
4
Object-Oriented

Programming

From the introduction of Version 4.0 of Visual Basic until the release of Version 6.0, a lively
debate raged among developers about whether Visual Basic was or was not an object-
oriented programming language. Proponents of the first position could point to Visual

Basic’s extensive support for objects and interfaces, while advocates of the opposite point of view
could point to its lack of inheritance and its overall limited number of object-oriented features.
With the release of .NET, however, this debate has become of historical interest only. Visual
Basic .NET is clearly an object-oriented language.

Typically, treatments of object-oriented programming begin by discussing the four major
characteristics of object-oriented languages: abstraction, encapsulation, inheritance, and
polymorphism. This chapter, however, will begin by examining the specific implementation of
object-oriented programming features in Visual Basic .NET and the .NET platform.

.NET Types
.NET recognizes six categories of types that can be defined in a namespace:

• Classes, which are reference types defined by the Class . . . End Class construct.

• Arrays, which are reference types that store objects of another type. The Array class is
defined in the System namespace of the .NET Framework Class Library, and array
objects can be instantiated in your code; see Chapter 3 for details.

• Structures, which are value types defined by the Structure . . . End Structure construct.

• Interfaces, which define a contract that implementers must conform to, are defined by the
Interface . . . End Interface construct.

• Delegates, which are reference types that encapsulate methods with particular signatures.
They are defined using the Delegate statement.

• Enumerations, which are a collection of related values, defined by the Enum . . . End
Enum construct.

5 3

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

.NET includes a Type object that can be used to retrieve information about a particular type.
The Type object for a type can be retrieved in Visual Basic in either of two ways:

• By using the GetType operator and providing it with the name of the type in which
you’re interested as an argument. For example,

L 4-1 Dim typ As Type = GetType(Integer)

returns a Type object with information about the Visual Basic Integer data type.

• By calling the GetType method of an instance of the type. For example, the code:

L 4-2 Dim counter As Integer = 10
Dim typ As Type = counter.GetType()

returns a Type object with information about the type of the contents of the counter
variable, which happens to be an Integer. If we had declared the variable to be of type
Object, as in the following code, the GetType method would still return a Type object
representing the Integer type, which is the variable’s runtime type at the time the
method is called:

L 4-3 Dim counter As Object
counter = 1
Console.WriteLine(counter.GetType().FullName)

Ultimately, all .NET types except for interfaces are derived from a single type, System.Object.
(That’s why Object happens to be .NET’s “universal” data type, much as the Variant was in
COM-based versions of Visual Basic.) Table 4-1 shows the inheritance chain for each of .NET’s six
categories of types.

.NET Type Members
Each of the six categories of .NET types can define one or more members. Members define the
public interface of a type and either allow you to set or retrieve the data of a .NET type, or
provide access to the functionality that a .NET type makes available. Type members include the
following:

54 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

Type Chain of Inheritance

Arrays System.Object

Classes System.Object

Structures System.Object
System.ValueType

Delegates System.Object
System.Delegate or System.MulticastDelegate

Enumerations System.Object
System.ValueType
System.Enum

Interfaces none

TABLE 4-1
The Inheritance
Chain of .NET
Types

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• Fields, which are public constants or variables that allow access to a type’s data. Fields can
be defined by classes, structures, and enumerations. (In fact, enumerations have only
fields.) Since fields allow little opportunity for data validation and offer little protection
from inappropriate changes to data values, they are used primarily for read-only data.
Often, fields are implemented as constants, which are necessarily read-only, since their
value is defined at compile time and cannot be modified in the runtime environment. In
other cases, fields are implemented as read-only variables that are, in fact, write-once
variables: their values can be defined at runtime by a class constructor but cannot
subsequently be modified. For example, field declarations might take the following form:

L 4-4 Public Class TestClass
Public Const Label As String = "Test Class"
Public ReadOnly CounterStartValue As Integer

' Constructor to allow us to assign a value to a read-only variable
Public Sub New(ctr As Integer)

CounterStartValue = ctr
End Sub

End Class

• Properties, which allow access to the type’s data. In Visual Basic .NET, properties can be
defined for classes, structures, and interfaces. Most commonly, properties are both
readable and writable, although they can also be read-only or write-only (although the
latter is rare). Properties are defined with the Property . . . End Property construct.
A frequent pattern for assigning and returning property values is shown in the following
code, in which the property is responsible for assigning a value to or retrieving a value
from a private variable that is otherwise accessible only from within its class:

L 4-5 Private annualSalary As Decimal

Public Property Salary() As Decimal
Get

Return annualSalary
End Get
Set

annualSalary = Value
End Set

End Property

Some properties may require that you provide an index or key that identifies a particular
member of an array or a collection. The Item property of the Visual Basic .NET Collection object,
which allows you to retrieve a member of the collection by its key or its ordinal position in the
collection, provides an excellent example:

L 4-6 Dim states As New Collection
states.Add("California", "CA")
states.Add("Michigan", "MI")
states.Add("New York", "NY")
Dim state As String = CStr(states.Item("CA"))

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 55

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Interestingly, properties are actually implemented internally as methods, as Figure 4-1 shows.
The Salary property consists of a get accessor method (get_Salary) and a set accessor method
(set_Salary), both of which are members of the TestClass class.

• Methods, which are the functions (defined by the Function . . . End Function construct)
and subroutines (defined by the Sub . . . End Sub construct) that expose the functionality
provided by a class, structure, interface, or delegate. Of the major net types, only
enumerations cannot have methods. Delegates are a partial exception: although they
have methods that they inherit from System.Delegate or System.MulticastDelegate, you
cannot define new delegate methods. Functions and subroutines were discussed at
length in Chapter 3.

