,950,335. The
value of an uninitialized Decimal variable is 0.

You can use the literal type character D to identify a value as a Decimal literal in an assignment
statement. For example, if Option Strict is on, attempting to compile code like the following

L 2-9 Dim amt As Decimal = 100000

may produce a compiler error (“Option Strict On disallows implicit conversions from ‘Double’ to
‘Decimal’.”). Instead, you can use the literal type character D to define the value as a decimal.
You can also use @ as an identifier type character, which allows you to eliminate “As Decimal” in
a decimal’s variable declaration. For example:

L 2-10 Dim amt As Decimal = 100000D
Dim int@ = .10d

Double
The Double data type, which corresponds to the System.Double structure, can contain a double-
precision floating point number. It can have a value ranging from –1.79769313486231570308 to
1.79769313486231570308, as well as positive or negative zero, positive infinity, negative infinity,
and NaN (not a number). A Double value has 15 decimal digits of precision. Uninitialized Double
variables are automatically set equal to 0.

When declaring variables of type Double, you can use # as an identifier type character, which
replaces the “As Double” clause in a variable declaration. In assignment statements involving
literal values of type Double, you can use the literal type character R to treat a numeric literal as
a Double. For example:

L 2-11 Dim dist As Double = 10101.3654R
Dim spd# = 68.7931r

Integer
The Integer data type, which corresponds to the System.Int32 structure, occupies 32 bits (or four
bytes) of memory and can hold values that range from –2,147,483,648 through 2,147,483,647.
Uninitialized Integer variables are automatically set equal to 0.

When declaring a variable of type Integer, you can use % as an identifier type character,
which substitutes for the clause “As Integer” in a variable declaration. For example:

L 2-12 Dim age1% = 43i

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 11

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can also use the literal type character I to treat a numeric value as an Integer. For example:

L 2-13 Dim age2 As Integer = 48I

Long
The Long data type is a signed integer that corresponds to the System.Int64 structure.
Variables of type Long occupy 64 bits (or eight bytes) of memory and can range in value from
–9,223,372,036,854,775,808 through 9,223,372,036,854,775,807. Uninitialized long integers are
automatically set equal to 0.

When declaring a variable of type Long, you can use & as an identifier type character, which
substitutes for the clause “As Long” in a variable declaration. For example:

L 2-14 Dim lng1& = 180000000000l

You can also use the literal type character L to treat a numeric value as a Long. For example:

L 2-15 Dim lng2 As Long = 170000000L

Object
The Object data type, which corresponds to the System.Object class, replaces the VB 6.0 (and
earlier) Variant as Visual Basic’s universal data type. In .NET, Object is a universal data type for
another reason: all .NET types other than interfaces are directly or indirectly derived from it. The
value of an uninitialized Object variable is Nothing.

You can assign an instance of any reference type or value type to a variable typed as Object.
Assigning an instance of a value type to a variable typed as Object incurs a “boxing” operation to
convert the value type instance to a reference type instance. We’ll discuss boxing and unboxing
toward the end of this chapter.

You can determine what kind of data an object variable holds at a particular time by calling
the Visual Basic TypeName function, which returns the Visual Basic data type name.

You can also call the object’s GetType method, which returns a Type object representing the
type of the object instance. Its Name property provides you with the .NET type name, and its

12 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Integers in VB 6 and VB.NET
In VB 6.0 and earlier versions, the Integer was a 16-bit data type. In contrast, in Visual Basic
.NET, the Integer is a 32-bit data type, which means that it is equivalent to the VB 6.0 Long
data type. So, if you are making Win32 API calls from .NET code, you should use an Integer
whenever a Win32 function argument requires a Long.

Longs in VB 6 and VB.NET
In VB 6.0 and earlier versions, the Long was a 32-bit data type. In contrast, in Visual Basic
.NET, the Long is a 64-bit data type. In other words, VB 6.0 and earlier versions had no
equivalent of the Long data type in Visual Basic .NET.

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FullName property returns the fully qualified type name (including hierarchical namespaces).
For example:

L 2-16 Dim o As Object = "This is an object."

Console.Writeline(TypeName(o)) ' Displays String
Console.WriteLine(o.GetType.Name) ' Displays String
Console.WriteLine(o.GetType.FullName) ' Displays System.String

The Object data type is most convenient when you do not know the precise type of data a
variable will hold at runtime. But the use of a variable of type Object to hold other types of data
results in a performance penalty as a result of late binding, since only at runtime is the CLR able
to perform such functions as member name resolution (determining whether a type actually has
a member of a particular name) and argument resolution (determining whether a member has
arguments that correspond to those used in a method call). There are numerous benefits as well:
strongly typed code is easier to read, easier to optimize, easier to test, easier to debug, and easier
to maintain.

You can use early binding in one of two ways:

• By declaring a variable to be a specific type.

• By explicitly converting a variable to the type needed for a particular operation. For
conversions, see Appendix F.

The word “object” is used not only to refer to the Object data type, but also to refer
generically to any instance of any class. For instance, code such as

L 2-17 Dim ht As New System.Collections.Hashtable

creates an “object of type Hashtable.” Similarly, code such as

L 2-18 Public Class Person
End Class

defines a class in your own code. You can then instantiate “an object of type Person“ or “an object
of the Person class“ with code like the following:

L 2-19 Dim per As Person = New Person()

SByte
The SByte data type, which corresponds to the System.SByte structure, holds an eight-bit signed
integer; its value can range from –128 through 127. An uninitialized SByte variable is assigned a value
of 0. It occupies one byte (eight bits) of memory. The SByte data type is new to Visual Basic 2005.

The SByte data type is not CLS-compliant. This means that to be compliant with the .NET
platform, other languages are not required to implement support for a signed byte data type. As
a result, although it is safe to use the SByte type internally in your own programs, you may not
want to expose it as part of a component’s public interface.

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 13

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Short
The Short is a 16-bit signed integral data type that corresponds to the System.Int16 structure in
the .NET Framework Class Library. Values of Short variables can range from –32,768 through
32,767. The Short data type corresponds to the Visual Basic 6.0 Integer data type.

You can use the literal type character s to indicate that a numeric literal is a Short. For example:

L 2-22 Dim age1 As Short = 48S
Dim age2 As Short = 43s

Single
The Single data type, which corresponds to the System.Single structure, holds a single-precision
floating point number that can range from –3.402823538 to 3.402823538, as well as positive or
negative zero, positive infinity, negative infinity, and NaN. A Single value has seven decimal
digits of precision. Uninitialized Single variables are automatically set equal to 0.

14 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Variants in VB 6 and Objects in VB.NET
Instead of defining variables of type Variant as you did in VB 6.0 and earlier versions, you
can now define variables to be of type Object. However, you should take a look at the
reasons for using Object variables. If you use Visual Basic as a weakly typed language and
allow the CLR to determine the precise runtime type of your variables, you might take a
more careful look at your code to determine whether the data type of a variable can be more
precisely defined. You should use the Object data type only when you legitimately do not
know the precise data type of a variable at design time. In addition, when writing methods,
take advantage of overloading (a method of the same name can have different signatures)
rather than defining a generic Object parameter to allow for values of multiple data types.
For example, if a grade report program includes a DisplayResult method that can either
display a letter grade, a grade point average, or a numeric grade, rather than having a single
method with the signature

L 2-20 Private Sub DisplayResult(gradeInfo As Object)

you should overload the method as follows to reflect the individual arguments that can be
passed to it:

L 2-21 Private Sub DisplayResult(letterGrade As String)
Private Sub DisplayResult(gpa As Double)
Private Sub DisplayResult(grade As Integer)

The Short in VB.NET
VB 6.0 had only two signed integer types: Integer and Long. Visual Basic .NET adds two
more, one of which is the Short type. However, since Short is a 16-bit signed integer, it
corresponds directly to the Integer data type in the 32-bit versions of Visual Basic from
Versions 3.0–6.0. If you are making Win32 API calls from .NET code, you can use a Short
whenever a Win32 function argument is an Integer.

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When declaring a variable of type Single, you can use ! (the exclamation mark) as an
identifier type character, which substitutes for the clause “As Single” in a variable declaration.
When assigning a literal single value, you can use the literal type character F to indicate that a
literal numeric value is a Single. For example:

L 2-23 Dim spd! = 68.7931F
Dim dist As Single = 10101.3654f

String
The String data type, which corresponds to the System.String type, is used to store a series
of anywhere from 0 to about 2 billion 16-bit (two-byte) UTF-16 Unicode characters.
Uninitialized strings are automatically initialized as zero-length strings and can be compared
to the Visual Basic VbNullString constant, to an empty string, to the String.Empty field, or to
the String.IsNullOrEmpty method. For example:

L 2-24 If s = VbNullString Then
' Do something

or

L 2-25 If s = "" Then
' Do something

or

L 2-26 If s = String.Empty Then
' Do something

or

L 2-27 If String.IsNullOrEmpty(s) Then
' Do something

Since String is a class, an uninitialized string has a value of Nothing. Hence, the following code
also tests for an uninitialized string:

L 2-28 If s Is Nothing Then
' Do something

When declaring a variable of type String, you can use $ as an identifier type character, which
substitutes for the clause “As String” in a variable declaration. When initializing or assigning a
value to a string variable, Visual Basic treats all text enclosed in quotation marks as the literal
string to be assigned to the variable. For example:

L 2-29 Dim Name$ = "Gregory of Nyassa"

String is a reference type. But because many of the details of working with strings as a reference
type are handled by the Visual Basic compiler and the CLR, strings appear to behave as value types.
The String type has a second characteristic: it is immutable. That is, once you’ve initialized a string,
neither its length nor its contents can be changed. What appears to be a modified string that results,
for example, from concatenating text to a string is actually a new string variable that replaces the old.

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 15

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

One implication of the immutability of strings is that using the String class for code that
involves extensive string manipulation involves a major performance penalty. When this is the
case, you may choose instead to work with the System.Text.StringBuilder class, which is optimized
for string manipulation.

UInteger
The UInteger data type is one of four unsigned integer data types supported by Visual Basic. It
corresponds to the System.UInt32 structure and occupies 32 bits (or four bytes) of memory.
Values of a UInteger variable can range from 0 to 4,294,967,295. Uninitialized UInteger variables
are automatically set equal to 0. The UInteger data type was added to Visual Basic .NET as of
Version 2.0.