• Events, which are function calls from a source to bound delegates that occur in response to
some event (such as a mouse click, a press of the keyboard, or a change to the value of a
field in a database). Typically, events are passed two parameters: an Object indicating the
sender of the event; and an object of type EventArgs or a type derived from it that
provides information about the event. Events are discussed in greater detail in Chapter 5.

We’ll begin our examination of object-oriented programming with Visual Basic by examining
inheritance, since it is the basis of the .NET type system.

56 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

FIGURE 4-1
The .NET
implementation of
properties

Parameterized Properties and CLS Compliance
Parameterized properties are not CLS-compliant. Clients of your components who are using
a .NET language that does not support parameterized properties, such as C#, have to use the
get_propertyName(index) or set_propertyName(index) syntax in order to retrieve or assign a
property value. If you want to write CLS-compliant code, you should avoid parameterized
properties.

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance
For the most part, the language features that we’ve covered so far do little to distinguish Visual Basic
.NET as a more object-oriented language than its predecessors. There is, however, such a
distinguishing feature: inheritance is not only the basis of the .NET type system, but the single
individual feature that marks Visual Basic .NET as a clearly object-oriented programming language.

Inheritance means that a .NET type is based on, or inherits the members of, the type from
which it is derived. If inheritance is not explicitly defined, .NET relies on implicit inheritance;
particular types automatically inherit the base types shown earlier in Table 4-1. However, in the
case of classes only, inheritance can also be explicit: you can designate a particular class from
which a class you’re defining derives. Explicit inheritance is indicated by using the Inherits
keyword on the line following the class definition. For example:

L 4-7 Public Class MyForm
Inherits System.Windows.Forms.Form

.NET supports single inheritance only. That is, a class can inherit directly from only a single other
class. In order for a class to inherit from multiple classes, the inheritance must occur in a chain. That
is, class D must inherit from class C, which inherits from class B, which inherits from class A.

However, not all classes support explicit inheritance. If a class is sealed—which in Visual
Basic .NET means that it’s marked with the NotInheritable keyword—other classes cannot be
derived from it. In an application in which a series of classes are built through inheritance, it is
common to mark the final set of inherited classes that the application actually instantiates as
sealed, since the application will have no further need to derive classes from them. Often, core
classes whose operation is central to an application (or to the system) might also be marked as
sealed to prevent the creation of inherited classes with disabled or incorrect functionality.

Conversely, some classes cannot themselves be created (you cannot create an instance of this
class using the New keyword) but instead are intended to be used only as a base class from
which other classes inherit. Such classes are marked with the MustInherit keyword and are
known as abstract base classes.

Inheritance automatically makes the attributes and the functionality of a base class available
to its derived classes. For example, consider the following code:

L 4-8 Public Class EmptyClass
End Class

Public Module modMain
Public Sub Main()

Dim ec As New EmptyClass
Console.WriteLine(ec.ToString()) ' Displays "EmptyClass"

End Sub
End Module

Even though EmptyClass is a class with no members, the Main method is able to call a ToString
method, which displays the name of the class. We are able to do this because our seemingly
empty class automatically inherits the members of System.Object, the base class for all classes.
(For the members of System.Object, see Appendix G.) This functionality of the base class is
available for free; we don’t have to do anything to get it.

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 57

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Overriding Members
We don’t, however, have to accept all of the data and the behaviors of the base class. In many
cases, we can change none, some, or all of them, depending on the needs of the class we’re
creating. For instance, we might want our class’ ToString method to do something other than
display its name. In that case, we can override the base class’ ToString method by providing a
replacement method. This is called overriding the base class method, and requires that we use the
Overrides keyword when we define our method. For example:

L 4-9 Public Class EmptyClass
Public Overrides Function ToString() As String

Return "This is an (almost) empty class."
End Function

End Class

Public Module modMain
Public Sub Main()

Dim ec As New EmptyClass
Console.WriteLine(ec.ToString()) ' Displays "This is an (almost)

' empty class."
End Sub

End Module

Very much as you can’t inherit from all classes, though, you can’t override all base class
members. Properties and methods of a base class can be overridden by a derived class only
under either of the following two conditions:

• The base class member is marked with the Overridable keyword, which allows you to
override it.

• The base class member itself overrides a corresponding member of its base class and is
not marked with the NotOverridable keyword.

So, members of base classes are not overridable by default, even if they are not explicitly marked
with the NotOverridable keyword. And if a member of a base class can be overridden, that
ability to override the member is inherited by derived classes until a particular subclass marks
the member as NotOverridable. In other words, unless you have a compelling reason to prevent
a class member from being overridden, you should remember to mark it as Overridable.

While there are times when you can’t override a member of a class, there are other times when
you’re required to override a class member. Such members are marked with the MustOverride
keyword. Typically, you must override a class member under any of the following conditions:

• The base class provides either no real implementation or a very partial implementation
of the method. It relies on derived classes to provide complete implementations.

• The base class itself is an abstract base class—that is, it defines the members that a
derived class should have, but it provides no real implementation of them, leaving it to
the derived classes to do this.

58 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Overloaded Members
A basic rule of Visual Basic 6.0 and earlier versions was that each member name in a class must
be unique, since the Visual Basic compiler relied exclusively on the member name to identify the
member. In .NET, that is no longer true. Instead, each member must be uniquely identified by its
signature, which includes a combination of its name and the types in its parameter list. (In
distinguishing members with the same name, a method’s return value or a property type is not
part of that member’s signature; that is, members with the same name cannot be differentiated
by return type alone.)

This makes it possible to overload members, which means that multiple members can share
the same name but can be distinguished by differing parameter types. In the .NET Framework
Class Library, for instance, the Convert.ToString method provides an excellent example of
operator overloading; there are 36 different versions of the Convert.ToString method, each of
which is distinguished from the other 35 versions by the number and type of its parameters.