When initializing a variable of type UInteger, you can also use the literal type character UI to
treat a numeric literal as a UInteger. For example:

L 2-30 Dim age1 As UInteger = 48UI
Dim age2 As UInteger = 43ui

The UInteger data type is not CLS-compliant. This means that to be compliant with the .NET
platform, other languages are not required to implement support for an unsigned integer data
type. As a result, although it is safe to use the UInteger type internally in your own programs,
you may choose not to expose it as part of a component’s public interface if you care about CLS
compliance.

ULong
The ULong data type is an unsigned long integer that corresponds to the System.UInt64 structure.
Variables of type ULong occupy 64 bits (or 8 bytes) of memory and can range in value from 0
through 18,446,744,073,709,551,615. Uninitialized unsigned long integers are automatically
assigned a value of 0. The ULong data type was added to Visual Basic .NET as of Version 2.0.

When initializing a variable of type ULong, you can also use the literal type character UL to
treat a numeric literal as a ULong. For example:

L 2-31 Dim lng1 As ULong = 170000000UL
Dim lng2 As ULong = 180000000000ul

The ULong data type is not CLS-compliant. This means that to be compliant with the .NET
platform, other languages are not required to implement support for an unsigned long integer
data type. As a result, although it is safe to use the ULong type internally in your own programs,
it should not be exposed as part of a component’s public interface.

16 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Unsigned Integer Data Types in Visual Basic
Although the .NET Framework provides four unsigned integer types, Visual Basic .NET
originally offered intrinsic support for the Byte data type only. However, Visual Basic 2005
added support for UShort (or System.UInt16, a 16-bit unsigned integer), UInteger
(or System.UInt32, a 32-bit unsigned integer), and ULong (or System.UInt64, a 64-bit
unsigned integer).

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

UShort
UShort is a 16-bit unsigned integral data type that corresponds to the System.UInt16 structure in
the .NET Framework Class Library. Values of UShort variables can range from 0 through 65,535.
Uninitialized integers are automatically set equal to 0 by the Visual Basic .NET compiler. The
UShort data type was added to Visual Basic .NET as of Version 2.0.

When initializing variables of type UShort, you can use the literal type character US to treat a
numeric literal as a UShort. For example:

L 2-32 Dim age1 As Short = 48US
Dim age2 As Short = 43us

Like all the other unsigned data types except for Byte, UShort is not CLS-compliant. Although
it is safe to use variables of type UShort internally in your components and applications, you
should avoid exposing them as part of a component’s public interface, since consumers of your
component may not support the UShort or UInt16 data types.

Complex Data Types
Visual Basic .NET also supports two kinds of complex data types: structures (which were called
user-defined types in Visual Basic 6.0 and earlier editions) and arrays. In this section, we’ll
examine these two data types.

Structures
A structure is a syntactic element that defines a value type, which is a type derived from
System.ValueType. A structure defines a composite data type that must consist of at least one
field or one event, but usually consists of multiple fields. When an instance of the value type
defined by the structure is declared, each field is set equal to its default value. So in the case of
a structure with two integers, each integer would be set equal to 0. For example, the following
Structure statement defines a value type named Coordinates that consists of two fields of type
Double:

L 2-33 Public Structure Coordinates
Public x As Double
Public y As Double

End Structure

When a variable of type Coordinates is instantiated, the values of both its x and y members are
automatically set to 0.0.

Structures are declared using the Structure . . . End Structure construct. For details, see the
entry for “Structure . . . End Structure” in Chapter 8. You can then work with the structure as a
whole by referring to it by name, or you can work with individual members. The following code
shows how you might work with the Coordinates structure:

L 2-34 Dim coord As Coordinates ' The structure as a whole
coord.x = 10.032 ' x member
coord.y = 25.351 ' y member
Console.WriteLine(coord.ToString & ": x=" & coord.x & ", y=" & coord.y)

You declare an instance of a structure just as you do any variable, and you access a particular
member of a structure by using dot notation, as shown in the preceding code.

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 17

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Arrays
An array is a reference type that serves as a container for a set of data items that are stored
together and are accessed as members of the array. Each element of the array can be identified by
its index or ordinal position in the array.

Visual Basic allows you to define arrays in a number of ways. You can declare an array to
simply be of type Array:

L 2-35 Dim arr As Array

This might be termed an untyped array. Each element of the array is capable of holding data of
any type, and in fact an array of any type can be assigned to it. For example, the following code
assigns an array of Integer to the array:

L 2-36 Dim arr As Array
Dim int() As Integer = {12, 16, 20, 24, 28, 32}
arr = CType(int, Array)

You can also define a “strong” array, which is an array that will hold data of a defined type. For
example:

L 2-37 Dim byFours() As Integer = {12, 24, 36, 48}
Dim names() As String = {"Koani", "Saya", "Samuel", "Dakota", "Nikita"}
Dim miscData() As Object = {"this", 12d, 16ui, "a"c}
Dim objArray() As Object

Here, byFours is an Integer array; all of its members must be of type Integer, and only an Integer
array can be assigned to it. Similarly, names is a String array; all of its members must be of type
String, and only a String array can be assigned to it. Finally, miscData and objArray are arrays of
type Object; their individual members can be any data type, although only arrays of reference
types can be assigned to them. For example, the assignment

L 2-38 miscData = names

18 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Structures and Classes
In .NET, structures are enormously enhanced and have many of the characteristics of classes
in previous versions of Visual Basic:

• Each field of a structure can have a different access level (Public, Private, and Friend
are allowed, although Protected is not). For example, one field can be public, while
another can be private.