Overloading is significant because it allows members to be named in terms of their
functionality, rather than the need to find a unique name. And as we saw in Chapter 3, it allows
parameter lists to reflect the specific types expected by a method, rather than a weakly typed
parameter that can accept an argument of virtually any type.

At the same time, overloading methods in a careless way can lead to a duplication of code, as
each of the overloaded methods contains code that performs a more or less identical set of
operations. Typically, this problem is solved by performing only the minimum of work that is
necessary (typically data conversion and defining default values) before calling the “main”
version of the method, where most of the actual work is performed. For example: the Person
class in the following code returns an array of Person objects whose name meets the search
criteria. The method has three overloads: one that accepts a last name, one that accepts a first and
last name, and one that accepts a first, middle, and last name. The first two methods provide a
default value for the parameters they don’t define and call the third overload.

L 4-10 Public Shared Function FindName(lastName As String) As Person()
Dim middleName As String = String.Empty
dim firstName As String = String.Empty
Return FindName(firstName, middleName, lastName)

End Function

Public Shared Function FindName(firstName As String, lastName As String) _
As Person()

Dim middleName As String = String.Empty
Return FindName(firstName, middleName, lastName)

End Function

Public Shared Function FindName(firstname As String, middleName As String, _
lastName As String) As Person()

' Query database to return names
Return matches

End Function

Constructors
.NET classes and structures have one or more constructors that can be executed when the class or
structure is instantiated. This support for constructors differs in a number of ways from class

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 59

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modules in Visual Basic 6.0 and earlier versions, where a Class_Initialize event procedure appeared
to function as a class constructor:

• Constructors are called when the object is instantiated and are executed before any other
code belonging to the class. In contrast, the Class_Initialize event was actually fired after
the object was created but before it was activated; any code located outside of individual
class members that declared and initialized variables was executed first.

• In .NET, constructors can be overloaded; there can be multiple constructors that differ by
their parameter list. In contrast, Class_Initialize did not support method arguments.

• .NET constructors can be executed automatically only when an object instance is
instantiated, or they can be called from the first line of code in a derived class constructor
(a topic that we’ll discuss in detail later in this section). In contrast, the Class_Initialize
procedure could be called from anywhere in code.

• Structures as well as classes in .NET can have constructors. In contrast, only classes
supported the Class_Initialize procedure. (Structures in Visual Basic 6.0 could not have
properties or methods.)

In Visual Basic .NET, constructors are subroutines named New, and they can be defined in
both classes and structures. Like any method, constructors can have parameter lists and can be
overloaded. The overloading of constructors, in fact, is an area of confusion in Visual Basic .NET.
If you fail to define any constructors, the Visual Basic .NET compiler automatically implements a
parameterless constructor in a class. For example, Figure 4-2 shows the result if we compile the
following code and display the resulting assembly in ILDasm:

L 4-11 Public Class Animal
Dim animalName As String

Public Property Name() As String
Get

Return animalName
End Get
Set

animalName = Value
End Set

End Property
End Class

Note that in addition to the private animalName string variable and the Name property (Name)
along with its set (set_Name) and get (get_Name) accessors, ILDasm displays a class constructor
(indicated as .ctor) that is a subroutine (it returns void, which means that the method has no
return value) with no parameters.

However, if we explicitly define parameterized constructors for a class but fail to define
a parameterless constructor, the Visual Basic .NET compiler does not add a parameterless
constructor to our class. If we are defining class constructors, we have to remember to include
a parameterless constructor if we want one.

In Visual Basic .NET, structures can also have constructors. However, all structure constructors
must be parameterized. The Visual Basic .NET compiler does not automatically include a
parameterless constructor among a structure’s members if you fail to define a parameterized
constructor. And the attempt to explicitly define a parameterless constructor generates a compiler
error (“Structures cannot declare a non-shared ‘Sub New’ with no parameters.”).

60 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Constructors of derived classes aren’t marked with the Overrides keyword. But the constructors
of derived classes must call the base class constructor in the first line of the constructor’s code,
immediately after the constructor’s subroutine definition, unless the base class implements a
parameterless constructor. In the latter case, the call to the base class constructor can be omitted.
To call the base class constructor, the MyBase keyword is used, as the following code illustrates:

L 4-12 Public Class BaseClass
Private _name As String

Public Sub New(name As String)
_name = name

End Sub

Public ReadOnly Property Name() As String
Get

Return _name
End Get

End Property
End Class
Public Class DerivedClass

Inherits BaseClass

Public Sub New(name As String)
MyBase.New(name)

End Sub
End Class

Whether or not a call to one of the base class constructors is required it’s typically
a good idea to include the call, since, unless the documentation explicitly indicates otherwise,
the base class constructor may perform some initialization that is important for the proper
functioning of the class.

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 61

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

FIGURE 4-2
A compiled class
displayed by
ILDasm

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Destructors
Many object-oriented programming languages and runtime environments support both constructors,
which execute when a class is instantiated, and destructors, which execute when a class instance
is destroyed. .NET, in fact, defines not just one, but two different destructors that execute when
an object either is about to be destroyed or is being destroyed.

The need for two destructors stems from the fact that in .NET, garbage collection—the process
whereby .NET destroys unused managed objects and releases their resources—is non-deterministic.
This means that, although garbage collection will happen sooner or later, there is no guarantee of
precisely when a particular object that has gone out of scope or that is no longer needed will actually
be destroyed.