• In addition to fields, structures can also have properties, methods, and events.
A structure can also have a default property, as long as it is parameterized.

• A structure can implement an interface. However, a structure can’t explicitly inherit
from a class or from another structure. (All structures implicitly inherit from
System.ValueType.)

• A structure can have either parameterized or parameterless constructors.

• A structure can raise an event.

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

is legal, while

L 2-39 miscData = byFours

generates a compiler error (“Value of type ‘1-dimensional array of Integer’ cannot be converted
to ‘1-dimensional array of System.Object’ because ‘Integer’ is not a reference type.”).

All arrays have a particular number of dimensions and a particular number of elements in
each dimension. Visual Basic supports arrays of up to 32 dimensions, although typical arrays
have a single dimension. You define the number of dimensions of an array by indicating the
number of members in that dimension. For example, the following code defines a number of
one-dimensional arrays:

L 2-40 Dim myArray1a() As Integer ' Uninitialized array
Dim myArray1b As Integer() ' Uninitialized array
Dim myArray2(10) As Integer ' 1-dimensional array with 11 elements

The following code, on the other hand, defines two two-dimensional arrays:

L 2-41 Dim Employees1(,) As Object ' Uninitialized 2-D array
Dim Employees(200, 2) As Object ' 2-D array with 201 and 3 elements

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 19

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

The Lower Bounds of an Array
Visual Basic 6.0 allowed you to define a default lower bound for all arrays using the Option
Base statement, and to define a default lower bound for a specific array by using syntax like

L 2-42 Dim ArrayStartsAt1(1 To 100) As String

In Visual Basic .NET, neither of these methods for defining the lower bound of an array
is supported. (Visual Basic 2005 allows you to specify the lower bound of an array, but it
must be 0.) However, although non-zero-based arrays are not CLS-compliant, you can explicitly
define some other lower bound by calling one of the overloads of the CreateInstance method
of the Array class. The following code does this:

L 2-43 ' Changes lower bound to start at 1
Public Class CArray

Public Shared Sub Main()
Dim dims() As Integer = {10} ' Number of elements in array
Dim bnds() As Integer = {1} ' Lower bound of array
Dim Scores As Array = Array.CreateInstance(GetType(Integer), dims, bnds)
Console.WriteLine(UBound(Scores))
Console.WriteLine(LBound(Scores))

End Sub
End Class

This version of the CreateInstance method has three parameters: a Type object representing
the data type of the array, an array of Integer whose elements indicate the number of elements in
each dimension (the first element represents the first dimension, and so on), and an array of
Integer whose elements indicate the lower bound of each dimension (the first element represents
the first dimension, and so on).

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The first is an uninitialized two-dimensional array, and the second has 201 elements in the first
and three elements in the second dimension.

Notice that the number of elements in each dimension is one greater than the value indicated
in the array declaration, since .NET arrays are zero-based; the ordinal position of the first array
element is 0, not 1. And the ordinal position of the last element in a dimension of the array is one
less than the number of elements in that dimension. Actually, a useful way to think about this is
not as an ordinal, but as an offset. The array index measures the distance of a particular element
from the first element. Thus the element with an index of 1 is not the first element of the array
but is one element away from the first element in the array. An array of ten elements has an
upper bound of 9 because the last element is nine elements away from the first.

In addition to the standard rectangular or symmetrical arrays, Visual Basic supports jagged
arrays—that is, arrays whose second dimension is non-rectangular. Basically, a jagged array is a
one-dimensional array each of whose members also contains an array. (Jagged arrays, though,
are not CLS-compliant, and so other .NET languages may not be able to handle them.) You can
declare a jagged array with code like the following:

L 2-44 Dim jagged1(9)() As String
Dim jagged2()() As String = New String(9)() {}

All Visual Basic arrays are implicitly derived from the System.Array type in the .NET Framework
Class Library. This means that, besides the standard Visual Basic syntax, you can also declare an
array as an instance of the Array class, as the following declarations illustrate:

L 2-45 Dim myArray1a As Array
Dim myArray2a As Array = Array.CreateInstance(GetType(Integer), 10)
Dim members() As Integer = {3, 10}
Dim myArray3a As Array = Array.CreateInstance(GetType(Integer), members)

Because arrays are .NET classes, you can call the members of the .NET Array class when
working with Visual Basic arrays. The more important of its instance members are shown in
Table 2-3.

Unlike the pre-.NET versions of Visual Basic, which recognized both static and dynamic
arrays, all .NET arrays are dynamic. That is, the number of elements in a given dimension can be
expanded and contracted dynamically without your having to specify in advance that an array is
dynamic. For example, using a dynamic array in Visual Basic 6.0 requires that you declare an
uninitialized array, as the following code shows:

L 2-46 Dim arr() As Integer, index As Integer

index = 10
ReDim Preserve arr(index)
arr(index) = index ^ 2

index = 20
ReDim Preserve arr(index)
arr(index) = index ^ 2

index = 10
ReDim Preserve arr(index)
MsgBox arr(index)

20 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In contrast, using Visual Basic .NET, there is no need to declare an uninitialized array. So the
preceding VB6 code can be simplified as follows:

L 2-47 Dim index As Integer = 10
Dim arr(index) As Integer

arr(index) = CInt(index ^ 2)

index = 20
ReDim Preserve arr(index)
arr(index) = CInt(index ^ 2)

index = 10
ReDim Preserve arr(index)
MsgBox (arr(index))

Classes
A class is a template from which an object, or an instance of a class, is formed. A class defines a
reference type that can be derived directly from some other class and that is derived implicitly
from System.Object.