When a class or structure instance is destroyed (something that the .NET runtime environment
manages without your having to write any code), the object instance often has to perform some
cleanup, such as closing files, saving state information, or releasing resources that are not
managed by .NET. .NET’s non-deterministic destructor for this purpose is named Finalize.
Unlike the class constructor, which the compiler creates automatically if it is not explicitly
declared, Finalize is not created automatically by the compiler. Since it involves a performance
penalty, you should implement it only if there are resources belonging to an object instance that
must be released as the object is destroyed. In addition, Finalize must be declared as a Protected
method, with the following signature:

L 4-13 Protected Sub Finalize()

Because it is protected, the Finalize method can be called only from within the class that defines
it or from a derived class. Typically, Finalize can also be overridden by a derived class by using
the Overrides keyword. However, it cannot be called from client code that instantiates the class.

Because of the non-deterministic garbage collection system and because maintaining unneeded
resources can often be expensive, .NET provides a second destructor that can be called at any
time both from within a class, from a derived class, and from client code, and that immediately
releases resources. This destructor is implemented as an interface (a topic discussed in greater
detail in the section “Interfaces” later in this chapter) named IDisposable that has a single method,
Dispose. The Dispose method has the following signature:

L 4-14 Sub Dispose()

However, unlike Finalize, Dispose is not called automatically by .NET. Instead, it should be
called by clients of the implementing class or structure.

There are two recommended patterns for implementing Dispose, one for base classes and
one for derived classes. The recommended pattern for base classes is:

L 4-15 Public Class Base : Implements IDisposable
Public Overloads Sub Dispose() Implements IDisposable.Dispose

Dispose(True)
GC.SuppressFinalize(Me)

End Sub

Protected Overridable Overloads Sub Dispose(ByVal disposing As Boolean)
If disposing Then

' Free other state (managed objects).
End If

62 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

' Free your own state (unmanaged objects).
' Set large fields to null.

End Sub
Protected Overrides Sub Finalize()

' Simply call Dispose(False).
Dispose(False)

End Sub
End Class

Base classes should define two versions of Dispose, one of which implements
IDisposable.Dispose and, because it is part of the class or structure’s public interface (i.e., it is
defined as a Public method), is callable from outside of the class or structure, including by
clients of the class. This version of the Dispose method first calls the second version of the
Dispose method and passes it a True value as an argument. The argument causes the block of
code in the second Dispose method that frees other managed resources to execute. The public
version of the Dispose method then calls the GC (garbage collector) object’s SuppressFinalize
method, which indicates that finalization should not be handled automatically by .NET.

The second version of Dispose is protected, and so can be called only from within the class or
by a derived class; it is not accessible to clients that have references to instances of the class. This
version of Dispose has a single Boolean parameter. A True indicates a client call, which causes the
class to release both managed and unmanaged resources. A False value indicates that the call
comes from the class or structure, or from a derived class, and that only unmanaged resources
should be released.

Instead of directly calling Dispose from within the class or a derived class, though, Finalize
should be called. Finalize in turn calls the protected version of Dispose, passing it a False value
that indicates that the call comes from within the class, so that any other managed resources
should not be released (since they already have been by the client’s call to the public version of
Dispose).

The following is the recommended implementation of Dispose and Finalize for derived
classes:

L 4-16 Protected Overridable Overloads Sub Dispose(ByVal disposing As Boolean)
If disposing Then

' Free other state (managed objects).
End If
' Free your own state (unmanaged objects).
' Set large fields to null.

End Sub

Protected Overrides Sub Finalize()
' Simply call Dispose(False).
Dispose(False)

End Sub
End Class

Note that this version implements only the protected version of Dispose, which leaves the base
class as the only class with a public implementation of Dispose that implements the public
IDisposable.Dispose interface.

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 63

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Internal References: Me and MyClass
In Visual Basic .NET, as in Visual Basic 6.0, the Me keyword refers to the instance of the class
upon which the method or property that’s currently executing was called. (The equivalent in
C++ or C# is the this object.) Typically, Me is not required, but it can add clarity by calling out
that a particular identifier refers to a class member. However, in some situations, using Me is
required. This is the case, for example, if there is a local variable or method parameter of the
same name as an instance member, as in the following code:

L 4-17 Public Class Airplane
Private seat As New ArrayList

Public Function AssignSeat(seat As String) As Boolean
For Each seatAssignment As String In Me.seat

If seatAssignment = seat Then
Return False

End If
Next
Me.seat.Add(seat)
Return True

End Function
End Class

Here, seat represents both an ArrayList variable that holds the locations of assigned seats, as
well as the name of the AssignSeat method’s single parameter. If we fail to qualify the references
to the ArrayList variable named seat with the Me keyword, the .NET compiler will assume in the
first case that we want to use the String argument and in the second will generate a compiler
error, since the String class does not have an Add member.

Similarly, when a variable is hidden by another identically named variable with more
immediate scope (or, to put it another way, when a variable with more restrictive scope shadows
a variable with broader scope), Me allows you to reference the otherwise hidden variable. For
example, consider the following code (which admittedly reflects rather poor programming
practice):

L 4-18 Public Class Counters
Dim ctr As Integer

Public Sub New()
For ctr = 1 to 20

DoSomething()
Next

End Sub

64 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

Identically Named Variables with Different Scope
It’s best to avoid giving variables with different scope identical names, since the practice is
unnecessarily confusing. If you give your locals unique names, you won’t have to disambiguate
them later.

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Sub DoSomething()
For ctr As Integer = 0 to 2

Console.WriteLine("The value of ctr is {0}, but the value of Me.ctr
is {1}.", _

ctr, Me.ctr)
Next

End Sub
End Class

Public Module modMain
Public Sub Main()

Dim obj As New Counters()
End Sub

End Module

Here, a class named Counters has a variable named ctr that is visible throughout the class.
A second variable named ctr, however, is local to the For Each . . . Next construct. Nevertheless,
we are able to reference the first variable within the For Each . . . Next construct by using the Me
keyword.

Finally, Me can be used as an argument in a method call when you need to pass a reference
to the current class instance to some method or property outside of the class. This, in fact, is one
of its major uses.