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 21

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Member Description

Length property Returns an Integer indicating the total number of elements in all
dimensions of the array.

Rank property Returns an Integer indicating the number of dimensions in the array.

Clear method Reinitializes a portion of an array.

GetLength method Returns an Integer indicating the number of elements in a particular
dimension of an array. Its syntax is:
arrVar.GetLength(dimension),
where dimension is an Integer indicating the zero-based dimension of
the array.

GetLowerBound method Returns an Integer indicating the lower bound of an array. Its syntax is:
arrVar.GetLowerBound(dimension),
where dimension is an Integer indicating the zero-based dimension of
the array.

GetUpperBound method Returns an Integer indicating the upper bound of an array. Its syntax is:
arrVar.GetUpperBound(dimension),
where dimension is an Integer indicating the zero-based dimension of
the array.

Reverse method An overloaded method that reverses the order of all or a portion of a
one-dimensional array.

Sort method An overloaded method that sorts a one-dimensional array.

TABLE 2-3 Selected Members of the System.Array Class

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Classes are declared using the Class . . . End Class construct. For details, see the entry for
“Class . . . End Class“ in Chapter 8. The code between these statements can include the following:

• Variable or field declarations Fields are constants or variables that are exposed by the
class (they can be publicly available to any client having a reference to the class instance
as well as accessible to any client within the assembly in which the class instance resides
or to any other class that is derived from the current class) or that are private to the class.

• Properties Properties are attributes of the class instance.

• Methods Public methods express the functionality that the class makes available, while
private methods are for internal use within the class. Visual Basic .NET supports two
kinds of methods: shared and instance. Shared methods do not require that an instance of
the class be created in order to call the method (though in Visual Basic, shared methods
can be called through class instances, even though this is nonsensical), while instance
methods must be called through an instance of the class.

• Constructors A constructor is automatically invoked when a new instance of the class is
created. In Visual Basic code, constructors are defined by methods named New.

• Events Events are notifications provided by a class, which is the event source. Event sinks
register with the source and receive notification that the event has fired, which causes their
event handlers to be invoked. The event itself can be anything of interest, such as a mouse
click, a value exceeding or falling below a certain level, or a change to a data item.

In addition to classes defined in your own code, classes can be defined in external libraries that
are referenced by your project, such as the .NET Framework Class Library.

Object variables that have been declared but not initialized are assigned a value of Nothing.

Visual Basic Naming Conventions
Visual Basic applies the same set of naming conventions throughout the language. Naming
conventions apply to all language elements, including variables, types, and type members.

Visual Basic is a case-insensitive language. The Visual Basic editor attempts to enforce consistency
in casing (it attempts to use the same case that was used in a type, member, or variable declaration),
but case is ignored by the compiler. This means, of course, that you can’t differentiate different
program elements by case. Properties, for instance, cannot be assigned proper case names while
local variables are assigned identical lowercase names.

• The first character of a name in Visual Basic must be an alphabetic character or an
underscore. (Note that underscores are not CLS-compliant. They are often used
internally to differentiate local variables from public properties with the same name
but no underscore.)

• The remaining characters in a name can consist of alphabetic characters, numeric
characters, or underscores.

• The name must not be greater than 1023 characters in length.

• Visual Basic recognizes a number of reserved words, such as Alias, Byte, Date, Default,
Friend, Me, and Throw, that the compiler automatically interprets as language elements.
If you want to use any of these reserved words to identify program elements in your
code, you can indicate to the compiler that the name applies to your program element
rather than the Visual Basic language element by enclosing it in brackets. This is called
an escaped name. For example, to define a Boolean variable named Static (which conflicts
with the Static keyword), you use the code:

22 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

L 2-48 Public [Static] As Boolean = False

Any escaped name must also be used together with its brackets subsequently to differentiate the
program element from the reserved word. For example, a variable assignment using the Static
variable takes the form:

L 2-49 [Static] = True

Variables in Visual Basic
In this section, we’ll examine the rules regarding variable declaration and initialization. The
section will also examine variable lifetime and scope.

Variable Declaration
Visual Basic allows you to declare variables of any data type. If you do not declare the precise
data type of a variable, it will be of type Object. (This requires, however, that Option Strict be set
off, its default value.)

Variables are defined using the Dim keyword or an access modifier. (For details on the access
modifiers, see the section “Scope and Accessibility” later in this chapter.) For example,

L 2-50 Dim age As Integer
Dim city As String
Dim typ As System.Type

You can define multiple variables on the same line of code. So a somewhat unwieldy version of
the preceding code is:

L 2-51 Dim age As Integer, city As String, typ As System.Type

If you define multiple variables on a line but do not specify a data type for each, a single type
declaration applies to all of the variables defined to the left of it whose types are not specified.
Fore example, the code

L 2-52 Dim city, state, zip As String

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 23

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Variable Declaration and Option Explicit
Visual Basic does not actually require that you declare variables in advance. If Option
Explicit is set off (by default, it is set on), Visual Basic will create variables dynamically as
their names are encountered in code. This, however, is highly undesirable if for no other
reason than that variables whose names are misspelled are treated as new variables. For
example, the following code reports that an account balance is $30.98 when the correct
balance is $254.73, because “balance” is misspelled “balaance” in one assignment statement:

L 2-53 Dim balance As Decimal = 200.35
balance -= 169.37
balaance += 223.75
Console.WriteLine("Your current balance is {0}.", FormatCurrency(balance))

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

defines three variables, all of type String. This differs from Visual Basic 6.0 and earlier versions,
in which variables whose types were not explicitly declared were created as Variants. In the
preceding line of code, for example, Visual Basic 6.0 would have interpreted city and state as
Variants and zip as a String.

In Visual Basic .NET, unlike Visual Basic 6.0 and previous versions, you can initialize a
variable at the same time as you declare it. For example:

L 2-54 Dim age As Integer = 35
Dim city As String = "New York"
Dim typ As System.Type = age.GetType

You can initialize multiple variables per line. However, if Option Strict is set on, each must have
its own type declaration. For example:

L 2-55 Dim age As Integer = 35, weight As Integer = 185

You can also create a new class instance at the same time as you declare an object variable by
using the New keyword in the declaration. For example:

L 2-56 Dim s As New StringBuilder("This is a brand new string.")

The New keyword causes the class or structure’s constructor to be invoked. That means that you
can pass arguments to any parameterized constructor, as in the preceding code fragment.

Variable Initialization
Visual Basic does not require that you explicitly initialize each variable that you declare. Instead,
if no initialization is provided by the developer, a default initializer is used. However, it is
important to keep in mind that, because class instances are set equal to Nothing if they are not
explicitly initialized by the developer, code that expects a valid object reference can throw an
exception. (The Visual Basic compiler, however, does produce a warning in this situation.)

24 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Visual Basic and the Set Keyword
Visual Basic 6.0 and earlier versions required that you use the Set keyword when assigning
a reference to an object variable. For example:

L 2-57 Dim fs As New FileSystemObject
Dim wndFold As Folder

Set wndFold = fs.GetSpecialFolder(WindowsFolder)

Since the Set keyword was not necessary in other variable assignments, this requirement was
a frequent cause of confusion and error, particularly for inexperienced programmers. In .NET,
the Set keyword’s use in assigning object references has been eliminated. Set is now used
exclusively within the Property . . . End Property construct to assign a value to a property.

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Explicit assignment is simply a matter of using the assignment operator in a statement to assign
the value of the left side of an expression to the variable on the right. For example:

L 2-58 Dim answer As String
answer = "The circumference is " & Circumference(radius) & "."

The one qualification is that Visual Basic automatically treats literals as instances of particular
data types and generates a compiler error if Option Strict is on and it detects a narrowing
conversion. For example, if Option Strict is on, the assignment

L 2-59 Dim ch1 As Char
ch1 = "c"

generates a compiler error (“Option Strict On disallows implicit conversions from ‘String’ to
‘Char’.”). To correct it, you have to explicitly convert the “c” to a Char, as in any of the following
statements:

L 2-60 ch1 = "c"c
ch1 = CChar("c")
ch1 = Convert.ToChar("c")

Variable Scope
All types, type members, and variables have a scope, or a set of code to which they are visible
without explicit qualification. Visual Basic recognizes five different levels of scope:

• Global scope An element is available to all code without qualification.

• Namespace scope An element is available to all code within the namespace in which it
is declared. Types in a namespace are visible to all other types in the namespace without
qualification. In addition, the Imports statement makes types in other namespaces
available to program elements outside of the namespace.

• Member scope An element is available to all code within the module in which it is
declared. A module can include modules defined with the Module . . . End Module
construct, classes defined with the Class . . . End Class construct, and structures defined
with the Structure . . . End Structure construct.

• Procedure or local scope An element is available to all code within the procedure in
which it is declared. A procedure can include a function defined with the Function . . .
End Function construct, a subroutine defined with the Sub . . . End Sub construct, or a
property defined with the Property . . . End Property construct.

• Block scope An element is available to all code within the code block in which it is
declared. Blocks are defined by the Do . . . Loop, For . . . Next, For Each . . . Next, If . . .
End If, Select . . . End Select, SyncLock . . . End SyncLock, Try . . . End Try, While . . . End
While, and With . . . End With constructs.

In general, a variable should have the smallest scope possible. This helps ensure the variable’s
integrity by reducing the number of places in which its value can be modified incorrectly or
accidentally.

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 25

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following sections, we’ll examine each of these levels of scope.

Global Scope
In some cases, publicly available types and type members can be accessed without qualification
regardless of the namespace in which they reside. For example, the “intrinsic” methods of classes
in the Microsoft.VisualBasic namespace can be referenced without qualification anywhere in
Visual Basic code. In Visual Basic, the Global keyword and HideModuleName statements can be
used to give program elements global scope.

Namespace Scope
Variables and other elements that are declared as Public are accessible throughout all the types of
a namespace, as well as all nested namespaces. If a namespace is not explicitly defined, they are
available in all of the classes, modules, and structures in a project.