Because Me refers to the current instance of a class or structure, it can’t be used to access
class members within a shared property or method. (Shared members, which do not require that
an instance of the class be created in order to execute, are discussed in the section “Shared
Members” later in this chapter.)

Closely related to Me is the MyClass keyword. For the most part, MyClass is identical to Me.
Its sole difference arises in cases in which the MyClass keyword is used in a base class to call one
of its members, and a derived class overrides that member; in that case, the MyClass keyword
causes the overridable method to be treated as if it is not overridable, and invokes the base class
member. This is reflected in the following code:

L 4-19 Public Class BaseClass
Public Sub MainMethod()

Console.WriteLine("Calling Me.Method1...")
Me.Method1()
Console.WriteLine("Calling MyClass.Method1...")
MyClass.Method1()

End Sub
Public Overridable Sub Method1()

Console.WriteLine("BaseClass.Method1...")
End Sub

End Class

Public Class DerivedClass : Inherits BaseClass
Public Overrides Sub Method1()

Console.WriteLine("DerivedClass.Method1...")
End Sub

End Class

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 65

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Module modMain
Public Sub Main()
Console.WriteLine("Invoking BaseClass.MainMethod")
Dim bc As New BaseClass
bc.MainMethod()
Console.WriteLine()
Console.WriteLine("Invoking DerivedClass.MainMethod")
Dim dc As New DerivedClass
dc.MainMethod()

End Sub
End Module

When Method1 is called from an instance of the BaseClass class, there is, of course, only one
method that can be called—Method1 in BaseClass. However, when an instance of DerivedClass
calls Method1, the Me keyword causes DerivedClass.Method1 to be called, whereas the MyClass
keyword causes BaseClass.Method1 to be called, just as if BaseClass.Method1 were marked
NotOverridable, and DerivedClass had never been able to override the method.

Referencing the Base Class: MyBase
As we’ve already noted in the discussion of constructors, the MyBase keyword refers to the base
class from which the current class is derived. As we’ve noted, all classes are derived from another
class either implicitly or explicitly, while all structures implicitly derive from System.ValueType.
MyBase causes a member of those base classes to be executed.

MyBase.New can be used to call the base class constructor, which is generally a good idea when
the base class performs some initialization when it is instantiated. MyBase also can be used to call
methods in the base class from a derived class when they are otherwise overridden or inaccessible.

Polymorphism
A general definition of polymorphism is that it describes something that has many different
forms. In object-oriented programming, it refers to the ability of callers to call objects that behave
differently depending on the type of the callee. It allows for the creation of black box routines
that can operate on a range of types but always call the appropriate method of that type.
Explanations of polymorphism often tend to be long, laborious, and thoroughly confusing. An
example better illustrates the concept. Consider, for instance, the following code, which defines
an abstract base class named Mammal, a derived class named Canine, and two derived classes
that inherit from Canine named Dog and Wolf:

L 4-20 Public MustInherit Class Mammal
Protected nocturnal As Boolean
Protected herbivore As Boolean
Protected carnivore As Boolean
Protected omnivore As Boolean

Public Property SleepsAtNight() As Boolean
Get

Return nocturnal
End Get
Set

nocturnal = Value
End Set

End Property

66 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Property IsHerbivore() As Boolean
Get

Return herbivore
End Get
Set

herbivore = Value
End Set

End Property

Public Property IsCarnivore() As Boolean
Get

Return carnivore
End Get
Set
carnivore = Value

End Set
End Property

Public Property IsOmnivore() As Boolean
Get

Return omnivore
End Get
Set

omnivore = Value
End Set

End Property

Public Overridable Function Sound() As String
Return "This mammal is largely mute."

End Function
End Class

Public Class Canine : Inherits Mammal
Public Sub New()

MyBase.New()
Me.Carnivore = True

End Sub

Public Overrides Function Sound() As String
Return "Snarl"

End Function
End Class

Public Class Wolf : Inherits Canine
Public Overrides Function Sound() As String

Return "Howl"
End Function

End Class

Public Class Dog : Inherits Canine
Public Overrides Function Sound() As String

Return "Bark"
End Function

End Class

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 67

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Module modMammals
Public Sub Main

Dim wlf As New Wolf
Dim dg As New Dog
DescribeSound(wlf)
Eats(wlf)

DescribeSound(dg)
Eats(dg)

End Sub

Private Sub DescribeSound(mamml As Mammal)
Console.WriteLine("{0} makes a {1}.", mamml.ToString(), mamml.Sound())

End Sub

Public Sub Eats(mamml As Mammal)
If mamml.IsCarnivore Then

Console.WriteLine("{0} eats meat.", mamml.ToString())
ElseIf mamml.IsHerbivore Then

Console.WriteLine("{0} eats plants.", mamml.ToString())
Else

Console.WriteLine("{0} eats meat and plants.", mamml.ToString())
End If

End Sub
End Module

The base class, Mammal, consists of three protected variables, which means that they’re
accessible within the Mammal class and any classes derived from it. Had we declared the
variables to be private, we would not have been able to access them (as we did in the Canine
class constructor) from derived classes. Mammal also defines three properties that wrap the three
protected variables. Finally, it has a single method, Sound, that simply returns a string indicating
that the animal lacks a distinctive sound. Note that the method has been marked Overridable so
that classes derived from Mammal can override the function to indicate the animal’s sound.

Canine inherits from Mammal and adds a parameterless constructor that sets the value of the
Carnivore property to True. (The other properties remain at their default value, which is False for
Boolean properties.) It also overrides the Sound method to return the string “Snarl”.

The Wolf class inherits from Canine. (It could have inherited from Mammal, but deriving
it from Canine eliminates the need to explicitly define the Carnivore property as True, since
canines are primarily carnivores, and wolves are canines.) The only code within the Wolf class
overrides the Sound method to return the string “Howl”.