Member Scope
Member level refers to code that exists outside of any procedure in a class, structure, or module.
Variables or other elements defined at member level are defined outside of any function, subroutine,
or property belonging to a class, module, or structure. When declared with either the Private or
Dim keyword, they are visible to all procedures within the module, but they are not available to
any outside of the module.

Procedure Scope
Variables declared within a procedure (which includes a function, a subroutine, or a property
procedure) but not inside a block construct are local variables. They have scope within that
procedure only and are not visible outside of the procedure in which they are declared.

Dim is the only keyword that can be used to declare a variable with procedure scope. Any of
the access modifiers (like Private or Protected) in a variable declaration with procedure scope
generates a compiler error.

26 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Scope and Accessibility
Visual Basic also includes four keywords (Public, Friend, Protected, and Private) that define
the accessibility of a particular type or type member. Accessibility is related to but not identical
with scope. Accessibility determines whether a program element is visible. Scope determines
whether it must be qualified to be accessed. For example, a class defined with the Public
keyword is globally accessible. However, it has only namespace scope, since it ordinarily can
be accessed without using its namespace name only within its own namespace. Types and
members with Friend accessibility are visible within the assembly in which they’re declared.
They have namespace scope to types in the same namespace in the assembly in which they are
defined. But since a namespace can be split across multiple assemblies, they are completely
inaccessible to types in the same namespace but a different assembly. Types with Protected
accessibility have namespace scope to classes that inherit from them in the same namespace,
must have their type names qualified to classes that inherit from them in different namespaces,
and are not accessible to classes that do not inherit from them and to other types. Types declared
with Private accessibility have member scope.

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An advantage of local variables (as well as an occasional source of confusion) is that their
names can duplicate the names of other variables, which will be effectively hidden by the local
variable. The following code illustrates this:

L 2-61 Public Class Dog
Private Name As String

Public Sub New(name As String)
If name = String.Empty Then

Dim message As String = "The dog breed must be specified."
Throw New ArgumentException("message.")

End If
' Parse into an array

Dim words() As String = Split(name)
For ctr As Integer = LBound(words, 1) To UBound(words, 1)

Dim breedname As String = words(ctr)
If Not Char.IsUpper(breedname, 1) Then

Dim firstLetter As String = breedname.Substring(0, 1)
firstLetter = firstLetter.ToUpper
name = firstLetter & Mid(breedname,2)
words(ctr) = breedname

End If
Next
' return to single string
name = Join(words)
Me.name = name
Console.WriteLine("Created a new record for {0}.", Me.Breed)

End Sub

Public ReadOnly Property Breed As String
Get

Return Me.Name
End Get

End Property
End Class

This code declares a class named Dog that has a private variable, name, at the member level to
store the value of the Breed property. Its class constructor also has a local variable, name, that is
used to validate the string supplied as an argument. However, the two variables are quite
independent of one another. Note that in the class constructor, the local name variable hides the
private name variable. If we wish to access it, we must preface it with the Me keyword.

Block Scope
In .NET, variables declared inside of a block construct have block scope. That is, they are not
visible outside of the block in which they are declared. Block constructs include the following:

• Do . . . Loop

• For . . . Next and For Each . . . Next

• If . . . End If

• Select . . . End Select

• SyncLock . . . End SyncLock

• Try . . . End Try

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 27

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• While . . . End While

• With . . . End With

The following code declares a variable with block scope, firstChar, to store the first character
of a name. This is then used to increment the count of an array element used to track the number
of names that begin with that character. The code is

L 2-62 Public Class BlockScope
Public Shared Sub Main()

Dim maleNames() As String = {"John", "Michael", "Robert", "George", _
"Lawrence", "Charles", "James", "Samuel", _
"David", "Peter", "Paul", "Thomas", "Steven", _
"Abraham", "Isaac", "Joseph", "Ronald", _
"Theodore", "William", "Mark", "Luke"}

Dim startChar(25) As Integer

' Find number of names beginning with a letter
For Each maleName As String in maleNames

Dim firstChar As Char
firstChar = CChar(Left(maleName, 1))
Dim charValue As Integer = AscW(firstChar)
' Go to next name if character invalid or unicode character out of range
If charValue < 65 Or (charValue > 91 And charValue < 97) _

Or charValue > 123 Then Continue For

If Char.IsUpper(firstChar) Then
startChar(Convert.ToInt32(firstChar) - 65) += 1

ElseIf Char.IsLower(firstChar) Then
startChar(Convert.ToInt32(startChar) - 97) += 1

End If
Next
Console.WriteLine("Final Count:")
Dim charCode As Integer = 65
For Each charCount As Integer in startChar

Console.WriteLine("Letter " & ChrW(charCode) & " has " & charCount & _
" names.")

charCode += 1
Next

End Sub
End Class

Dim is the only keyword that can be used to declare a variable with block scope. Using any of the
access modifiers (like Private or Protected) in a variable declaration with block scope generates a
compiler error.

28 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Visual Basic and Block Scope
Block scope is new to Visual Basic .NET. In Visual Basic 6.0 and earlier versions, variables
declared inside a block construct had procedure-level scope; they were visible from the point
that they were declared throughout the rest of the procedure.