The Dog class also inherits from Canine and, like the Wolf class, overrides the Sound method,
in its case to return the string “Bark”.

Finally, the code example includes a module that defines three methods: Main, DescribeSound,
and Eats. Main instantiates one Dog object and one Wolf object. Notice that it declares the objects
to be of type Mammal and then uses the New keyword to invoke the constructors of the Dog
class and the Wolf class and assign a Dog class instance and a Wolf class instance, respectively, to
our Mammal variables. We can do this because of polymorphism.

Once the two object variables are instantiated, the code calls the two other methods, once
with each object type. DescribeSound accepts an argument of type Mammal (not an argument of
type Dog or Wolf) and indicates whether the mammal is a herbivore, a carnivore, or an omnivore.

68 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Sound also accepts an argument of type Mammal and displays a string that describes the sound
made by the mammal. Note that in the case of both methods, the single parameter expects an
argument of type Mammal, and not an argument of type Dog or Wolf or any other specific
mammal.

When the code executes, it produces the following output:

L 4-21 Wolf makes a Howl.
Wolf eats meat.
Dog makes a Bark.
Dog eats meat.

In this example, the DescribeSound and the Eats methods are polymorphic. They don’t care what
specific type is passed to them as an argument, as long as that type either is Mammal or is
derived from Mammal. Because of inheritance, we can write black box routines that (within
limits) don’t care about the types passed to them but are nevertheless able to call the correct
method and produce the correct result anyway.

Casting Using DirectCast and TryCast
Ordinarily, if you want to convert a variable from one type to another, you use the CType
function or one of the other conversion functions implemented by the compiler (like CStr, CInt,
CDbl, etc.). However, Visual Basic has two other casting or conversion operators, DirectCast and
TryCast, which are designed to handle conversions between types that are related to one another
through inheritance or implementation (a topic discussed later, in the section “Interfaces”).
Although DirectCast was introduced in .NET 1.0, TryCast is new to Visual Basic 2005. Both have
the same syntax as CType:

L 4-22 ConvertedType = DirectCast(variable_name, type_name)
Convertedtype = TryCast(variable_name, type_name)

DirectCast will fail under either of two conditions:

• The object reference to be converted is not related to type_name through a relationship
based on inheritance or interface implementation. In this case, Visual Basic generates
a compiler error.

• The cast is a narrowing conversion that fails. In this case, the .NET runtime generates an
InvalidCastException. .NET considers a narrowing conversion to be any conversion from
a base class instance to a derived class, while it considers a widening conversion to be
any conversion from a derived class to a base class or interface. For example, the conversion
from an instance of the Wolf or Dog class to the Mammal class is a widening conversion.
On the other hand, the conversion of an instance of the Mammal class to either the Wolf
or Dog class is a narrowing conversion. For instance, the following code instantiates
a Dog instance and then calls the DirectCast conversion function twice:

L 4-23 Dim dg As New Dog
' Cast Dog instance to Mammal
Dim objMammal As Mammal = DirectCast(dg, Mammal)
' Cast Mammal instance to Wolf
Dim objWolf As Wolf = DirectCast(objMammal, Wolf)

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 69

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The conversion from Dog to Mammal always succeeds because it is a widening
conversion: every Dog is a Mammal. The conversion from Mammal to Wolf fails (it throws
an InvalidCastException) because the original variable before its conversion was of type Dog,
and a Dog is not a Wolf. The attempt to convert a Dog to a Wolf in this case violates the IS A
relationship.

When using DirectCast, you have two options for dealing with potential errors. The first is to
use rigorous type checking before the conversion to prevent the exception. For instance, in our
preceding code fragment, we might have checked the Mammal variable as follows before performing
the conversion:

L 4-24 If TypeOf objD Is Wolf Then Dim objMD As Wolf = DirectCast(objD, Wolf)

The second is to use exception handling, as illustrated in the following code:

L 4-25 Dim objD As Mammal = DirectCast(dg, Mammal)
Try

Dim objMD As Wolf = DirectCast(objD, Wolf)
Catch e As InvalidCastException

Console.WriteLine("Can't cast from " & TypeName(objD) & " to " _
& TypeName(objMW) & " here.")

End Try

Handling exceptions, however, has a serious impact on a program’s performance. To
eliminate the need for handling an exception (and even to save yourself from having to examine
object types before converting them), you can use the TryCast function instead of DirectCast.
Like DirectCast, TryCast performs conversions between two types that are related through either
inheritance or interface implementation. Unlike DirectCast, however, TryCast doesn’t raise an
exception if the conversion fails; it simply returns Nothing. As a result, if you use TryCast, you
should always check its return value after attempting the conversion.

Shadowing
In the discussion of the Me keyword, we noted that a variable with more restrictive scope
shadows an identically named variable with less restrictive scope, so that the former hides the
latter while the former is in scope. Shadowing also applies to any program element declared in
a type that is derived from a base type. It means that, when members of the derived type are
accessed through a variable of the derived type, the derived type members shadow the base type
members.

To use a simple example, the following code defines a class with a ToString member:

L 4-26 Public Class ShadowClass
Private value As String

Public Sub New(value As String)
Me.value = value

End Sub

Public Shadows Function ToString() As String
Return "Value of " & Me.GetType.Name & ": " & Me.value

End Function
End Class

70 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This version of ToString is declared with the Shadows keyword, which indicates that it shadows
the ToString method found in System.Object, the class from which ShadowClass implicitly inherits.
If we declare and then instantiate a variable of type ShadowClass, as in the following code:

L 4-27 Dim sc As ShadowClass = New ShadowClass("The Shadow")
Console.WriteLine(sc.ToString())

the program’s output displays the class name along with the value of its private value variable:

L 4-28 Value of ShadowClass: The Shadow

However, if we declare the variable to be of type Object and instantiate it using the ShadowClass
constructor, as the following code shows:

L 4-29 Dim obj As Object = New ShadowClass("The Shadow")
Console.WriteLine(obj.ToString())

the result is very different:

L 4-30 ShadowClass

Because in the first example we’ve called the ToString method through an instance of ShadowClass,
the ShadowClass implementation of ToString shadows the implementation of ToString in the
System.Object class. But when we call ToString in a variable declared to be of the base class type,
the shadowed base class implementation becomes visible and is executed.