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The lifetime of variables with block scope (see the next section, “Variable Lifetime”) is
determined by the procedure in which they are declared. This is illustrated by the following
code, in which the value of one of the variables with block scope, blockVar, reaches 110,000 in
the last iteration of the inner loop:

L 2-63 Public Class BlockScope
Public Shared Sub Main()

For outerLoop As Integer = 0 to 10000
For innerLoop As Integer = 0 to 10

Dim blockVar As Integer
blockVar += 1
If blockVar Mod 1000 = 0 Then Console.WriteLine(blockVar)

Next
Next

End Sub
End Class

Variable Lifetime
In addition to their scope, variables also have a lifetime, which indicates when during program
execution the variable exists. Scope, on the other hand, indicates whether the variables that exist
are accessible or not. The difference is most clear in variables with block-level scope: although
they are visible only within the block construct within which they are declared, their lifetime is
the lifetime of the procedure in which they are declared. Similarly, the lifetime of variables with
procedure scope terminates when a procedure ends, but they are visible only when the procedure
is actually executing, not when the procedure has in turn called other procedures.

Ordinarily, the lifetime of variables with procedure scope terminates when the procedure
ends. However, we can declare variables to be static, in which case their lifetime is the duration
of the application, even though they have procedure scope. For example, the following code
shows a simple Windows application that tracks the number of times its single interface object, a
command button, is clicked:

L 2-64 Public Class Form1
Private Sub cmdClickCtr_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles cmdClickCtr.Click

Static ctr As Integer = 1
MsgBox("Button was clicked " & ctr & " times.")
ctr += 1

End Sub
End Class

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 29

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

Static in Visual Basic and C#
A possible source of confusion is the use of the static keyword in Visual Basic .NET and C#.
In C#, a variable or another program element marked with the static keyword belongs to the
type in which it is declared, rather than to an instance of the type. It corresponds to the
Shared keyword rather than the Static keyword in Visual Basic .NET.

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Ordinarily, the lifetime of the counter variable, ctr, is limited to the duration that the Click event
procedure runs. Declaring it as static, however, causes it to exist throughout the lifetime of the
application. Hence, it can track the total number of times the button is clicked since the application
started. Note that the Static variable declaration, which also initializes the variable ctr to a value
of 1, is executed only once. We do not need to be concerned that the value of ctr will be reset to 1
each time the event procedure executes.

Late and Early Binding
Binding refers to the process of member lookup and type checking. Binding can be handled by
the compiler in advance at compile time, in which case it is referred to as early binding. It can also
be handled at runtime by the .NET runtime environment, in which case it is referred to as late
binding. Early binding occurs whenever an object variable is declared to be a specific object type.
In that case, the compiler can perform all necessary type checking in advance.

Late binding occurs whenever any variable is declared to be of type Object; a more specific
type of object is subsequently assigned to it, and the Object variable is used to call a member of
that more specific object type. In this case, name lookup and type checking must occur at runtime
rather than at compile time, which results in a significant performance penalty. Since type
checking and member lookup occur only at runtime, it also makes runtime errors more likely,
thereby increasing the need for robust error handling.

Reference and Value Type Conversion
In our earlier discussion of data types, we noted that Visual Basic’s data types include value
types and reference types. The key difference between reference types and value types is that
variables hold references to instances of reference types, while they hold copies of instances of
value types. In many ways, the difference is the same as the difference between the ByVal and
ByRef keywords: when you pass an argument by reference, you’re passing the argument itself.
When you pass an argument by value, you’re passing a copy of your original. So whenever you
pass an instance of reference type, the CLR is passing its reference. Whenever you’re passing a
value type, the CLR is making a copy of the value type and passing that.

This copy operation actually takes two forms:

• When a value type is assigned to a field or variable of the same type, a copy is made.

• When a value type is assigned to a field or variable of type Object, a copy is made, and a
process called boxing is performed by the CLR. This consists of wrapping a special “box”
around that copy. The box is simply a “thin” reference wrapper that holds onto the
boxed value so that the called routine that is expecting an instance of a reference type
gets one.

Boxing involves a performance penalty. And often, it’s a double whammy. When a boxed
value is then assigned to a variable or field typed as a value type, the value must be unboxed.
This means that another copy has to be made, just as if the value had never been boxed at all.

Visual Basic can perform the process of boxing and unboxing automatically, without the
need for the developer to explicitly handle the conversion of value types to reference types and
vice versa. However, Visual Basic’s automatic boxing and unboxing involves a performance penalty.

30 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are two major ways to minimize the possible impact on performance that results from
Visual Basic’s automatic boxing and unboxing:

• Use instances of classes instead of value types to prevent boxing and unboxing. For
example, a routine stores instances of a structure to a Visual Basic Collection object. The
Collection class expects that each data item assigned to the collection is of type Object.
Hence, some performance improvement would result from replacing the structure with
a class.

• Rather than allowing Visual Basic to handle unboxing automatically, use the DirectCast
operator so that your code handles unboxing. When handling primitive value types
(rather than complex value types, such as structures), this saves Visual Basic from having
to determine what conversions are possible before performing the unboxing. Instead,
DirectCast will only allow you to convert a reference type to the data type of the original
value type.

C h a p t e r 2 : D a t a T y p e s a n d V a r i a b l e s 31

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2
Blind Folio 32

P:\010Comp\ComRef\033-5\ch02.vp
Sunday, July 02, 2006 1:54:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