Shadowing is somewhat different that overriding. Any base class member can be shadowed,
including those that are not overridable. Second, shadowing is based exclusively on name, and
not on signature. Thus, a derived class property can shadow a base class method, for instance, or
a derived class constant can shadow a base class property.

Interfaces
Visual Basic 6.0 and its earlier 32-bit versions implemented polymorphism through the use
of interfaces, and they continue to be very important in Visual Basic .NET. An interface
defines a contract that implementers of the contract must fulfill. Interfaces define a set of
public members but have no implementation code; the implementation code is provided
by the implementers of the interface. Interfaces are defined using the Interface . . . End
Interface construct, as follows:

L 4-31 <access_modififer> Interface <interface_name>
End Interface

Member declarations within the interface cannot have access modifiers because all
members are necessarily public. (The purpose of an interface is precisely to define a set of
public members that types must define to properly implement that interface.) In addition,
they contain no code, and even omit the terminating End statement. The interface can define
methods, properties, and events as members, but it cannot define constructors or destructors.

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 71

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, the following code defines an interface named IBreed (the names of interfaces
traditionally begin with the letter “I”):

L 4-32 Public Interface IBreed
Property BreedName As String
Property Group As String
Function IsBreedInAmericanKennelClub() As Boolean

End Interface

Interfaces are used for a variety of purposes:

• To define a particular service or functionality that is common to a range of classes. In
.NET, this is probably the most common use of interfaces. For instance, two interfaces,
IEnumerable and IEnumerator, allow you to use the For Each . . . Next loop to iterate
various container objects like arrays and collections. The IComparer interface allows two
objects to be compared and determines whether they are equal, or whether one is “less
than” or “greater than” the other. If you were defining an Automobile class, you might
implement the IComparer interface to consider the car that provided the better mileage
per gallon of fuel as the “greater” one.

• To apply a particular service or functionality that is common to only a subset of the
members of a class. For instance, although all dogs have a breed, IBreed is intended
primarily to provide information about purebred dogs.

• To support multiple inheritance in environments (like .NET) that support only single
inheritance, or in environments (like Visual Basic 6.0 and earlier versions) that don’t
support inheritance. This is not a good use of interfaces.

• As a substitute for classes. Again, this is not a good use of interfaces.

As this list suggests, when used properly, interfaces express a “can do” or a “has a”
relationship with its implementers: types that implement an interface CAN DO something (such
as compare objects using the IComparer interface) or HAVE something (such as a dog’s breed, as
recognized by the American Kennel Club in the United States and Canada). This differs from the
IS A relationship that results when a derived class inherits from a base class. (For example, a Dog
is a Mammal.)

Client classes that implement interfaces use the Implements statement on the line following
the class definition, or on the line following the Inherits statement. Classes can implement
multiple interfaces (hence the tendency to use “interface inheritance” as a work-around for single
inheritance); in this case, interface names are separated from one another by commas. In addition,
each member that implements an interface member includes the Implements keyword and the
name of the interface and member it implements, separated by a dot or period, on the same line
as the method definition. The signature of implemented members must conform to the signature
defined in the interface.

For example, the following code provides a redefinition of the Dog class we presented earlier
to implement the IBreed interface:

L 4-33 Public Class Dog : Inherits Canine
Implements IBreed

Private IsRecognizedAsBreed As Boolean
Private Breed As String
Private BreedGroup As String

72 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Sub New(breedName As String, breedGroup As String, _
isRecognizedAsBreed As Boolean)

MyBase.New()
Me.Carnivore = True
Me.Breed = breedName
Me.BreedGroup = breedGroup
Me.IsRecognizedAsBreed = isRecognizedAsBreed

End Sub

Public Overrides Function Sound() As String
Return "Bark"

End Function

Public Property BreedName As String Implements IBreed.BreedName
Get

Return Me.Breed
End Get
Set

Me.Breed = Value
End Set

End Property

Public Property Group As String Implements IBreed.Group
Get

Return Me.BreedGroup
End Get
Set

Me.BreedGroup = Value
End Set

End Property

Public Function IsAKC() As Boolean _
Implements IBreed.IsBreedInAmericanKennelClub

Return Me.IsRecognizedAsBreed
End Function

End Class

Once we’ve implemented the interface members in our class, we can instantiate the class
and access the implemented members just as we would any other member of the class, as the
following code illustrates:

L 4-34 Public Sub Main
Dim malamute As New Dog("Malamute", "Working", True)
Console.WriteLine(malamute.Group)
Console.WriteLine(malamute.IsAKC)

End Sub

We can, however, require that the interface members be accessed only through an instance of
the interface itself. We do this by implementing the interface members as private members of the
implementing class, as the following code illustrates:

L 4-35 Public Class Dog : Inherits Canine
Implements IBreed

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 73

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Private IsRecognizedAsBreed As Boolean
Private Breed As String
Private BreedGroup As String

Public Sub New(breedName As String, breedGroup As String, _
isRecognizedAsBreed As Boolean)

MyBase.New()
Me.Carnivore = True
Me.Breed = breedName
Me.BreedGroup = breedGroup
Me.IsRecognizedAsBreed = isRecognizedAsBreed

End Sub

Public Overrides Function Sound() As String
Return "Bark"

End Function

Private Property BreedName As String Implements IBreed.BreedName
Get

Return Me.Breed
End Get
Set

Me.Breed = Value
End Set

End Property

Private Property Group As String Implements IBreed.Group
Get

Return Me.BreedGroup
End Get
Set

Me.BreedGroup = Value
End Set

End Property

Private Function IsAKC() As Boolean _
Implements IBreed.IsBreedInAmericanKennelClub

Return Me.IsRecognizedAsBreed
End Function

End Class

Because the BreedName and Group properties and the IsAKC method are now private, we
can no longer access them through an instance of the Dog class. Instead, we must instantiate
an object of the interface type, assign the instance of the Dog class to it, and then access the
implemented members. The following code illustrates this:

L 4-36 Public Sub Main
Dim malamute As New Dog("Malamute", "Working", True)
Dim breed As IBreed = malamute

Console.WriteLine(breed.Group)
Console.WriteLine(breed.IsBreedInAmericanKennelClub)

End Sub

74 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that, because we are accessing the IBreed interface, rather than accessing the IBreed
interface members through the Dog class, we cannot access the method that implements
IsBreedInAmericanKennelClub by the name we’ve assigned to it, IsAKC. Instead, we must
access it by the name assigned to it in the interface definition, IsBreedInAmericanKennelClub.

Shared Members
In discussing the object-oriented features of classes, we’ve focused on defining and instantiating
classes, and using the object reference to access the class members. In .NET, these are termed
instance members; in order to access them in code, they require that an instance of the class or
structure be created, and each instance of the class has its own set of members with their own
values. However, some class members can be accessed or invoked without instantiating an
instance of the class. These are shared members (in C++ and C#, they’re known as static members),
and they maintain a single set of values for an application as a whole. In Visual Basic .NET,
they’re defined using the Shared keyword. Fields, properties, and methods can all be declared
as shared.

The System.Math class provides an excellent example of shared members. You can calculate
the circumference of a circle, for example, with code like the following:

L 4-37 Dim radius As Single = 2
Dim circum As Single = Math.Pi * radius ^ 2

Here, we’ve accessed the shared Pi field of the Math class to compute the circumference. We could
also find the absolute value of a number by using the shared Abs method of the Math class:

L 4-38 Dim num As Integer = -12
Dim absNum As Integer = Math.Abs(num)

In comparison to C#, Visual Basic .NET is somewhat unusual in that you can access shared
members either through an instance variable or by specifying the name of the type. For example:

L 4-39 Dim mth As System.Math
Dim circum As Single = mth.Pi * radius ^ 2
Dim absNum As Integer = mth.Abs(num)

The major restriction when defining shared members is that they can’t access instance
member of their class. Doing so produces the compiler error, “Cannot refer to an instance
member of a class from within a shared method or shared member initializer without an explicit
instance of the class.” If you want to call an instance method or retrieve the value of an instance
property of the class that has the shared member, you have to instantiate an instance of that class.
This is a common problem in console applications or executables that have an explicitly defined
Sub Main. For example:

L 4-40 Public Class SharedClass
Public Shared Sub Main()

' DoSomething() '-- produces compiler error

Dim sc As New SharedClass
sc.DoSomething()
End Sub

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 75

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Sub DoSomething
' Code in an instance method

End Sub
End Class

In addition to using the Shared keyword to define members whose values are shared on
an application-wide basis, it is also possible to define members whose values are shared on a
per-thread basis. This is done using the System.ThreadStaticAttribute class. (An attribute is a
class that serves as a label in code to modify the behavior of the compiler at compile time, Visual
Studio or some other environment at design time, or the .NET runtime at runtime.) For example,
in the following code, the application’s main thread and a secondary thread make repeated calls
to the IncrementCounter subroutine, which increments a shared per-thread counter:

L 4-41 Imports System.Threading

Public Class SharedByThread

<ThreadStatic> Private Shared Count As Integer

Public Shared Sub Main()
Dim secondThread As New thread(AddressOf Thread2Proc)
secondThread.Start()
count = 100

For ctr As Integer = 0 to 10
Console.WriteLine("The value of count in the main thread is {0}.", _

count)
IncrementCounter(200)

Next
End Sub

Public Shared Sub Thread2Proc()
count = 0

For ctr As Integer = 0 to 10
Console.WriteLine("The value of count in the second thread is " & _

"{0}.", count)
IncrementCounter(250)

Next
End Sub

Public Shared Sub IncrementCounter(delay As Integer)
count +=1
Thread.Sleep(delay)

End Sub
End Class

When run, the code produces the following output, which shows that the counter has been
incremented separately for each thread:

L 4-42 The value of count in the main thread is 100.
The value of count in the second thread is 0.
The value of count in the main thread is 101.
The value of count in the second thread is 1.

76 V i s u a l B a s i c 2 0 0 5 : T h e C o m p l e t e R e f e r e n c e

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The value of count in the main thread is 102.
The value of count in the second thread is 2.
The value of count in the main thread is 103.
The value of count in the second thread is 3.
The value of count in the main thread is 104.
The value of count in the main thread is 105.
The value of count in the second thread is 4.
The value of count in the main thread is 106.
The value of count in the second thread is 5.
The value of count in the main thread is 107.
The value of count in the second thread is 6.
The value of count in the main thread is 108.
The value of count in the second thread is 7.
The value of count in the main thread is 109.
The value of count in the second thread is 8.
The value of count in the main thread is 110.
The value of count in the second thread is 9.
The value of count in the second thread is 10.

C h a p t e r 4 : O b j e c t - O r i e n t e d P r o g r a m m i n g 77

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 4
Blind Folio 78

P:\010Comp\ComRef\033-5\ch04.vp
Sunday, July 02, 2006 1:56:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

